2 青海省文物考古研究所, 青海 西宁 810007;
3 中国科学院青藏高原地球科学卓越创新中心, 北京 100101)
史前时代人类活动与生存环境的关系是地理学、考古学、人类学等多学科关注的重要科学问题[1~3]。在旧石器时代,人类通过狩猎采集方式获取食物,自然资源(尤其是野生动植物资源)对游猎人群的活动有显著的影响[4~5]。新石器时代早期,在欧亚大陆东西两侧出现了最早的农作物和家畜驯化中心[6~7],随后农业生产和定居方式促进了人口的快速增长[8],进而推动农业人群的广泛扩散和伴生农作物与家畜的传播[9]。新石器时代气候环境变化事件对人类社会的影响显著[10~13],但人类适应和改造生存环境的能力较旧石器时代显著增强[14~15]。新石器时代至青铜时代的过渡时期(约5000~3000 a B.P.)跨欧亚大陆的交流出现并逐步强化[16~17],人类可选择的生业方式更趋多样化,对环境的适应和改造能力进一步提升,生存空间也得到显著的拓展[18]。因此,不同生业人群与生存环境关系的研究,是探索史前时代人地关系演变过程和规律的重要途径。
青藏高原史前时代人类活动历史及其与气候环境变化关系的研究受到了广泛关注,并在近年来取得了许多重要的进展[19~26]。已有研究显示青藏高原东北部最早的人类活动可追溯至距今16万年前[20],而旧石器晚期至青铜时代人类持续在该地区活动[18]。研究结果表明,约15000 a B.P.旧石器人群在该地区从事狩猎采集活动[27~28],5200 a B.P.左右以粟黍种植为主要生业模式的人群大规模定居到海拔2500 m以下的河谷地带[17];西亚起源的农作物小麦和大麦在4000 a B.P.左右传入到这一地区,并在3600 a B.P.成为人类重要的食物来源[17, 29];耐寒农作物大麦和家畜羊的引入与利用,提升了青铜时代人类适应高寒环境的能力,促成农牧混合人群在3600 a B.P.之后到青海湖盆地、柴达木盆地、青海南部高原等高海拔区域的永久定居[17, 30]。上述资料显示,青藏高原东北部史前时代不同生业模式人群的生存空间有明显的区别。黄河上游群尖盆地的沙隆卡遗址处于不同生业人群生存空间交汇的位置(图 1),为研究史前不同生业人群活动与生存环境的关系提供了良好的基础。
沙隆卡遗址地区最早的人类活动可追溯至距今8300年前,在一处暴露的文化层发现了少量的细石叶和石片[31]。考古调查结果显示,在沙隆卡遗址曾有仰韶文化庙底沟期人群活动,其北部约2 km处的格尔麻遗址文化层内也曾出土仰韶文化庙底沟类型期和马家窑文化及齐家文化的陶片[32~33];此外,在沙隆卡遗址还曾发现过卡约文化的遗迹,碳十四测年结果显示人类在3000 cal.a B.P.左右也曾在该遗址活动[34]。此前的研究还显示,沙隆卡遗址史前人类活动受到气候变化引发的黄河漫滩洪水的影响[34]。这些研究均为认识沙隆卡遗址史前人类活动的时代及其与生存环境的关系提供了重要的线索,但由于以往工作主要是在考古调查基础上开展的,所获得的年代和考古遗存有限。2016年,青海省文物考古研究所在沙隆卡遗址开展了发掘工作,为研究沙隆卡遗址史前人类活动历史提供了很好的机会。本文在该遗址发掘过程中系统采集了炭屑样品开展碳十四年代测试,结合出土的考古遗存,以及已有的动植物鉴定和古环境研究结果,开展史前不同生业人群活动历史及其生存环境基础的研究。
1 研究区概况群尖盆地位于青藏高原东北部黄河上游李家峡至公伯峡之间的黄河两岸台地,北靠东西走向的拉脊山,南隔折戈里山与同仁县相连,西缘申宝山与贵德盆地分隔,东隔公伯峡与循化-化隆盆地相连(图 2a)。行政区划上包括尖扎县全境和化隆县的群科镇、沙连堡乡、昂思多镇、扎巴镇、牙什尕镇、查甫藏族乡和雄先藏族乡。盆地面积约2950 km2,盆地与周围山地海拔在1960~4614 m之间,海拔高差大,自西北向东南逐渐降低。群尖盆地属于高原半干旱气候区,年平均气温约7.8 ℃,年降水量约357 mm[35]。群尖盆地地貌特征复杂,兼具高原、高山峡谷、黄土台地等类型,表现出强烈切割、河流冲蚀、淤积等多样化地貌特征。伊沙尔河位于化隆县群科镇黄河北岸,自北向南流入黄河。沙隆卡遗址(36.01°N,102°E;海拔2021 m)位于伊沙尔河口东岸黄河二级台地安达其哈村西250 m处,距离现在黄河河道以北约500 m处。沙隆卡遗址面积约26000 m2,最下部为细石器时期文化层,现距地表约4 m[33]。沙隆卡遗址位于安达其哈村,沙隆卡遗址和安达其哈遗址属于同一个遗址,本文统一表述为沙隆卡遗址。
2016年,青海省文物考古研究所在沙隆卡遗址开展了发掘工作(图 2b)。沙隆卡遗址最下部的细石器文化层距地表约4 m,T1405和T1406壁根据土质土色及包含物可以分为29层,其中1、2和3为现代土壤层;4~5、13、17~19、24和29为文化层;6~7、9、11~12、15~16、21、23和26~28为淤积层;8、10、14、20、22和25为古土壤层(图 3a和3b)。遗址文化层出土器物有石器、陶器等(图 3c、3d和3e)。遗址下部文化层出土细石器(图 3e),其中17~19层集中出土400余件细石器,主要包括细石叶、石核等,推测沙隆卡遗址可能是当时的石器加工场地,石制品的原料为不同颜色的石英岩,燧石等,多采用砾石及砾石石片作为原材料;文化层5a出土陶片主要包括泥质红陶、夹砂红陶、夹砂灰陶和夹砂橙黄陶,其中部分泥质红陶为彩陶,纹饰包括宽条带纹、三角纹和网格纹等,部分陶器饰附加堆纹、刻划纹等,器形包括双耳罐、盆等,从陶器陶制陶色、纹饰和器型判断主要为齐家文化时期陶片,个别为马家窑文化马厂类型时期陶片(图 3c);文化层13层出土陶片主要为泥质红陶、夹砂红陶等,其中部分泥质红陶为彩陶,纹饰包括宽条带纹、窄条带纹和弧线纹等,部分陶器饰附加堆纹和绳纹,器形主要包括罐、盆、瓮、钵等,从陶质陶色、纹饰和器型判断主要为庙底沟类型时期器物,个别器物为马家窑文化石岭下类型时期遗存(图 3d)。在沙隆卡遗址发掘过程中对不同的文化层及部分淤积层采集了17个炭屑样品,采样层位见表 1和图 3a,开展碳十四定年工作。
所有炭屑样品经物理处理剔除掉可视污染物之后,采用标准的酸-碱-酸方法进行化学前处理,以便除去碳酸盐、腐殖质酸等,最后干燥得到预处理样品,并进行石墨合成。样品预处理与石墨制靶在兰州大学西部环境教育部重点实验室14C年代学实验室完成,年代测试在北京大学加速器质谱实验室完成。基于Intcal 13校正曲线[36],用OxCal v.4.3.2软件将14C年代校正为日历年[37],用“cal.a B.P.”表示。
3 结果本文共获得17个不同层位炭屑的AMS 14C年代数据,结果显示本次发掘的沙隆卡遗址文化层的年代范围为8539~3892 cal.a B.P.(表 1),年代跨度与此前研究结果较为一致[19, 31, 34, 38~39]。沙隆卡遗址最底部的细石器文化层(29层)年代范围介于8539~8219 cal.a B.P.,细石器文化层24a和24b的年代(8010~7340 cal.a B.P.)与17~19层年代(7955~7480 cal.a B.P.)接近;新石器文化层(13层)年代范围为5029~4643 cal.a B.P.;文化层5b的年代范围为4082~3892 cal.a B.P.;河漫滩淤积层出土的炭屑年代范围分别处于7839~7689 cal.a B.P.(26层)、7846~7698 cal.a B.P.(16层)、5213~4873 cal.a B.P.(12a层)和5747~5601 cal.a B.P.(6层)。
4 讨论 4.1 沙隆卡遗址史前人类活动历史沙隆卡遗址文化层的14C年代结果表明史前人类在约8500~7300 cal.a B.P.、约5300~4600 cal.a B.P.、约4100~3900 cal.a B.P.以及约3200~2900 cal.a B.P.等时段在沙隆卡遗址活动(图 4g)。在旧石器晚期、新石器-铜石并用时期、青铜文化时期,沙隆卡遗址史前人类生存策略发生了显著的变化。
约8500~7300 cal.a B.P.是沙隆卡遗址最早人类活动的时期。在遗址文化层29层和24层出土了少量的细石器、石叶,呈零散分布;在文化层17~19层有超过400件细石器集中出土,在文化层19和24a层还发现有火塘。上述证据表明在这一时期沙隆卡遗址人类从事狩猎采集活动,这也是目前在青海省境内黄河上游谷地发现的海拔最低的旧石器遗址,此前发现的旧石器遗址海拔均高于2500 m,而沙隆卡遗址海拔仅有2021 m。约15000~9000 cal.a B.P.,青藏高原东北部狩猎采集人群的活动以青海湖盆地(海拔约3200~3500 m)为中心,以大中型有蹄类动物野牛、野马为主要狩猎目标[27, 40~41]。约9000~5500 cal.a B.P.,青藏高原东北部狩猎采集人群活动范围显著扩大,活动范围也扩张至海拔4000 m左右的区域[31, 42~47]。这一时期旧石器人群主要以捕食中小型野生动物为生,距离沙隆卡遗址西南约120 km处的贵南拉乙亥遗址(距今约6700年)出土动物遗骸以鹿、野兔、旱獭等动物为主[48]。
约5300~4600 cal.a B.P.,对应于仰韶文化晚期-马家窑文化早期,该时段以粟黍农业生产为主要生活方式的人群已扩散至黄河上游谷地,沙隆卡遗址人群的生业模式也发生了明显的转变。该遗址的动物骨骼鉴定结果显示,野生动物以鹿科、羊亚科及羚羊属为主,所占的比例超过90 % [49],年代约5300~5000 cal.a B.P.[39],家养动物猪和狗的遗存比例较低。在该遗址马家窑早期地层中还出土了一定数量的粟黍遗存,但其比例(约24 %)显著低于杂草比例(约76 %),年代约5000~4850 cal.a B.P.[19, 38]。这些证据表明约5300~5000 cal.a B.P.野生动物资源是沙隆卡遗址的先民重要的食物来源,家畜饲养是其辅助的生产方式,而在约5000 cal.a B.P.时期沙隆卡遗址出现粟黍。结合群尖盆地的植物考古研究[19],显示约5200~3600 cal.a B.P.粟黍农业逐渐成为该区域人类重要的生产方式。
约3600~2600 cal.a B.P.,卡约文化在青藏高原东北部迅速发展[50]。沙隆卡遗址卡约文化层出土炭屑的测年结果为3165~2870 cal.a B.P.[34],显示卡约文化人群也曾在沙隆卡遗址生活。考古调查显示群尖盆地卡约文化时期遗址数量和分布范围均较马家窑-齐家文化时期有显著扩张,除河谷地带之外,海拔较高的山地也分布有大量的卡约文化遗址[32](图 2a)。群尖盆地内的东风西南遗址以及海拔较高的尕盖遗址、拉隆哇遗址和沙吾昂遗址等多个卡约文化遗址的植物考古研究显示这些遗址人类利用的主要作物是大麦[19]。盆地内低海拔河谷地带的卡约遗址(罗哇林场遗址与团结遗址)的植物考古研究表明卡约人群在河谷地带种植粟黍、大麦以及小麦等多种作物[19](图 2a)。这种生业模式空间分异的现象在同时期的青藏高原东北部及毗邻地区较为普遍,即在海拔2500 m以下地区人类种植的农作物以粟黍、小麦和大麦为主,利用的动物以家养杂食动物猪和狗为主,家养食草动物羊、牛和马以及野生动物为辅;而在海拔2500 m以上地区,大麦是最主要的农作物,利用的动物则以羊和牦牛为主[51]。
4.2 沙隆卡遗址史前人类活动与局地尺度生存环境的关系群尖盆地处于黄河上游河谷地带,最低海拔约2000 m,而南北两侧的折戈里山与拉脊山海拔高,盆地和高山海拔高差大。群尖盆地独特的地貌水文特征为史前不同时期人群在此开展狩猎采集活动、粟黍农业活动、种植大麦与牧羊为主的农牧活动提供了生存环境基础。
全新世早中期,青藏高原东北部水热条件良好[52~53],有利于森林植被生长。群尖盆地不同海拔高度被森林和草地覆盖,林草交错带是野生动物适宜的生存环境,良好的环境促进野生动物生存,为狩猎采集人群提供了丰富的狩猎资源。狩猎采集人群主要在冷干的气候条件下在沙隆卡遗址区域活动[34],该遗址处于黄河与伊沙尔河交汇处,为人类生活提供了充足的水源。同时,黄河及伊沙尔河也是这一时期野生动物至关重要的水源地,能够吸引野生动物来此饮水,便于人类在此开展狩猎采集活动。
约5200 cal.a B.P.,来自黄土高原的仰韶文化和马家窑文化粟作农业人群大规模扩散至青藏高原东北部的河谷地带[19]。调查发现青藏高原东北部有多处存在仰韶文化元素的遗址,主要分布在青海东部的民和、循化、化隆县境内[33]。粟黍是温性耐旱作物,在青藏高原上稳定生长所需的积温应大于2000 ℃[54],青藏高原东北部海拔2500 m以下地区是粟黍种植的边缘地带,新石器时代粟作农业人群主要在海拔2500 m以下的河谷地带定居[19]。群尖盆地的海拔在2000~2500 m之间、年平均气温约7.8 ℃,年降水量约357 mm[35],气候环境适宜粟黍的生长。沙隆卡遗址是青海境内黄河流域仰韶文化分布最西端的遗址,也是青海境内已发掘过最早的新石器时代(仰韶文化庙底沟类型)的遗址[33],沙隆卡遗址发掘出土的遗存和测年结果也进一步证明了这一点。沙隆卡遗址的积温和水文条件为粟黍生长提供了保障,同时群尖盆地的植被地貌为狩猎活动提供了便利,保障了新石器人群在沙隆卡遗址的生产生活需要。
约4500~3500 cal.a B.P.,跨欧亚大陆的文化交流出现并不断加强,促使西亚和中亚起源的文化元素大麦、小麦、羊、铜冶技术等传入东亚地区[17, 26, 55~57]。在距今3600年前,甘青地区人类已经开始大量种植外来作物大麦和小麦[29]。大麦是喜凉耐寒作物,能够在青藏高原海拔2500 m以上地区生长,最高可达海拔4750 m[58]。群尖盆地较高海拔的高山地带不适宜粟黍的种植,但适合大麦生长;而群尖盆地低海拔的沙隆卡遗址,粟黍、大麦和小麦是距今3600~2600年前的主要作物。这一时期沙隆卡遗址附近的罗哇林场遗址、团结遗址的植物遗存也证明了这一点[19](图 2a)。耐寒作物大麦的广泛种植促使群尖盆地卡约文化人群向更高海拔定居(图 2a),而青藏高原东北部麦作农业的发展使得人类能够永久定居青藏高原[19]。
群尖盆地多样的地貌水文特征为史前不同生业模式人群生存提供了环境基础,但局地环境的改变也对史前人类在沙隆卡遗址的持续活动造成影响。沙隆卡遗址距离黄河及伊沙尔河较近,易受到漫滩洪水的影响。沙隆卡遗址发掘剖面显示有多个淤积层覆盖在各文化层之上(图 3b),显示漫滩洪水是干扰沙隆卡遗址不同时期人群活动的重要环境因素。此前研究也表明沙隆卡遗址曾受到多次漫滩洪水的影响[34]。
4.3 沙隆卡遗址史前人类活动与区域尺度生存环境的关系史前人类活动与区域气候环境变化密切相关[12~13, 59~63]。全新世早期气候快速转暖,季风增强,青藏高原东北部地区降水显著增加,生态环境得到改善[25, 53]。全新世中期,季风强度和温度较高,这一气候条件促进区域内植被生长,而到全新世晚期,季风强度减小,温度降低,植被减少[53, 64~65](图 4a~4c)。对于狩猎采集人群而言,其生存与发展受到可获得的野生动物和植物资源数量的制约,而动植物资源的数量很大程度上受到区域气候环境与植被变化的影响[5, 66]。良好的生态环境条件下,野生动物和植物资源也会随之增加,吸引狩猎采集人群在青藏高原东北部生存[67]。14C年代概率曲线可以在一定程度上指示人类活动时间范围和强度,统计青藏高原东北部及毗邻地区旧石器遗址14C年代、新石器及青铜时代粟黍以及大麦和小麦的14C年代[19, 31, 34, 38~39, 43~47, 59, 68~80],通过14C概率曲线来反映狩猎采集人群、粟黍农业人群和麦作农业人群的活动时间与强度(图 4d~4f)。
约8500~7300 cal.a B.P.,得益于区域良好的气候与植被条件,青藏高原东北部狩猎采集人群活动强度较高(图 4d),人类需要更多狩猎采集资源进而扩大活动范围,很可能是促进狩猎采集人群在沙隆卡遗址活动的重要原因(图 4g)。已有研究认为森林边缘地带资源多样性强,方便开展狩猎采集活动[4]。群尖盆地的沙隆卡遗址处于森林边缘地带,水热条件相比于其他高海拔的旧石器遗址较好,利于动植物生存,对于狩猎采集人群更具有吸引力。
约5900 cal.a B.P.,黄土高原西部以粟黍种植为基础的旱作农业得到强化[42],随后粟黍种植技术随农业人群的西向扩散被带到了青藏高原东北部与河西走廊等地区[19, 59, 71](图 4e),适宜的气候条件起到了促进作用[71]。因此,区域空间尺度的新石器文化发展与扩张,是推动粟黍农业人群到沙隆卡遗址定居的最主要因素。尽管沙隆卡遗址先民在距今5200年左右已开始从事家畜饲养和粟黍种植活动,野生动物仍然是其重要的生活资料来源[49]。在马家窑文化晚期,青藏高原东北部温度较马家窑文化早期显著下降(图 4b),不利于对低温敏感的粟黍作物种植。考古资料显示在马厂时期(4300~4000 a B.P.)粟黍农业是最主要的生产方式,但人群定居的核心区则转移到海拔较低而平地资源丰富的湟水谷地与河西走廊等地区[31]。齐家文化时期人类的生业模式中对食草家畜羊的利用较多[81~82],对齐家文化先民向黄河上游谷地的扩散,及其在沙隆卡遗址的定居起到了促进作用。
约4000~2500 cal.a B.P.,青藏高原东北部降水和温度整体呈现下降趋势(图 4a和4b),区域内植被持续下降(图 4c)。起源于西亚的农作物大麦、小麦和家畜羊在4000 cal.a B.P.左右传入河西走廊[76~77],并快速传播至青藏高原东北部[19, 59](图 4f),为人类适应生存环境的变化提供了多样的选择。青铜文化中晚期,在青藏高原东北部不同区域,人类采用了不同的生业模式适应当地的生存环境[51],也发展出了不同的区域文化[50]。该时期在群尖盆地生活的是卡约文化人群,放牧活动和耐寒作物大麦的利用,保障卡约人群在该盆地较高海拔(山地)的生存。而在海拔相对较低的河谷地带,包括沙隆卡遗址,粟黍仍然是人类利用的重要作物,外来作物小麦和大麦也得到了利用[19]。史前东西方交流带来的农业生产技术的革新,使青铜时代中晚期人类适应不同生存环境的能力显著增强,是推动卡约文化在群尖盆地发展的重要因素。
5 结论本文对青藏高原东北部群尖盆地沙隆卡遗址多个文化层和淤积层进行了系统年代学研究,建立了其精确的年代学框架,在此基础上结合群尖盆地已发表的植物考古学资料和局地-区域气候环境记录,探讨了旧石器、新石器以及青铜器时期不同生业人群在沙隆卡遗址活动过程及其与局地和区域环境的关系。结论如下:
(1) 约8500~7300 cal.a B.P.、约5300~4600 cal.a B.P.、约4100~3900 cal.a B.P.以及约3200~2900 cal.a B.P.等多个时期内均有人群在沙隆卡遗址活动。
(2) 群尖盆地史前不同时期人群生业模式发生了较大的变化。约8500~7300 cal.a B.P.人类开展狩猎采集活动,约5200~3600 cal.a B.P.人类开始从事粟黍农业活动并逐渐增强,约3400~2300 cal.a B.P.在盆地高海拔地区主要以大麦种植为主,而在盆地低海拔地区则种植粟黍、大麦和小麦多种作物。
(3) 约8500~2500 cal.a B.P.,青藏高原东北部气候环境从早期暖湿气候逐渐变得冷干,植被逐渐减少。沙隆卡遗址所在的群尖盆地因其复杂而独特的地理环境,成为狩猎采集人群、农业人群和农牧人群理想的生活场所。
(4) 史前人类活动与生存环境的关系也发生了显著的转变。旧石器时期环境变化对狩猎采集人群的活动影响显著,新石器和青铜器时期跨大陆文化交流使得人类生存策略多样化,进而提升了人类适应环境和改造环境的能力。
致谢: 感谢评审专家和编辑部杨美芳老师宝贵的修改意见,感谢牛津大学刘睿良老师修改英文摘要,使得文章质量有了很大的提升。
[1] |
Magill C R, Ashley G M, Freeman K H, et al. Ecosystem variability and early human habitats in Eastern Africa[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(4): 1167-1174. DOI:10.1073/pnas.1206276110 |
[2] |
陈发虎, 傅伯杰, 夏军, 等. 近70年来中国自然地理与生存环境基础研究的重要进展与展望[J]. 中国科学:地球科学, 2019, 62(11): 1659-1696. Chen Fahu, Fu Bojie, Xia Jun, et al. Major advances in studies of the physical geography and living environment of China during the past 70 years and future prospects[J]. Science China:Earth Sciences, 2019, 62(11): 1665-1701. |
[3] |
Umberto L, José I, Lautaro H, et al. Early Holocene crop cultivation and landscape modification in Amazonia[J]. Nature, 2020, 581(7807): 190-193. DOI:10.1038/s41586-020-2162-7 |
[4] |
陈胜前. 中国晚更新世-早全新世过渡期狩猎采集者的适应变迁[J]. 人类学学报, 2006, 3: 195-207. Chen Shengqian. Adaptive changes of hunter-gatherers during the Late Pleistocene-Early Holocene transition in China[J]. Acta Anthropologica Sinica, 2006, 3: 195-207. DOI:10.16359/j.cnki.cn11-1963/q.2006.03.002 |
[5] |
Tallavaara M, Eronen J T, Luoto M. Productivity, biodiversity, and pathogens influence the global hunter-gatherer population density[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(6): 1232-1237. DOI:10.1073/pnas.1715638115 |
[6] |
Zeder M A. Domestication and early agriculture in the Mediterranean Basin:Origins, diffusion, and impact[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(33): 11597-11604. DOI:10.1073/pnas.0801317105 |
[7] |
Zhao Z J. New archaeobotanic data for the study of the origins of agriculture in China[J]. Current Anthropology, 2011, 52(S4): S295-S306. DOI:10.1086/659308 |
[8] |
Gignoux C R, Henn B M, Mountain J L. Rapid, global demographic expansions after the origins of agriculture[J]. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108(15): 6044-6049. DOI:10.1073/pnas.0914274108 |
[9] |
Diamond J, Bellwood P. Farmers and their languages:The first expansions[J]. Science, 2003, 300(5619): 597-603. DOI:10.1126/science.1078208 |
[10] |
Middleton G D. Megadrought and collapse:From early agriculture to Angkor[J]. Antiquity, 2018, 92(363): 828-830. DOI:10.15184/aqy.2018.80 |
[11] |
Xu D K, Lu H Y, Chu G Q, et al. Synchronous 500-year oscillations of monsoon climate and human activity in Northeast Asia[J]. Nature Communications, 2019, 10: 4105. DOI:10.1038/s41467-019-12138-0 |
[12] |
胡雅琴, 曹现勇, 赵志军, 等. 西辽河上游全新世早中期环境变化及其对人类活动的影响[J]. 第四纪研究, 2016, 36(3): 530-541. Hu Yaqin, Cao Xianyong, Zhao Zhijun, et al. The palaeoenviron-mental and palaeoclimatic reconstruction and the relation with the human activities during the Early and Middle Holocene in the upper Western Liao River region[J]. Quaternary Sciences, 2016, 36(3): 530-541. |
[13] |
张贵林, 周新郢, 赵克良, 等. 沙漠/黄土过渡带6 ka B.P.以来气候环境变化及其对人类活动的影响[J]. 第四纪研究, 2018, 38(4): 874-886. Zhang Guilin, Zhou Xinying, Zhao Keliang, et al. Climate and environment change of desert/loess transition zone and its impact on prehistoric human activities since 6 ka B.P.[J]. Quaternary Sciences, 2018, 38(4): 874-886. |
[14] |
Lespez L, Glais A, Lopezsaez J, et al. Middle Holocene rapid environmental changes and human adaptation in Greece[J]. Quaternary Research, 2016, 85(2): 227-244. DOI:10.1016/j.yqres.2016.02.002 |
[15] |
Cheng Z J, Weng C Y, Steinke S, et al. Anthropogenic modification of vegetated landscapes in Southern China from 6, 000 years ago[J]. Nature Geoscience, 2018, 11(12): 939-943. DOI:10.1038/s41561-018-0250-1 |
[16] |
Spengler R, Frachetti M, Doumani P, et al. Early agriculture and crop transmission among Bronze Age mobile pastoralists of Central Eurasia[J]. Proceedings of The Royal Society B:Biological Sciences, 2014, 281(1783): 20133382. DOI:10.1098/rspb.2013.3382 |
[17] |
董广辉, 杨谊时, 韩建业, 等. 农作物传播视角下的欧亚大陆史前东西方文化交流[J]. 中国科学:地球科学, 2017, 60(5): 530-543. Dong Guanghui, Yang Yishi, Han Jianye, et al. Exploring the history of cultural exchange in prehistoric Eurasia from the perspectives of crop diffusion and consumption[J]. Science China:Earth Sciences, 2017, 60(6): 1110-1123. |
[18] |
Dong G H, Li R, Lu M X, et al. Evolution of human-environmental interactions in China from the late Paleolithic to the Bronze Age[J]. Progress in Physical Geography:Earth Environment, 2020, 44(2): 233-250. DOI:10.1177/0309133319876802 |
[19] |
Chen F H, Dong G H, Zhang D J, et al. Agriculture facilitated permanent human occupation of the Tibetan Plateau after 3600 B.P.[J]. Science, 2015, 347(6219): 248-250. DOI:10.1126/science.1259172 |
[20] |
Chen F H, Welker F, Shen C C, et al. A late Middle Pleistocene Denisovan mandible from the Tibetan Plateau[J]. Nature, 2019, 569(7756): 409-412. DOI:10.1038/s41586-019-1139-x |
[21] |
Guedes J A D, Lu H L, Hein A M, et al. Early evidence for the use of wheat and barley as staple crops on the margins of the Tibetan Plateau[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(18): 5625-5630. DOI:10.1073/pnas.1423708112 |
[22] |
Meyer M C, Aldenderfer M S, Wang Z, et al. Permanent human occupation of the central Tibetan Plateau in the Early Holocene[J]. Science, 2017, 355(6320): 64-67. DOI:10.1126/science.aag0357 |
[23] |
Zhang X L, Ha B B, Wang S J, et al. The earliest human occupation of the high-altitude Tibetan Plateau 40 thousand to 30 thousand years ago[J]. Science, 2018, 362(6418): 1049-1051. DOI:10.1126/science.aat8824 |
[24] |
Li Y C, Tian J Y, Liu F W, et al. Neolithic millet farmers contributed to the permanent settlement of the Tibetan Plateau by adopting barley agriculture[J]. National Science Review, 2019, 6(5): 1005-1013. DOI:10.1093/nsr/nwz080 |
[25] |
侯光良, 许长军, 曹广超, 等. 青藏高原末次冰消期-全新世中期人类扩张的时空模拟[J]. 第四纪研究, 2017, 37(4): 709-720. Hou Guangliang, Xu Changjun, Cao Guangchao, et al. The spatial-temporal simulation of mankind's expansion on the Tibetan Plateau during Last Deglaciation-Middle Holocene[J]. Quaternary Sciences, 2017, 37(4): 709-720. |
[26] |
陈亭亭, 贾鑫, 黎海明, 等. 甘青地区齐家文化时期农业结构的时空变化及其影响因素分析[J]. 第四纪研究, 2019, 39(1): 132-143. Chen Tingting, Jia Xin, Li Haiming, et al. The analysis of spatiotemporal transformations of agricultural and its influence factors during Qijia culture period in Gansu-Qinghai region[J]. Quaternary Sciences, 2019, 39(1): 132-143. |
[27] |
Madsen D B, Ma H Z, Brantingham P J, et al. The late upper Paleolithic occupation of the northern Tibetan Plateau margin[J]. Journal of Archaeological Science, 2006, 33(10): 1433-1444. DOI:10.1016/j.jas.2006.01.017 |
[28] |
张东菊, 董广辉, 王辉, 等. 史前人类向青藏高原扩散的历史过程和可能驱动机制[J]. 中国科学:地球科学, 2016, 59(8): 1007-1023. Zhang Dongju, Dong Guanghui, Wang Hui, et al. History and possible mechanisms of prehistoric human migration to the Tibetan Plateau[J]. Science China:Earth Sciences, 2016, 59(9): 1765-1778. |
[29] |
Ma M M, Dong G H, Jia X, et al. Dietary shift after 3600 cal yr BP and its influencing factors in Northwestern China:Evidence from stable isotopes[J]. Quaternary Science Reviews, 2016, 145: 57-70. DOI:10.1016/j.quascirev.2016.05.041 |
[30] |
Dong G H, Ren L L, Jia X, et al. Chronology and subsistence strategy of Nuomuhong Culture in the Tibetan Plateau[J]. Quaternary International, 2016, 426: 42-49. DOI:10.1016/j.quaint.2016.02.031 |
[31] |
Dong G H, Jia X, Elston R, et al. Spatial and temporal variety of prehistoric human settlement and its influencing factors in the upper Yellow River valley, Qinghai Province, China[J]. Journal of Archaeological Science, 2013, 40(5): 2538-2546. DOI:10.1016/j.jas.2012.10.002 |
[32] |
国家文物局. 中国文物地图集——青海分册[M]. 北京: 中国地图出版社, 1996: 75-80. Bureau of National Cultural Relics. Atlas of Chinese Cultural Relics—Fascicule of Qinghai Province[M]. Beijing: China Cartographic Publishing House Press, 1996: 75-80. |
[33] |
肖永明. 青海化隆伊沙尔河口史前遗址的学术价值[J]. 青海师范大学学报(哲学社会科学版), 2013, 35(6): 49-52. Xiao Yongming. The academic value of the prehistoric sites at Yishaer River in Hualong County, Qinghai Province[J]. Journal of Qinghai Normal University(Philosophy and Social Sciences Edition), 2013, 35(6): 49-52. DOI:10.3969/j.issn.1000-5102.2013.06.013 |
[34] |
Li G Q, Dong G H, Wen L J, et al. Overbank flooding and human occupation of the Shalongka site in the upper Yellow River Valley, northeast Tibet Plateau in relation to climate change since the last deglaciation[J]. Quaternary Research, 2014, 82(2): 354-365. DOI:10.1016/j.yqres.2014.07.005 |
[35] |
贾鑫.青海省东北部地区新石器-青铜时代文化演化过程与植物遗存研究[D].兰州: 兰州大学博士学位论文, 2012: 10-130. Jia Xin. Cultural Evolution Process and Plant Remains during Neolithic-Bronze Age in Northeast Qinghai Province[D]. Lanzhou: The Doctoral's Dissertation of Lanzhou University, 2012: 10-130. |
[36] |
Reimer P J, Bard E, Bayliss A, et al. IntCal 13 and marine 13 radiocarbon age calibration curves 0-50000 years cal BP[J]. Radiocarbon, 2013, 55(4): 1869-1887. DOI:10.2458/azu_js_rc.55.16947 |
[37] |
Bronk Ramsey C. OxCal version 4.3.2[DB/OL]. https: //c14.arch.ox.ac.uk/oxcal.html. 2017.
|
[38] |
Dong G H, Wang Z L, Ren L L, et al. A comparative study of 14C dating charcoal and charred seeds from the same flotation samples in the late Neolithic and Bronze Age sites in the Gansu and Qinghai provinces, Northwest China[J]. Radiocarbon, 2014, 56(1): 157-163. DOI:10.2458/56.16507 |
[39] |
任乐乐.青藏高原东北部及其周边地区新石器晚期至青铜时代先民利用动物资源的策略研究[D].兰州: 兰州大学博士学位论文, 2017: 40-90. Ren Lele. A Study on Animal Exploitation Strategies from the Late Neolithic to Bronze Age in Northeastern Tibetan Plateau and Its Surrounding Areas, China[D]. Lanzhou: The Doctoral's Dissertation of Lanzhou University, 2017: 40-90. |
[40] |
王建, 夏欢, 姚娟婷, 等. 青藏高原末次冰消期狩猎采集人群的生存策略研究[J]. 中国科学:地球科学, 2020, 63(3): 380-390. Wang Jian, Xia Huan, Yao Juanting, et al. Subsistence strategies of prehistoric hunter-gatherers on the Tibetan Plateau during the Last Deglaciation[J]. Science China:Earth Sciences, 2020, 63(3): 395-404. |
[41] |
Zhang D J, Shen X K, Cheng T, et al. New advances in the study of prehistoric human activity on the Tibetan Plateau[J]. Science Bulletin, 2020, 65(6): 475-482. |
[42] |
Barton L, Newsome S D, Chen F H, et al. Agricultural origins and the isotopic identity of domestication in Northern China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(14): 5523-5528. DOI:10.1073/pnas.0809960106 |
[43] |
Rhode D, Zhang H Y, Madsen D B, et al. Epipaleolithic/early Neolithic settlements at Qinghai Lake, Western China[J]. Journal of Archaeological Science, 2007, 34(4): 600-612. DOI:10.1016/j.jas.2006.06.016 |
[44] |
Rhode D, Brantingham P J, Perreault C, et al. Mind the gaps:Testing for hiatuses in regional radiocarbon date sequences[J]. Journal of Archaeological Science, 2014, 52: 567-577. DOI:10.1016/j.jas.2014.02.022 |
[45] |
Dong G H, Jia X, An C B, et al. Mid-Holocene climate change and its effect on prehistoric cultural evolution in eastern Qinghai Province, China[J]. Quaternary Research, 2012, 77(1): 23-30. DOI:10.1016/j.yqres.2011.10.004 |
[46] |
仪明洁, 高星, 张晓凌, 等. 青藏高原边缘地区史前遗址2009年调查试掘报告[J]. 人类学学报, 2011, 30(2): 124-136. Yi Mingjie, Gao Xing, Zhang Xiaoling, et al. A preliminary report on investigations in 2009 of some prehistoric sites in the Tibetan Plateau marginal region[J]. Acta Anthropologica Sinica, 2011, 30(2): 124-136. |
[47] |
汤惠生, 周春林, 李一全, 等. 青海昆仑山山口发现的细石器考古新材料[J]. 科学通报, 2013, 58(3): 247-253. Tang Huisheng, Zhou Chunlin, Li Yiquan, et al. A new discovery of Microlithic information at the entrance to the northern Qingzang Plateau of the Kunlun Mountains of Qinghai[J]. Science Bulletin, 2013, 58(3): 247-253. |
[48] |
盖培, 王国道. 黄河上游拉乙亥中石器时代遗址发掘报告[J]. 人类学学报, 1983, 1: 49-59+116. Gai Pei, Wang Guodao. Excavation report on a Mesolithic site at Layihai, upper Yellow River[J]. Acta Anthropologica Sinica, 1983, 1: 49-59+116. DOI:10.16359/j.cnki.cn11-1963/q.1983.01.006 |
[49] |
Wang Y R. Identifying the Beginning of Sheep Husbandry in Western China[D]. Cambridge: The Doctoral's Dissertation of University of Cambridge, 2017: 238.
|
[50] |
谢端琚. 甘青地区史前考古[M]. 北京: 文物出版社, 2002: 15-20. Xie Duanju. Pre-historical Archaeology in Gansu and Qinghai Provinces[M]. Beijing: Cultural Relics Press, 2002: 15-20. |
[51] |
张山佳, 董广辉. 青藏高原东北部青铜时代中晚期人类对不同海拔环境的适应策略探讨[J]. 第四纪研究, 2017, 37(4): 696-708. Zhang Shanjia, Dong Guanghui. Human adaptation strategies to different altitude environment during mid-late Bronze age in northeast Tibetan Plateau[J]. Quaternary Sciences, 2017, 37(4): 696-708. |
[52] |
梁琛, 赵艳, 秦锋, 等. 孢粉-气候定量重建方法体系的建立及其应用——以青藏高原东部全新世温度重建为例[J]. 中国科学:地球科学, 2020, 50(7): 977-994. Liang Chen, Zhao Yan, Qin Feng, et al. Pollen-based Holocene quantitative temperature reconstruction on the eastern Tibetan Plateau using a comprehensive method framework[J]. Science China:Earth Sciences, 2020, 50(7): 977-994. |
[53] |
Shen J, Liu X Q, Wang S M, et al. Palaeoclimatic changes in the Qinghai Lake area during the last 18000 years[J]. Quaternary International, 2005, 136(1): 131-140. DOI:10.1016/j.quaint.2004.11.014 |
[54] |
黄秉维. 中国綜合自然区划草案[J]. 科学通报, 1959(18): 594-602. Huang Bingwei. Draft of comprehensive natural regionalization in China[J]. Chinese Science Bulletin, 1959(18): 594-602. |
[55] |
Jones M, Hunt H, Lightfoot E, et al. Food globalization in prehistory[J]. World Archaeology, 2011, 43(4): 665-675. DOI:10.1080/00438243.2011.624764 |
[56] |
Jones H, Lister D L, Cai D, et al. The trans-Eurasian crop exchange in prehistory:Discerning pathways from barley phylogeography[J]. Quaternary International, 2016, 426: 26-32. DOI:10.1016/j.quaint.2016.02.029 |
[57] |
陈晓良, 刘向军, 侯光良. 青海省东北部地区中晚全新世人类对动物资源的获取与利用——以青海湖盆地尖嘴遗址为例[J]. 第四纪研究, 2020, 40(2): 367-378. Chen Xiaoliang, Liu Xiangjun, Hou Guangliang. The acquisition and utilization of animal resources in the Middle and Late Holocene in the northeast of Qinghai Province:A case study of Jianzui site in Qinghai Lake Basin[J]. Quaternary Sciences, 2020, 40(2): 367-378. |
[58] |
中国农业全书总委员会. 中国农业全书·青海卷[M]. 北京: 中国农业出版社, 2001: 360. General Committee of China Agricultural Encyclopedia. China Agriculture Encyclopedia—Qinghai Volume[M]. Beijing: China Agricultural Press, 2001: 360. |
[59] |
Dong G H, Yang Y S, Liu X Y, et al. Prehistoric trans-continental cultural exchange in the Hexi Corridor, Northwest China[J]. The Holocene, 2018, 28(4): 621-628. DOI:10.1177/0959683617735585 |
[60] |
Cao H H, Dong G H. Social development and living environment changes in the northeast Tibetan Plateau and contiguous regions during the late prehistoric period[J]. Regional Sustainability, 2020, 1(1): 59-67. DOI:10.1016/j.regsus.2020.09.001 |
[61] |
马春梅, 王冰翎, 刘泽雨, 等. 浙江田螺山遗址区孢粉学记录的中全新世植被、环境和人类活动初步研究[J]. 第四纪研究, 2018, 38(5): 1304-1312. Ma Chunmei, Wang Bingling, Liu Zeyu, et al. A preliminary study on vegetation, environment and human activity of pollen records during Middle-Late Holocene in Tianluoshan site, Ningshao Plain[J]. Quaternary Sciences, 2018, 38(5): 1304-1312. |
[62] |
冷程程, 汤卓炜, 张伟, 等. 嫩江流域新石器时代以来的环境考古(初步)研究[J]. 第四纪研究, 2019, 39(1): 48-58. Leng Chengcheng, Tang Zhuowei, Zhang Wei, et al. Research of environmental archaeology(preliminary)in Nenjiang River Basin since Neolithic age[J]. Quaternary Sciences, 2019, 39(1): 48-58. |
[63] |
李拓宇, 任小林, 廖奕楠, 等. 雅鲁藏布江中游及昌果沟遗址古环境分析[J]. 第四纪研究, 2020, 40(2): 547-555. Li Tuoyu, Ren Xiaolin, Liao Yinan, et al. Paleoenvironment analysis of the middle reaches of Yarlung Zangbo River and Changguogou site[J]. Quaternary Sciences, 2020, 40(2): 547-555. |
[64] |
Cai Y J, Tan L C, Cheng H, et al. The variation of summer monsoon precipitation in Central China since the last deglaciation[J]. Earth and Planetary Science Letters, 2010, 291(1-4): 21-31. DOI:10.1016/j.epsl.2009.12.039 |
[65] |
Hou J Z, Huang Y S, Zhao J T, et al. Large Holocene summer temperature oscillations and impact on the peopling of the northeastern Tibetan Plateau[J]. Geophysical Research Letters, 2016, 43(3): 1323-1330. DOI:10.1002/2015GL067317 |
[66] |
Elston R G, Dong G H, Zhang D J, et al. Late Pleistocene intensification technologies in Northern China[J]. Quaternary International, 2011, 242(2): 401-415. DOI:10.1016/j.quaint.2011.02.045 |
[67] |
Chen N B, Ren L L, Du L Y, et al. Ancient genomes reveal tropical bovid species in the Tibetan Plateau contributed to the prevalence of hunting game until the late Neolithic[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020. DOI:10.1073/pnas.2011696117 |
[68] |
Aldenderfer M, Zhang Y N. The prehistory of the Tibetan Plateau to the seventh century A.D.:Perspectives and research from China and the west since 1950[J]. Journal of World Prehistory, 2004, 18(1): 1-55. DOI:10.1023/B:JOWO.0000038657.79035.9e |
[69] |
Barton L. Early Food Production in China's Western Loess Plateau[D]. California: The Doctoral's Dissertation of University of California, 2009: 10-90.
|
[70] |
Brantingham P J, Gao X, Olsen J W, et al. A short chronology for the peopling of the Tibetan Plateau[J]. Developments in Quaternary Sciences, 2007, 9(1): 129-150. |
[71] |
Jia X, Dong G H, Li H, et al. The development of agriculture and its impact on cultural expansion during the late Neolithic in the western Loess Plateau, China[J]. The Holocene, 2013, 23(1): 85-92. DOI:10.1177/0959683612450203 |
[72] |
杨谊时, 张山佳, Oldknow C, 等. 河西走廊史前文化年代的完善及其对重新评估人与环境关系的启示[J]. 中国科学:地球科学, 2019, 62(12): 2037-2050. Yang Yishi, Zhang Shanjia, Oldknow C, et al. Refined chronology of prehistoric cultures and its implication for re-evaluating human-environment relations in the Hexi Corridor, Northwest China[J]. Science China:Earth Sciences, 2019, 62(10): 1578-1590. |
[73] |
杨颖.河湟地区金蝉口和李家坪齐家文化遗址植物大遗存分析[D].兰州: 兰州大学硕士学位论文, 2014: 10-60. Yang Ying. The Analysis of Charred Plant Seeds at Jinchankou Site and Lijiaping Site during Qijia Culture Period in the Hehuang Region, China[D]. Lanzhou: The Master's Dissertation of Lanzhou University, 2014: 10-60. |
[74] |
Zhou X Y, Li X Q, Dodson J, et al. Rapid agricultural transformation in the prehistoric Hexi Corridor, China[J]. Quaternary International, 2016, 426: 33-41. DOI:10.1016/j.quaint.2016.04.021 |
[75] |
Dodson J, Li X Q, Ji M, et al. Early bronze in two Holocene archaeological sites in Gansu, NW China[J]. Quaternary Research, 2009, 72(3): 309-314. DOI:10.1016/j.yqres.2009.07.004 |
[76] |
Dodson J, Li X Q, Zhou X Y, et al. Origin and spread of wheat in China[J]. Quaternary Science Reviews, 2013, 72: 108-111. DOI:10.1016/j.quascirev.2013.04.021 |
[77] |
Flad R, Li S C, Wu X H, et al. Early wheat in China:Results from new studies at Donghuishan in the Hexi Corridor[J]. The Holocene, 2010, 20(6): 955-965. DOI:10.1177/0959683609358914 |
[78] |
Liu X Y, Lister D L, Zhao Z J, et al. Journey to the east:Diverse routes and variable flowering times for wheat and barley en route to prehistoric China[J]. PloS One, 2017, 12(11): e0187405. DOI:10.1371/journal.pone.0187405 |
[79] |
张雪莲, 张良仁, 王辉, 等. 张掖市西城驿遗址的碳十四测年及初步分析[J]. 华夏考古, 2015(4): 38-45. Zhang Xuelian, Zhang Liangren, Wang Hui, et al. The 14C dating of the xichengyi site in zhangye city and a preliminary analysis of the obtained data[J]. Huaxia Archaeology, 2015(4): 38-45. DOI:10.16143/j.cnki.1001-9928.2015.04.006 |
[80] |
Zhou X Y, Li X Q, Dodson J, et al. Land degradation during the Bronze Age in Hexi Corridor(Gansu, China)[J]. Quaternary International, 2012, 254: 42-48. DOI:10.1016/j.quaint.2011.06.046 |
[81] |
尚民杰. 青海原始农业考古概述[J]. 农业考古, 1987(1): 62-70. Shang Minjie. An overview of primitive agricultural archaeology in Qinghai Province[J]. Agricultural Archaeology, 1987(1): 62-70. |
[82] |
Yang Y S, Ren L L, Dong G H, et al. Economic change in the prehistoric Hexi Corridor(4800-2200 BP), North-West China[J]. Archaeometry, 2019, 61(4): 957-976. DOI:10.1111/arcm.12464 |
2 Qinghai Institute of Cultural Relics and Archaeology, Xining 810007, Qinghai;
3 CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing 100101)
Abstract
The history and mechanism of prehistoric human activity on the Tibetan Plateau were closely related to their subsistence and living environment. In the northeast Tibetan Plateau(NETP) a large number of archaeological sites dated to the Paleolithic, Neolithic and Bronze age have been discovered. They provide a great wealth of information on the history of local hunting-gathering, millet-based agriculture and agro-pastoral lifestyle. However, due to the lack of stylistic variation in the material culture of these sites, it is rather difficult to illustrate a clear trajectory along which different social and cultural evolution took place in each prehistoric period.The site of Shalongka(36.01°N, 102°E; 2021 m a. s. l.), located at 250 m away from the west of the Adaqiha Villiage in the Qunjian basin of the upper Yellow River, yields critical archaeological records dated to not only the Paleolithic, but also Neolithic and Bronze age. It offers excellent first-hand materials investigate the full history of the human activities associated with different subsistence strategies. Seventeen charcoal samples were collected from various layers, among which the lowest one is about 4 m below the surface. Radiocarbon dating with accelerator mass spectrometry(AMS) was employed to establish the chronology for each of these culture layers. We have further combined this new chronology with other key archaeological remains, published archaeobotanical data and paleoclimate and paleoenvironment records to reconstruct the relationship between human activity and the local environment.The results showed evident human activities at the Shalongka site during the periods of ca. 8500~7300 cal.a B.P.(years before present), ca. 5300~4600 cal.a B.P., ca. 4100~3900 cal.a B.P. and ca. 3200~2900 cal.a B.P., respectively. Moreover, all of these periods saw significant changes in the local subsistence strategy. To be specific, a tremendous number of fine stone tools and stone leaves were unearthed from the cultural layers dated to 8500~7300 cal.a B.P., and local people appear strongly dependent on hunting wild animals. Interestingly, a few pottery shards of the Yangshao and Majiayao culture were excavated from the upper cultural layers, indicating these two exogenous cultures spread to this basin during 5300~4600 cal.a B.P., and the Subsequent period witnessed the cultivation of foxtail and broomcorn millet. During 3200~2900 cal.a B.P., the Kayue culture became increasingly dominant in the Qunjian basin. Meanwhile foxtail millet, broomcorn millet, wheat and barley became the main crops at the Shalongka site and the surrounding areas. Among these crops barley was the most important one in the higher altitude area of the basin. The local lifestyle at Shalongka was therefore shifted from hunter-gathering to agro-pastoralism.Prehistoric human activity at the Shalongka site was influenced by the local and regional environment changes. During the Paleolithic period, suitable climate conditions facilitated the growth of local vegetation and wildlife resources, providing the hunter-gatherers with sustainable food supply. Around 5200 cal.a B.P., millet-based agriculture was introduced to the Qunjian basin by the Majiayao groups of people from the western Loess Plateau. The local climate was also suitable for cultivation of both foxtail millet and broomcorn millet, which probably further promoted the development of the Majiayao culture and Qijia culture in this region. Around 3600 cal.a B.P., barley and sheep were introduced into the NETP by cross-Eurasian culture exchange. Barley-and sheep-based agro-pastoral activity brought great prosperity of the Kayue culture to the high altitude regions.This study shows that the relationship between the human activities and the living environment is changed radically during the prehistoric period. Greatly thanks to the cultural communication between the East and the West, the local people became much more capable of adapting and influencing the environment.