﻿ 河南省永城市顺河西矿区地温分布规律研究
 文章快速检索 高级检索
 地质与资源 2021, Vol. 30 Issue (4): 473-478 0

YAN Shao-quan, YANG Yi-dong, ZHANG Chao-ran. GEOTHERMAL DISTRIBUTION RULE OF SHUNHEXI OREFIELD IN YONGCHENG CITY, HENAN PROVINCE[J]. Geology and Resources, 2021, 30(4): 473-478.

GEOTHERMAL DISTRIBUTION RULE OF SHUNHEXI OREFIELD IN YONGCHENG CITY, HENAN PROVINCE
YAN Shao-quan , YANG Yi-dong , ZHANG Chao-ran
No.4 Institute of Geology and Mineral Survey, Henan Bureau of Geology and Mineral Exploration and Development, Zhengzhou 451464, China
Abstract: The paper analyzes the data for approximate steady state temperature measurements of 2 boreholes and simple temperature measurements of 44 boreholes in Shunhexi orefield of Yongcheng City, and establishes data model through data fitting combined with the geological information of orefield to reflect the relationship between temperature increment at the bottom of approximate steady state boreholes and static well time. The bottom temperature of simple temperature measurement borehole is corrected according to the data model, and the linear relationship between buried depth and temperature is found through data fitting. On this basis, the horizontal and vertical distribution law of geothermal temperature in the study area is analyzed for reference of further mining development.
Key words: geothermal field    geothermal gradient    numerical simulation    Yongcheng City    Henan Province

1 矿区简述

1.1 地层

1.2 构造特征

2 测温资料收集与处理 2.1 测温资料

1）钻孔近似稳态测温数据. 收集了顺河西矿区2个近稳态测温钻孔数据，孔深在1500~1650 m. 钻探施工结束后按12、12、24、24 h的时间间隔顺序用同一仪器进行测温，直至24 h内温度变化不大于0.5 ℃或总测温时间已达72 h为止[5-6].

2）钻孔简易测温数据. 对收集到的44个钻孔的简易测温数据进行校正后利用，孔深在700~1600 m. 在钻探施工结束后，对常规测井前后各进行一次地温测量，间隔时间一般只有6~8 h. 简易测温第二次测量一般是在井液停止循环时间8 h左右进行的，与原始岩温相差较大，需进一步处理才能被利用.

3）恒温带数据. 采用永城市东大营恒温观测孔观测结果：孔深81 m，孔径110 mm，恒温带深度23 m，温度16.5 ℃ [7].

2.2 资料处理

 $\Delta T{\rm{ = }}\frac{{T{\rm{ - }}{T_i}}}{T} \times {\rm{100}}$ (1)

 图 1 近似稳态钻孔温度恢复增量与静井时间关系图 Fig.1 Diagram of temperature recovery increment vs. static well time of approximate steady state boreholes 1—Z0103孔（Z0103 borehole）；2—Z0708孔（Z0708 borehole）；3—拟合曲线（fitting curve）

 ${T_0} = {T_j}/\left( {1 - \Delta T} \right)$ (2)

3 矿区地温分布规律 3.1 地温梯度

 $G = \frac{{{T_0} - {T_{\rm{S}}}}}{{H - {H_{\rm{S}}}}} \times 100$ (3)

 图 2 地温梯度等值线图 Fig.2 Contour map of geothermal gradient 1—断层及编号（fault and number）；2—背斜构造线（anticline）；3—向斜构造线（syncline）；4—地温梯度等值线（geothermal gradient isoline）；5—地震线及编号（seismic exploring line）；6—工作区范围（study area）

3.2 垂向地温特征

 图 3 矿区地温与埋深关系图 Fig.3 Relationship between geothermal temperature and buried depth
3.3 水平向地温特征

 ${T_{\rm{c}}} = {T_{\rm{o}}} - G\left( {H - {h_{\rm{c}}}} \right)$ (4)

4 地温影响因素分析

4.1 构造形态

4.2 覆盖层厚度

4.3 地下水活动

4.4 岩浆岩

5 结论

1）矿区孔底温度恢复增量与静井时间的关系式为ΔT＝6.59928e-0.04397t-0.26437. 根据校正公式及停钻测温时间可计算出简易测温钻孔的孔底温度.

2）垂向矿区地温数值与深度的线性关系为t＝0.02541h+17.442，呈现较好的正相关性. 埋藏深度534~769 m属一级热害区，埋藏深度769 m以深属二级热害区.

3）研究区地温主要控制因素是矿区构造和松散层厚度，对地温的影响较大. 地下水活动及岩浆岩侵入对地温影响甚微.

 [1] 冯斌, 李文前, 刘建方. 河南永夏煤田地质[M]. 武汉: 中国地质大学出版社, 2017: 125-130. Feng B, Li W Q, Liu J F. Geology of Yongxia coalfield, Henan Province[M]. Wuhan: China University of Geosciences Press, 2017: 125-130. [2] 张连强. 顺和西煤矿区地温特征及其影响因素分析[J]. 中国煤炭地质, 2012, 24(7): 29-33. Zhang L Q. Geotemperature characteristics and impacts from geological factors in Shunhexi Mine area[J]. Coal Geology of China, 2012, 24(7): 29-33. DOI:10.3969/j.issn.1674-1803.2012.07.07 [3] 何莉. 河南省东部新生界深度图及其地质意义[J]. 工程地球物理学报, 2015, 12(5): 692-699. He L. The map of Cenozoic depth in eastern Henan and its geological significance[J]. Chinese Journal of Engineering Geophysics, 2015, 12(5): 692-699. DOI:10.3969/j.issn.1672-7940.2015.05.021 [4] 彭松民, 李振国, 王令全, 等. 河南省侵入岩构造单元的划分及其特征[J]. 矿产与地质, 2014, 28(3): 264-271, 283. Peng S M, Li Z G, Wang L Q, et al. Division and characteristics of tectonic units of intrusive rocks in Henan Province[J]. Mineral Resources and Geology, 2014, 28(3): 264-271, 283. DOI:10.3969/j.issn.1001-5663.2014.03.002 [5] 易家伟. 宿东矿区地温分布规律及影响因素分析[D]. 淮南: 安徽理工大学, 2017. Yi J W. Analysis of geothermal distribution and influencing factors in the Sudong mining area[D]. Huainan: Anhui University of Science & Technology, 2017. [6] 中华人民共和国国土资源部. DZ/T 0080-2010煤炭地球物理测井规范[S]. 北京: 中国标准出版社, 2010. Ministry of Land and Resources of the People's Republic of China. DZ/T 0080-2010 Specifications for geophysical logging of coal[S]. Beijing: China Standard Press, 2010. [7] 苏媛媛. 豫东下古生界地热资源潜力评价[J]. 山东煤炭科技, 2017(6): 185-187. Su Y Y. Lower Paleozoic geothermal resource potential evaluation[J]. Shandong Coal Science and Technology, 2017(6): 185-187. DOI:10.3969/j.issn.1005-2801.2017.06.078 [8] 王海军. 简易测温曲线的近似稳态校正方法——以LYL井田为例[J]. 煤田地质与勘探, 2016, 44(1): 90-93. Wang H J. Approximate steady state correction of simple well temperature curve: With LYL mine field as an example[J]. Coal Geology & Exploration, 2016, 44(1): 90-93. DOI:10.3969/j.issn.1001-1986.2016.01.017 [9] 任自强. 潘集矿区深部地温地质特征及地热资源评价[D]. 淮南: 安徽理工大学, 2016. Ren Z Q. Geothermal characteristics and assessment of geothermal resources in the depth of Panji mining area[D]. Huainan: Anhui University of Science & Technology, 2016. [10] 谭静强, 琚宜文, 侯泉林, 等. 淮北煤田宿临矿区现今地温场分布特征及其影响因素[J]. 地球物理学报, 2009, 52(3): 732-739. Tan J Q, Ju Y W, Hou Q L, et al. Distribution characteristics and influence factors of present geo-temperature field in Su-Lin mine area, Huaibei coalfield[J]. Chinese Journal of Geophysics, 2009, 52(3): 732-739. [11] 彭涛, 吴基文, 任自强, 等. 淮北煤田现今地温场特征及大地热流分布[J]. 地球科学——中国地质大学学报, 2015, 40(6): 1083-1092. Pen T, Wu J W, Ren Z Q, et al. Distribution characteristics of current geothermal field and terrestrial heat flow in Huaibei Coalfield[J]. Earth Science-Journal of China University of Geosciences, 2015, 40(6): 1083-1092. [12] 李腾超, 王书宏, 寇正卫. 河南省地温场分布规律及成因机制分析[J]. 城市地质, 2020, 15(2): 194-200. Li T C, Wang S H, Kou Z W. Analysis of the distribution and formation mechanism of the geothermal field in Henan Province[J]. Urban Geology, 2020, 15(2): 194-200. DOI:10.3969/j.issn.1007-1903.2020.02.012 [13] 王康, 姚多喜, 鲁海峰. 淮南潘三矿区地温分布规律及其影响因素分析[J]. 中国煤炭地质, 2014, 26(5): 38-40, 48. Wang K, Yao D X, Lu H F. Geotherm distribution pattern and impacting factor analysis in Panji No.3 coalmine, Huainan[J]. Coal Geology of China, 2014, 26(5): 38-40, 48. DOI:10.3969/j.issn.1674-1803.2014.05.09 [14] 郭艳, 吴基文, 冯松宝. 宿县矿区地温特征及控制因素分析[J]. 合肥工业大学学报(自然科学版), 2015, 38(5): 694-699. Guo Y, Wu J W, Feng S B. Geotemperature features in Suxian mining area and control factors[J]. Journal of Hefei University of Technology (Natural Science), 2015, 38(5): 694-699. [15] 张庆松, 高阳, 李术才, 等. 含水构造附近围岩温度场响应特征与影响因素研究[J]. 山东大学学报(工学版), 2011, 41(3): 72-77. Zhang Q S, Gao Y, Li S C, et al. Research on the temperature response feature of a rock mass around a water-bearing structure and affecting factors[J]. Journal of Shandong University (Engineering Science), 2011, 41(3): 72-77. [16] 黄光寿, 郭丽丽, 黄凯. 河南省沉积盆地区五大构造单元地热地质特征[J]. 地质与资源, 2020, 29(2): 172-179. Huang G S, Guo L L, Huang K. Geothermal geological characteristics of five tectonic units in the sedimentary basins of Henan Province[J]. Geology and Resources, 2020, 29(2): 172-179. DOI:10.3969/j.issn.1671-1947.2020.02.009 [17] 郭飒飒, 朱传庆, 邱楠生, 等. 雄安新区深部地热资源形成条件与有利区预测[J]. 地质学报, 2020, 94(7): 2026-2035. Guo S S, Zhu C Q, Qiu N S, et al. Formation conditions and favorable areas for the deep geothermal resources in Xiong'an New Area[J]. Acta Geologica Sinica, 2020, 94(7): 2026-2035. DOI:10.3969/j.issn.0001-5717.2020.07.011 [18] 路畅, 李营, 陈志, 等. 华北断陷盆地中北部地热水地球化学特征及成因初探[J]. 矿物岩石地球化学通报, 2018, 37(4): 663-673. Lu C, Li Y, Chen Z, et al. A primary study on geochemical characteristics and genesis of geothermal water in the north-central part of the North China Downfaulted Basin[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2018, 37(4): 663-673. [19] 张连强. 永夏煤田水文地质特征及开采技术条件评价[J]. 中国煤炭地质, 2012, 24(8): 48-52, 84. Zhang L Q. Evaluation of Yongxia Coalfield hydrogeological characteristics and mining technical conditions[J]. Coal Geology of China, 2012, 24(8): 48-52, 84. [20] 张连强, 李建涛, 杨义栋, 等. 对豫东地区地下水资源的理性分析[J]. 地下水, 2011, 33(6): 222-224. Zhang L Q, Li J T, Yang Y D, et al. Rational analysis of groundwater resources in eastern Henan Province[J]. Ground Water, 2011, 33(6): 222-224.