第四纪研究  2020, Vol.40 Issue (6): 1441-1452   PDF    
中国南方红土记录的中更新世气候转型及其环境效应
熊文婷1, 朱丽东1, 张晓1, 郭利成2,3, 叶玮1, 熊尚发2,4     
(1 浙江师范大学地理与环境科学学院, 浙江 金华 321004;
2 中国科学院地质与地球物理研究所, 中国科学院新生代地质与环境重点实验室, 北京 100029;
3 中国科学院生物演化与环境卓越创新中心, 北京 100044;
4 中国科学院大学地球与行星科学学院, 北京 100049)
摘要:中更新世气候转型(MPT)是第四纪气候变化的重要过程,主要表现为全球气候系统的主导周期由41 ka转变为100 ka,全球冰量显著增多,海洋温度下降,陆地干旱化程度显著增强。与海洋沉积记录相比,陆相沉积记录的MPT研究易受载体的连续性和分辨率限制,总体上不多,而针对中国南方红土MPT的工作就更为稀见。本文基于ESR年代学框架,对江西九江九庐(JL)红土剖面的多个环境代用指标进行主成分(PCA)分析,尝试建立JL红土剖面第四纪环境演化序列,并据此与深海氧同位素记录进行对比,结果表明JL红土剖面记录了MPT过程,其中区域气候系统的相对稳定状态在MPT后可能被打破,区域气候向着冷干方向持续发展。综合考虑本研究结果与全球气候变化背景,推测MPT时期全球冰量增加、全球变冷、西伯利亚高压增强,共同驱动着中国南方地区的更新世气候演化。
关键词红土    中更新世气候转型    主成分分析    西伯利亚高压    
中图分类号     P532;P534.63+1                     文献标识码    A

0 引言

过去10多年来,中更新世气候转型(Mid-Pleistocene Transition,简称MPT)事件的特征、影响及其驱动机制一直是第四纪古气候研究的热点问题之一。一般认为,MPT事件的变化主要发生于1.2~0.5 Ma之间[1~2]。海洋记录显示,MPT期间深海氧同位素组成显著正偏0.29 ‰ [3~4],全球冰量增加约15 % [5],全球气候系统的主导周期也发生了重大转变,由4万年周期转变为高振幅的10万年冰期-间冰期旋回[6~8]。陆相沉积记录显示,全球陆地干旱化进程在MPT时期显著增强,主要表现为沙漠出现或扩张[9~12]、黄土开始沉积或堆积速率增大[13~17]、干旱区范围扩张[18~20]以及海洋粉尘通量显著增加[21~22]。对于MPT事件的机制,早期的研究认为轨道偏心率变化是10万年冰期-间冰期旋回出现的根本原因,但偏心率变化仅能够引起微弱的太阳辐射变化,不足以引发全球气候的重大转型[23~25]。近期研究多认为,MPT事件发生可能与大冰盖扩张、大气CO2浓度变化、地球轨道面倾角变化、冰盖基底效应、构造隆升等有关[26~28]

毋庸讳言,相比于陆相沉积记录,海洋记录具有较好的连续性,分辨率较高且指标意义明确,在周期分析和MPT事件机制探索方面有很强的优势和响应[29~31]。针对赤道大西洋ODP1077的SST序列[32]、南太平洋806站的δ18O序列[33]、热带印度洋ODP 722的δ18O和SST序列[34~35]、中国南海南部ODP 1143的δ18O和δ13C序列[36~37]等诸多研究都在约1 Ma前后检测到周期变化(即100 ka周期出现),显示MPT事件的存在,为探索MPT事件的机制提供了良好的材料。与此形成对照,尽管MPT事件也有所响应[38],但由于沉积连续性和分辨率限制,利用陆相沉积来探讨MPT事件及其机制有一定的困难[27],这也导致了对MPT事件在陆相沉积环境的表现认识有限,限制了对MPT全球格局的理解。因此,亟须通过更多陆相沉积记录的研究来探究MPT事件的特征、驱动机制及可能的影响。

南方红土广泛分布于我国热带、亚热带地区,记录了南方地区更新世以来气候环境演变的信息,是我国重要的陆相古环境记录体[39]。九庐(JL)剖面作为长江以南重要的风成加积型红土剖面,受到众多研究者关注,目前针对这一剖面已开展了中更新世气候变化[40]、物源[41]、网纹红土形成环境[42]等多方面工作。其中,张明强等[40]对JL红土剖面进行的频谱分析揭示了中更新世气候转型事件的存在,但这一研究对MPT事件的气候影响及驱动机制缺乏深入探讨。另一方面,迄今以南方红土为载体进行中更新世气候转型事件的研究仍然非常缺乏。有鉴于此,本文选取江西九江的JL红土剖面,在ESR年代学研究的基础上,结合与其他红土剖面年代的对比分析,对该剖面进行分层线性内插,建立剖面的年代框架;在此基础上,对剖面磁化率、粒度、色度等环境代用指标进行主成分(Principal Component Analysis,简称PCA)分析,并与深海δ18O记录、全球气候变化记录进行分析比对,以进一步明晰MPT事件在中国南方红土记录中的表现特征(环境效应)及可能的关联机制。

1 研究材料与方法 1.1 剖面概述

九庐(JL)剖面(29°42′N,116°02′E)位于九江庐山北麓的坡麓地带(图 1a),为中亚热带典型加积型红土剖面,剖面沉积质地较均一,未见明显的流水作用痕迹[48]。剖面所在区域属中亚热带季风气候,年均温在16~17 ℃之间,年均降水量约在1300~1600 mm之间。JL剖面厚18.46 m,根据沉积物颜色、网纹形态结构、土壤发育程度、土层接触关系等特征,剖面可分为8个沉积单元(图 1b):剖面下部第①~⑤层为典型网纹红土层,棕红或紫红色粘土中夹杂不规则浅色斑纹,其基质颜色呈深浅交替,其中第②、④两层色调较深,偏紫红色和褐色,①、③和⑤层色调较浅,偏红棕色;剖面上部第⑥~⑧层为黄棕色土沉积,其中第⑦层为浅红色古土壤,底部含有铁锰结核,第⑥和⑧两层为黄土状沉积,土壤发育程度比第⑦层弱,淋溶迹象明显,其中第⑥层见大量铁锰结核,底部有铁锰结核淀积。

图 1 JL红土剖面的地理位置 (a)与剖面测年结果(b) A—平安村剖面(Pingancun section)[43];B—牛样子沟剖面(Niuyangzigou section)[43];C—矾山镇剖面(Fanshanzhen section)[12];D—东湾镇剖面(Dongwanzhen section)[44];E—阿羌地层剖面(Aqiang section)[45];F—靖远剖面(Jingyuan section)[24];G—白水剖面(Baishui section)[46];H—青山剖面(Qingshan section)[14];I—大港剖面(Dagang section)[14];J—宣城剖面(Xuancheng section)[47] Fig. 1 Geographical location (a) and ESR dating results (b) of JL red earth section
1.2 野外采样和样品分析

按2 cm等间距对JL红土剖面进行系统采样,共采集了920个样品,对所有样品进行磁化率、粒度和色度分析。磁化率和粒度分析由课题组成员完成并另文发表[40, 49]。色度测量所用仪器为CM- 700d色彩色差计,具体实验步骤如下:样品经恒温(45 ℃)烘干,研磨至小于200目,取研磨样品4 g置于测试盒内压实,用色彩色差计对准压实样品进行色度参数测量。上述实验均在浙江师范大学地理过程实验室完成。

采集气候指标样品的同时,沿JL红土剖面由上而下共采集了7个ESR年代样品,样品深度分别为1. 14 m、1. 50 m、3. 04 m、4. 26 m、4. 60 m、6. 94 m和9. 28 m,对应的ESR测试结果分别是337 ka、291 ka、325 ka、365 ka、493 ka、676 ka和1138 ka[48]。ESR年代测试完成于青岛海洋地质研究所年代学实验室,测试仪器为德国Bruker公司的EMX型ESR谱仪,测试材料为石英粉晶样品,测试方法为石英颗粒E′心测试,检测环境温度和湿度分别为21 ℃和50 %。测试参数选择:室温、Ⅹ波段、中心磁场348 mT、扫宽5 mT、调制幅度0.1 mT、转换时间5.12 ms、时间常数40.96 ms、微波功率2 mW。对比样品深度和ESR年龄,显示在距顶1.14 m处样品年代发生倒转,但在误差范围内可以消除;在距顶9.28 m处,考虑到测试误差较大,该年代控制点(1138 ka)不采用。消除误差与剔除异常年龄后,该剖面年代随深度的变化呈线性相关,相关系数R2达到0.811。本文采用了前6个ESR测年数据,但需进一步确定JL红土剖面的底界年龄。

总结前人对中国南方典型红土的年代学研究,显示南方第四纪网纹红土的底界年龄最老为1232 ka[50],最年轻为685 ka[51],其沉积速率在0.389~2.050 cm/ka之间不等(表 1),这在一定程度上表明不同的南方红土剖面底界年龄相差较大,但总体上说各地红土底界年龄多控制在1200 ka内。考虑到JL红土剖面6.94 m处的ESR年龄为676 ka,而距离JL红土剖面仅15 km的九江长虹大道剖面底界年龄为1232 ka,我们将JL红土剖面底界年龄初步调整为1200 ka,作为底界参考年龄。在此调整基础上,以6.94 m(676 ka)作为网纹红土层上部控制点,以1200 ka作为网纹层下部控制点,对该段进行线性内插,以ESR测年6个年代控制点为基础对JL红土剖面上部(0~6.94 m)进行线性内插,从而获得整个剖面的年代框架。

表 1 中国南方典型红土剖面底界年龄及网纹红土层沉积速率 Table 1 Onset of red earth sections and their deposition rate of the layer of vermicular red earth in South China
1.3 PCA分析方法

为了获取JL剖面的环境演化序列,本文通过SPSS软件对该剖面磁化率、粒度及色度指标数据进行PCA分析。PCA分析的核心是降维[54],即把原来具有相关性的变量个数减少,从而使较少的变量取代原来较多的变量[55]。多变量的数据经过降维后,多个变量就优化为少数几个主成分,从而锁定能够反映原始变量的绝大部分信息。另一方面,PCA分析作为一种最小均方意义上的最优变换,目的是去除随机向量之间的相关性,突出原始数据中的隐含特性[56~57]。PCA分析作为最重要的多元统计分析方法之一,已被广泛应用于包括古气候研究的各领域和学科之中[58~60]

2 PCA分析结果及其古环境解释 2.1 PCA分析结果

在获取JL红土剖面的磁化率、粒度(<2 μm、中值粒径、>63 μm)和色度(L*、a*、b*)指标数据后,采用Kaiser-Meyer-Olkin(KMO)检验和Bartlett球形度检验对所有指标数据进行主成分分析数据结构检验。KMO检验系数是验证变量之间相关性和偏相关性的指标,其取值在0~1之间,KMO检验系数越接近于1,表示变量间的相关性越强,偏相关性越弱,PCA分析的效果越好[61~62]。Bartlett球形度检验的零假设是研究数据之间的相关矩阵为一完美矩阵,即各变量间没有相关关系,不能将多个变量简化为少数成分,没有进行主成分提取的必要。一般认为,KMO检验系数值大于0.6时,数据结构符合PCA分析的要求;Bartlett球形度检验的P值小于0.001时,拒绝零假设,即认为研究数据可以进行主成分提取[61~62]。主成分分析数据结构检验结果显示(表 2),KMO检验系数值为0.635,Bartlett球形度检验的P值为0.000 < 0.001,说明JL红土剖面的指标数据满足PCA分析的数据要求,可开展PCA分析。

表 2 主成分分析数据结构检验结果 Table 2 Results of data structure test of principal component analysis

PCA分析中,特征值在某种程度上可以被看成是表示主成分影响力度大小的指标。由表 3图 2可知,特征值大于1的因子有两个,即PCA F1与PCA F2,这两个因子在碎石图上斜率较大,两者累积贡献率达到70.906 %,基本反映了大部分的环境变化信息。

表 3 不同成分的特征值与贡献率 Table 3 Eigenvalue and contribution rate of different components

图 2 碎石图 Fig. 2 Gravel map

其中,第一主成分PCA F1贡献率达到50.544 % (表 3),而红度与磁化率在第一主成分PCA F1上表现出高载荷值(表 4图 3),表明PCA F1主要与红度和磁化率高度相关,且第一主成分的方差贡献率远大于第二主成分,说明PCA F1是反映磁化率、粒度和色度共同特征的主成分。第二主成分PCA F2贡献率为20.362 % (表 3),在中值粒径与<2 μm指标上表现出高载荷值(表 4图 3),可能主要反映颗粒搬运动力条件的贡献。

表 4 各主成分因子载荷值 Table 4 Load values of principal component factors (PCA F1 and PCA F2)

图 3 JL红土剖面各指标成分载荷图 Fig. 3 PCA ordination of the data of palaeoclimate proxies from the JL red earth section

综合PCA F1值和环境代用指标的序列变化以及与深海δ18O序列对比[63],可将其划分为3个阶段(图 4),它们分别是1200~738 ka、738~536 ka和536~233 ka。如表 5图 4所示,磁化率在这3个时间段的平均值分别为17.09 ×10-8 kg/m3、22.08 ×10-8 kg/m3和54.82 ×10-8 kg/m3;红度(a*)在这3个时间段的平均值分别为18.99、13.05和12.55;PCA F1值在这3个时间段的平均值分别为1.24、-0.31和-2.25。图 4显示,以0为界,可以很明显地看出在738~536 ka期间出现转折,PCA F1值整体呈减少趋势,且3个阶段相差较大,反观深海δ18O在这3个阶段的平均值分别为4.029 ‰、4.211 ‰和4.118 ‰,差异较小。

表 5 JL红土剖面气候特征指标与PCA F1及深海δ18O[63]的区间均值 Table 5 Mean value of magnetic suspectibility and redness and PCA F1 from the JL red earth section during different intervals compared with global deep-sea oxygen isotope record[63]

图 4 JL红土剖面气候特征指标与PCA F1及深海δ18O同位素序列[63] Fig. 4 Correlation of palaeoclimate proxies and PCA F1 values from the JL red earth section with global deep-sea oxygen isotope record[63]
2.2 PCA F1的古环境指义

进一步分析红度(a*)的时间序列,由图 4表 5可见,下部的网纹红土a*值较大,上部的黄棕色土a*值较小,a*随剖面深度的增加而逐渐增加。研究者普遍认为,红度主要由沉积物中的铁氧化物种类与含量决定,尤以赤铁矿贡献突出,而赤铁矿又是在温暖湿润的强氧化环境下产生[64~68],在冷干的环境下受到抑制,红度因此与沉积区温度、降水量呈正相关关系[64]。从影响红度的环境因素考虑,在水热条件较好的亚热带地区,a*指标能够有效地反映区域温度和降水的变化信息,即a*值越大,气候越暖湿,反之则气候越冷干。

JL红土剖面磁化率的时间序列显示(图 4表 5),上部的黄棕色土与下部的网纹红土磁化率相差较大,磁化率随剖面深度的增加而逐渐减小,网纹红土磁化率极低,且波动较小,比黄棕色土小了一个数量级。网纹红土磁化率与卢升高等[69~70]在浙江、湖南、云南等地对红土的磁化率测试结果基本一致,同时也与胡雪峰等[71]在安徽和邓黄月等[72]在江西(南昌、新余)与湖南(长沙、岳阳)典型红土剖面磁化率测试结果具有很好的可比性。在北方降水量较少的黄土高原地区也存在高温环境的沉积物磁化率低值现象,如宝鸡剖面S5的磁化率不是全剖面的最高值[73]。针对强发育古土壤低磁化率现象,已有研究做了探讨[73~75],认为磁化率与古气候冷暖干湿状况并非简单的线性正相关关系,而是存在一定的临界状态。当超过这一临界状态,强烈的成壤和脱硅富铝化作用[76~80],可使红土中的亚铁磁性矿物向赤铁矿等反铁磁性矿物转化,从而导致磁化率降低,表现为磁化率与温湿状况呈负相关关系[81~84]。例如,吕厚远等[83]对长江流域以南地区红土磁化率进行研究时,发现这个临界值为年均温15 ℃左右、年均降水量1100 mm左右,在此临界值内,磁化率随着年均温、年均降水量增加而逐渐增加,而一旦超过这个临界值,磁化率即随年均温、年均降水量的增加而降低。从全球热带和温带的磁化率-降水集成研究来看,年均降水量在200 mm至1000~1200 mm时,磁化率随着降水量增加而增强;年均降水量在1200 mm至2000 mm时,磁化率随着降水量增加反而降低[85]。JL红土剖面所在地目前年均温在16~17 ℃之间,年均降水量约在1300~1600 mm之间,考虑到第四纪以来全球温度整体下降[86],中国南方地区更新世气候很可能也超过了降水量1100~1200 mm和年均温15 ℃的临界值,这可能导致JL红土剖面磁化率与温度、降水呈反相关关系,即随着温度、降水的增加,磁化率反而逐渐降低。

由此可见,红度、磁化率的环境意义很明确,红度值越大,磁化率越小,区域气候趋于暖湿,反之亦然。而PCA分析结果已经表明,PCA F1主要与红度、磁化率密切相关,因此,第一主成分PCA F1可以作为区域气候冷暖干湿变化的一个重要指标,即PCA F1值的增加,表明气候越暖湿,反之则反映气候越冷干。

3 中国南方红土记录的中更新世转型及其环境效应

从PCA F1的时间序列变化特征看,PCA F1值在1200~738 ka的均值为1.24,且变化幅度较小,表明在这段时间区域气候较为温暖湿润。738~536 ka,PCA F1值整体下降,平均值为-0.31,表明气候变得较为冷干。此前张明强等[40]对JL剖面进行了频谱分析,曾发现剖面记录了MPT事件,而本文的PCA F1值的整体减小正是对MPT事件的直接响应。参考全球范围内MPT事件的持续时间,依据PCA F1的时间序列变化特征,本文将1200~738 ka和738~536 ka划分为MPT早期和晚期。在MPT事件结束之后(536~233 ka),PCA F1值仍然明显偏小,此后缓慢增加至0左右,平均值仅为-2.25,且变化幅度较大,说明自中更新世转型以来,气候总体上是较冷干的,与朱丽东等[87]在JL红土剖面进行孟塞尔色度分析得出的结论一致,而且MPT之后的区域气候并没有恢复到MPT早期的温暖湿润状态。

在区域尺度上,综合分析JL剖面与中国南方典型红土剖面[14, 47, 50, 53]的沉积相特征(图 5),可以看到MPT早期,网纹红土网纹化特征典型,网纹密集、粗大、斑纹清晰;MPT晚期,网纹红土的网纹化特征减弱,网纹变细、稀疏、斑纹轮廓模糊;MPT之后,网纹化停滞,取而代之的是黄棕色土沉积。一般情况下,网纹红土是长期气候温暖湿润条件下的产物,而网纹红土上部的黄棕色土可能是更新世冰期的产物,相当于北方的中、晚更新世黄土[88~89]。通过对比中国南方典型红土剖面的岩性变化,可以看出MPT早期网纹化密集且粗大的网纹红土代表着当时的区域气候是温暖湿润的,而MPT晚期网纹化的减弱暗示了区域气候趋于冷干,气候状态发生了显著性转变,MPT结束后网纹红土终止,发育的黄棕色土则指示气候进一步向冷干方向发展。沉积相的直观变化进一步支持了JL红土剖面PCA F1序列记录的中更新世转型及其环境效应。

图 5 中国南方典型第四纪红土剖面岩性对比 剖面名称:九江长虹大道[50];成都胜利[53];安徽宣城[47];扬州青山[14] Fig. 5 Comparison of lithology of the typical Quaternary red earth sections in South China. Sections:Jiujiang Changhongdadao[50]; Chengdu Shengli[53]; Anhui Xuancheng[47]; Yangzhou Qingshan[14]

在全球尺度上,1200~233 ka,深海δ18O平均值差异较小(表 5),但是深海δ18O平均值从1200~738 ka的4.029 ‰增加到738~536 ka的4.211 ‰,表明全球冰量增加,气候变冷,而536~233 ka的δ18O平均值为4.118 ‰,与前两个时间段的均值相当。这从一定程度上说明,全球气候状态并没有发生不可逆转的转变。

对比不同区域的MPT记录,可见中国南方地区在MPT时期的环境变化和全球冰量变化不完全一致,中国南方地区在MPT事件发生后,区域气候持续变冷变干,没有恢复到MPT早期的温暖湿润状态。这种区域性的气候不可逆转变在黄土高原也有体现。如Xiong等[46]在对北方黄土进行粒度分析时,就发现在2.55 Ma、1.25 Ma左右粒度突然变粗,认为可能是该区域气候系统突破了某个临界点,导致气候波动模式发生转变。

4 中更新世转型期西伯利亚高压增强的远程效应

一般认为,北半球冰盖消长响应于太阳辐射变化,直接或间接地影响海洋表层温度、海洋环流、陆地水汽平衡、植被和地表反照率,最终影响地球气候系统的稳定[90]。对于欧亚大陆东部地区而言,北半球冰盖扩张导致中高纬度地区植被盖度下降,地表反照率升高,西伯利亚地区气团降温,高压系统加强;同时,北半球冰盖扩张从动力机制上驱动冷空气向南移动,进一步加强西伯利亚高压系统[91~92]。据此推测,中更新世气候转型期间,北半球冰盖扩张、全球冰量增加、地表反射率升高、极地冷空气南移,从热力-动力机制上导致西伯利亚高压增强,甚至可能达到一个新的强度状态,最终增强东亚地区的干旱化程度。

实际上,东亚地区由近及远(见图 1a)都在经历由MPT事件引起的气候变化与环境变迁。在西北内陆地区,塔克拉玛干沙漠、古尔班通古特沙漠和腾格里沙漠边缘地区的剖面沉积相记录显示[44~45, 93~94],约1.0 Ma,沙漠外围黄土开始沉积,表明西北内陆沙漠很可能也开始大规模发育。最近,Liu等[9]研究发现,0.5~0.7 Ma塔克拉玛干沙漠永久形成,响应了MPT时期的气候变化。在东北地区,曾琳等[43]通过对科尔沁沙地南部黄土剖面进行年代学研究,发现其黄土至少从约1.0 Ma开始堆积,可能正是MPT事件在东部地区的直接表现。在北京地区,1.2 Ma以来的黄土剖面中值粒径突然变粗[12],暗示了黄土剖面周围的沙漠(浑善达克沙漠)的形成与扩张。在泥河湾盆地,约1.1 Ma,早期人类为了适应愈发寒冷的环境条件,其工具制造技术也得以改进与创新[95]。在黄土高原地区,气候环境也发生了转变,主要表现为冬季风显著增强,黄土地层中出现了L9 (0.9 Ma)和L15(1.2 Ma)厚粉砂层[96~97],白水剖面也在约1.25 Ma出现了粒度粗化的突变事件[46],这都表明在这一时期黄土高原气候干旱化加强。在南方地区,成都平原红土[53]、镇江下蜀黄土[14]以及南方的风成红土[47, 50, 52]在1.2~0.8 Ma之间也开始发育。

JL红土剖面同样记录了MPT过程,显示西伯利亚高压增强的远程影响。MPT晚期,区域气候由MPT早期的温暖湿润向冷干发展,MPT之后,区域气候的原有状态被打破,气候趋向冷干。从空间格局来看,中更新世转型引发北半球冰盖扩张,导致全球变冷和西伯利亚高压增强,在东亚地区导致大范围的干旱化增强。JL红土剖面的MPT过程与塔克拉玛干沙漠永久形成两组现象东西呼应,说明MPT晚期东亚地区干旱化范围进一步扩大,干旱化程度突破了中更新世之前的极限。

5 结论与展望

对江西九江JL红土剖面磁化率、粒度、色度等多项环境代用指标进行主成分分析,得到第一主成分PCA F1,贡献率50.544 %,且红度与磁化率在PCA F1上呈现高载荷值,表明PCA F1与红度和磁化率高度相关。鉴于红度与铁氧化物特别是赤铁矿含量的正相关关系,以及南方红土湿热环境下磁化率反而呈现低值的特征,PCA F1可以指示区域古气候的冷暖干湿变化并记录了MPT事件。根据全球MPT事件的持续时间与PCA F1的时间序列变化特征,JL剖面记录的MPT过程分为3个阶段:1200~738 ka(MPT早期)、738~536 ka(MPT晚期)和536~233 ka(MPT之后)。

JL剖面PCA F1的时间序列变化特征与中国南方典型红土剖面的沉积相特征有良好的对应关系。MPT早期,PCA F1值整体偏正(均值为1.24),气候温暖湿润,对应网纹红土强盛期,地层中网纹密集、粗大、斑纹清晰;MPT晚期,PCA F1值减小(均值为-0.31),暗示区域气候趋于冷干,且气候状态发生了显著改变,此时网纹发育强度减弱,地层中网纹逐渐稀疏、细小;MPT之后,PCA F1值进一步减小(均值仅为-2.25),气候进一步向冷干方向发展,此时网纹化过程基本停滞,取而代之的是黄棕色土沉积。但深海δ18O平均值在MPT过程的3阶段差异较小,一定程度上说明中国南方地区在MPT时期的环境变化与全球冰量变化不完全一致,中国南方地区在MPT事件发生后,区域气候持续变冷变干,没有恢复到MPT早期的温暖湿润状态,也意味着中更新世转型之后区域气候系统的原有状态被打破,区域环境发生不可逆的转变。

综合分析MPT时期的全球古气候资料,本研究推测江西九江JL红土剖面记录的中更新世气候转型可能是全球冰量增加和西伯利亚高压增强所致,而同期区域大范围干旱化的表现表明,此时东亚地区干旱化程度已突破中更新世之前的极限。本文的研究结论来自有限的数据分析,期待更多定量化集成和分析工作检验或修正上述认识。

致谢: 审稿专家和编辑部杨美芳老师对本文提出了诸多宝贵意见和具体修改建议,对完善论文起了重要作用,特致谢意!

参考文献(References)
[1]
Martin J H, Brad P, Sarah A F. The Early-Middle Pleistocene transition:Characterization and proposed guide for the defining boundary[J]. Episodes, 2008, 31(2): 255-259. DOI:10.18814/epiiugs/2008/v31i2/014
[2]
Clark P U, Archer D, Pollard D, et al. The Middle Pleistocene transition:Characteristics, mechanisms, and implications for long-term changes in atmospheric PCO2[J]. Quaternary Science Reviews, 2006, 25(23-24): 3150-3184. DOI:10.1016/j.quascirev.2006.07.008
[3]
Mudelsee M, Stattegger K. Exploring the structure of the mid-Pleistocene revolution with advanced methods of time-series analysis[J]. Geologische Rundschau, 1997, 86(2): 499-511. DOI:10.1007/s005310050157
[4]
Mudelsee M, Schulz M. The mid-Pleistocene climate transition:Onset of 100 ka cycle lags ice volume build-up by 280 ka[J]. Earth and Planetary Science Letters, 1997, 151(1): 117-123.
[5]
Berger W H, Yasuda M K, Bickert T, et al. Quaternary time scale for the Ontong Java Plateau:Milankovitch template for Ocean Drilling Program Site 806[J]. Geology, 1994, 22(5): 463-487. DOI:10.1130/0091-7613(1994)022<0463:QTSFTO>2.3.CO;2
[6]
Maasch K A. Statistical detection of the mid-Pleistocene transition[J]. Climate Dynamics, 1988, 2(3): 133-143. DOI:10.1007/BF01053471
[7]
Ruddiman W F, Raymo M E, Martinson D G, et al. Pleistocene evolution:Northern hemisphere ice sheets and North Atlantic Ocean[J]. Paleoceanography, 1989, 4(8): 353-412.
[8]
Raymo M E, Oppo D W, Curry W. The mid-Pleistocene climate transition:A deep sea carbon isotopic perspective[J]. Paleoceanography, 1997, 12(4): 546-559. DOI:10.1029/97PA01019
[9]
Liu W G, Liu Z H, Sun J M, et al. Onset of permanent Taklimakan Desert linked to the mid-Pleistocene transition[J]. Geology, 2020. DOI:10.1130/G47406.1
[10]
Sun M, Zhang X J, Tian M Z, et al. Loess deposits since Early Pleistocene in Northeast China and implications for desert evolution in East China[J]. Journal of Asian Earth Sciences, 2018, 155(17): 164-173. DOI:10.1016/j.jseaes.2017.09.013
[11]
Wang F, Sun D H, Chen F H, et al. Formation and evolution of the Badain Jaran Desert, North China, as revealed by a drill core from the desert centre and by geological survey[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 426: 139-158. DOI:10.1016/j.palaeo.2015.03.011
[12]
熊尚发, 丁仲礼, 刘东生. 北京邻区1.2 Ma以来黄土沉积及其对东部沙漠扩张的指示[J]. 海洋地质与第四纪地质, 1999, 19(3): 70-76.
Xiong Shangfa, Ding Zhongli, Liu Tungsheng. Loess deposits in Beijing region since last 1.2 Ma and desert expansion over Northern China[J]. Marine Geology & Quaternary Geology, 1999, 19(3): 70-76.
[13]
Song Y, Guo Z T, Markovi Ac'1 S B, et al. Magnetic stratigraphy of the Danube loess:A composite Titel-Stari Slankamen loess section over the last one million years in Vojvodina, Serbia[J]. Journal of Asian Earth Sciences, 2018, 155(15): 68-80.
[14]
李徐生, 韩志勇, 鹿化煜, 等. 下蜀黄土底界的年代及其对区域气候变干的指示[J]. 中国科学:地球科学, 2018, 48(2): 210-223.
Li Xusheng, Han Zhiyong, Lu Huayu, et al. Onset of Xiashu loess deposition in Southern China by 0.9 Ma and its implications for regional aridification[J]. Science China:Earth Sciences, 2018, 48(2): 210-223.
[15]
Dodonov A E, Zhou L P. Loess deposition in Asia:Its initiation and development before and during the Quaternary[J]. Episodes, 2008, 31(2): 222-225. DOI:10.18814/epiiugs/2008/v31i2/006
[16]
Schellenberger A, Veit H. Pedostratigraphy and pedological and geochemical characterization of Las Carreras loess-paleosol sequence, Valle de Tafí, NW-Argentina[J]. Quaternary Science Reviews, 2006, 25: 811-831. DOI:10.1016/j.quascirev.2005.07.011
[17]
Ding Z L, Derbyshire E, Yang S L, et al. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record[J]. Paleoceanography, 2002, 17(3): 1033.
[18]
Fujioka T, Chappell J. History of Australian aridity:Chronology in the evolution of arid landscapes[J]. Geological Society, London, Special Publications, 2010, 346: 121-139. DOI:10.1144/SP346.8
[19]
Mclaren S, Wallace M W. Plio-Pleistocene climate change and the onset of aridity in Southeastern Australia[J]. Global and Planetary Change, 2010, 71: 55-72. DOI:10.1016/j.gloplacha.2009.12.007
[20]
Trauth M H, Maslin M A, Deino A, et al. Late Cenozoic moisture history of East Africa[J]. Science, 2005, 309(5743): 2051-2053. DOI:10.1126/science.1112964
[21]
Martínez-Garcia A, Rosell-Melé A, Jaccard S L, et al. Southern Ocean dust-climate coupling over the past four million years[J]. Nature, 2011, 476: 312-315. DOI:10.1038/nature10310
[22]
Rea D K, Snoeckx H, Joseph L H. Late Cenozoic eolian deposition in the North Pacific:Asian drying, Tibetan uplift, and cooling of the Northern Hemisphere[J]. Paleoceanography, 1998, 13(3): 215-224. DOI:10.1029/98PA00123
[23]
Raymo M E, Huybers P. Unlocking the mysteries of the ice ages[J]. Nature, 2008, 451: 284-285. DOI:10.1038/nature06589
[24]
孙有斌. 探寻中更新世气候转型之谜[J]. 地球环境学报, 2019, 10(2): 210.
Sun Youbin. Explore the mystery of the mid-Pleistocene climate transition[J]. Journal of Earth Environment, 2019, 10(2): 210.
[25]
Wu G J, Pan B T, Guan Q Y, et al. Terminations and their correlation with solar insolation in the Northern Hemisphere:A record from a loess section in Northwest China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005, 216(3-4): 267-277. DOI:10.1016/j.palaeo.2004.11.004
[26]
邬光剑, 潘保田, 管清玉, 等. 中更新世气候转型与100 ka周期研究[J]. 地球科学进展, 2002, 17(4): 605-611.
Wu Guangjian, Pan Baotian, Guan Qingyu, et al. Review of studies on the mid-Pleistocene climatic transition and the 100 ka cycle[J]. Advance in Earth Sciences, 2002, 17(4): 605-611.
[27]
Sun Y B, Qiu Z Y, Michel C, et al. Diverse manifestations of the mid-Pleistocene climate transition[J]. Nature Communications, 2019, 10: 352. DOI:10.1038/s41467-018-08257-9
[28]
Ding Z L, Derbyshire E, Yang S L, et al. Stepwise expansion of desert environment across Northern China in the past 3.5 Ma and implications for monsoon evolution[J]. Earth and Planetary Science Letters, 2005, 237(1-2): 45-55. DOI:10.1016/j.epsl.2005.06.036
[29]
王海粟, 党皓文, 翦知湣. 中更新世转型时期南海北部上层水体结构演化特征——ODP1146站浮游有孔虫稳定同位素记录[J]. 第四纪研究, 2019, 39(2): 316-327.
Wang Haisu, Dang Haowen, Jian Zhimin. Variations in the upper water structure of northern South China Sea during the mid-Pleistocene Climate Transition Period:Planktonic foraminifera oxygen isotope records of ODP site 1146[J]. Quaternary Sciences, 2019, 39(2): 316-327.
[30]
李文宝, 王汝建. 近800 ka以来南大洋区域经向海表温度差异及气候变化响应[J]. 第四纪研究, 2018, 38(5): 1130-1141.
Li Wenbao, Wang Rujian. Change of sea surface temperature and responding to climate change around the Southern Ocean during the last 800 ka[J]. Quaternary Sciences, 2018, 38(5): 1130-1141.
[31]
刘瑞璇, 鹿化煜, 王珧, 等. 东阿拉伯海拉克希米盆地浊流沉积序列的粒度变化及其对中更新世气候转型的响应[J]. 第四纪研究, 2018, 38(5): 1120-1129.
Liu Ruixuan, Lu Huayu, Wang Yao, et al. Grain size analysis of a depositional sequence in the Laxmi Basin(IODP Hole U1456A, Arabian Sea)reveals the Indian monsoon shift at the mid-Pleistocene Climatic Transition[J]. Quaternary Sciences, 2018, 38(5): 1120-1129.
[32]
Schefuβ E, Sinninghe Damsté J S, Jansen J H F. Forcing of tropical Atlantic Sea surface temperatures during the mid-Pleistocene transition[J]. Paleoceanography, 2004, 19: PA4029. DOI:10.1029/2003PA000892
[33]
Berger W H, Bickert T, Jansen E, et al. The central mystery of the Quaternary ice age[J]. Oceanus, 1993, 36(4): 53-57.
[34]
Clemens S C, Murray D W, Prell W L. Nonstationary phase of the Plio-Pleistocene Asian monsoon[J]. Science, 1996, 274: 943-948. DOI:10.1126/science.274.5289.943
[35]
Herbert T D, Peterson L C, Lawrence K T, et al. Tropical ocean temperatures over the past 3.5 million years[J]. Science, 2010, 328: 1530-1534. DOI:10.1126/science.1185435
[36]
Wang P X, Tian J, Cheng X R. Transition of Quaternary glacial cyclicity in deep-sea records at Nansha, the South China Sea[J]. Science in China(Series D), 2001, 44(10): 926-933. DOI:10.1007/BF02907085
[37]
Wang P X, Li Q Y, Tian J, et al. Long-term cycles in the carbon reservoir of the Quaternary ocean:A perspective from the South China Sea[J]. National Science Review, 2014, 1(1): 119-143. DOI:10.1093/nsr/nwt028
[38]
邱亚会, 李永项, 敖红, 等. 华北早更新世哺乳动物群的磁性地层年代序列与古环境关系:兼论对古人类活动的指示意义[J]. 第四纪研究, 2018, 38(5): 1268-1292.
Qiu Yahui, Li Yongxiang, Ao Hong, et al. Magnetostratigraphic chronology and paleoenvironmental background of Early Pleistocene humans and mammal in North China[J]. Quaternary Sciences, 2018, 38(5): 1268-1292.
[39]
李小平, 夏应菲, 杨浩. 安徽宣城第四纪红土剖面的全氧化铁含量及其古环境意义[J]. 江苏地质, 1998, 22(3): 182-185.
Li Xiaoping, Xia Yingfei, Yang Hao. Total iron content of Quaternary laterite profile and its paleoenvironmental significance in Xuancheng of Anhui Province[J]. Jiangsu Geology, 1998, 22(3): 182-185.
[40]
张明强, 朱丽东, 姜永见, 等. 九江JL红土剖面记录的中更新世气候转型事件[J]. 海洋地质与第四纪地质, 2010, 30(6): 115-123.
Zhang Mingqiang, Zhu Lidong, Jiang Yongjian, et al. Mid-Pleistocene climate transition event recorded by JL red earth section, Jiujiang, Jiangxi Province[J]. Marine Geology & Quaternary Geology, 2010, 30(6): 115-123.
[41]
黄颖, 朱丽东, 张晓, 等. 庐山北麓JL红土剖面粉砂粒级元素地球化学特征及其物源意义[J]. 第四纪研究, 2019, 39(5): 1092-1102.
Huang Ying, Zhu Lidong, Zhang Xiao, et al. Geochemical characteristics and their provenance implications of the silt fraction from JL red earth section in Lushan region, Jiujiang, South China[J]. Quaternary Sciences, 2019, 39(5): 1092-1102.
[42]
张晓, 朱丽东, 黄颖, 等. 加积型网纹红土网纹化机制及形成环境[J]. 第四纪研究, 2020, 40(1): 214-228.
Zhang Xiao, Zhu Lidong, Huang Ying, et al. The reticulated mechanism and its climatic implication of aggradation red earth[J]. Quaternary Sciences, 2020, 40(1): 214-228.
[43]
曾琳, 鹿化煜, 弋双文, 等. 我国东北地区黄土堆积的磁性地层年代与古气候变化[J]. 科学通报, 2011, 56(27): 2267-2275.
Zeng Lin, Lu Huayu, Yi Shuangwen, et al. Magnetostratigraphy of loess in Northeastern China and paleoclimatic changes[J]. Chinese Science Bulletin, 2011, 56(27): 2267-2275.
[44]
方小敏, 史正涛, 杨胜利, 等. 天山黄土和古尔班通古特沙漠发育及北疆干旱化[J]. 科学通报, 2002, 47(7): 540-545.
Fang Xiaomin, Shi Zhengtao, Yang Shengli, et al. Loess in the Tian Shan and its implications for the development of the Gurbantunggut Desert and drying of Northern Xinjiang[J]. Chinese Science Bulletin, 2002, 47(7): 540-545.
[45]
李保生, 李森, 王跃, 等. 我国极端干旱区边缘阿羌砂尘堆积剖面的地质时代[J]. 地质学报, 1998, 72(1): 83-92.
Li Baosheng, Li Sen, Wang Yue, et al. Geological age of the sand and dust deposits of the Aqiang section in the extremely arid region of China[J]. Acta Geologica Sinica, 1998, 72(1): 83-92.
[46]
Xiong S F, Ding Z L, Jiang W Y, et al. Damped fluctuations in Chinese loess grain size[J]. Geophysical Research Letters, 2003, 30(19): 153-166.
[47]
乔彦松, 郭正堂, 郝青振, 等. 安徽宣城黄土堆积的磁性地层学与古环境意义[J]. 地质力学学报, 2002, 8(4): 369-375.
Qiao Yansong, Guo Zhengtang, Hao Qingzhen, et al. Magnetostratigraphy and paleoclimatic significance of an eollian sequence from the Xuancheng area, Anhui Province[J]. Journal of Geomechanics, 2002, 8(4): 369-375.
[48]
朱丽东.中亚热带加积型红土及其所记录的第四纪环境变化探讨[D].兰州: 兰州大学博士学位论文, 2007: 20-139.
Zhu Lidong. Aggradation Red Earth Sediments in Mid-subtropics of China and Their Recorded Environmental Changes during Quaternary[D]. Lanzhou: The Doctoral Dissertation of Lanzhou University, 2007: 20-139.
[49]
朱丽东, 姜永见, 张明强, 等. 庐山JL红土剖面红土磁化率特征及古环境记录[J]. 山地学报, 2011, 29(4): 385-394.
Zhu Lidong, Jiang Yongjian, Zhang Mingqiang, et al. Characteristics of magnetic susceptibility and its paleoenvironmental records from JL red earth section, Lushan area[J]. Mountain Research, 2011, 29(4): 385-394.
[50]
蒋复初, 吴锡浩, 肖华国, 等. 九江地区网纹红土的时代[J]. 地质力学学报, 1997, 3(4): 27-32.
Jiang Fuchu, Wu Xihao, Xiao Huaguo, et al. Age of the vermiculated red soil in Jiujiang area, Central China[J]. Journal of Geomechanics, 1997, 3(4): 27-32.
[51]
程峰.中国南方更新世红土沉积物的特征及其物源研究[D].武汉: 中国地质大学(武汉)博士学位论文, 2018: 25-152.
Cheng Feng. Study on Characteristics and Source Provenance of the Pleistocene Red Earth Sediments in Southern China[D]. Wuhan: The Doctoral Dissertation of China University of Geosciences(Wuhan), 2018: 25-152.
[52]
乔彦松, 郭正堂, 郝青振, 等. 皖南风尘堆积-土壤序列的磁性地层学研究及其古环境意义[J]. 科学通报, 2003, 48(13): 1465-1469.
Qiao Yansong, Guo Zhengtang, Hao Qingzhen, et al. Loess-soil sequences in Southern Anhui Province:Magnetostratigraphy and paleoclimatic significance[J]. Chinese Science Bulletin, 2003, 48(13): 1465-1469.
[53]
赵志中, 乔彦松, 王燕, 等. 成都平原红土堆积的磁性地层学及古环境记录[J]. 中国科学(D辑), 2007, 37(3): 370-377.
Zhao Zhizhong, Qiao Yansong, Wang Yan, et al. Magnetostratigraphy and records of paleoenvironment of the red earth formation in the Chengdu Plain[J]. Science in China(Series D), 2007, 37(3): 370-377.
[54]
梁胜杰, 张志华, 崔立林, 等. 基于主成分分析与核独立成分分析的降维方法[J]. 系统工程与电子技术, 2011, 33(9): 2144-2148.
Liang Shengjie, Zhang Zhihua, Cui Lilin, et al. Dimensionality reduction method based on PCA and KICA[J]. Systems Engineering and Electronics, 2011, 33(9): 2144-2148.
[55]
严其艳. 基于主成分分析和动态神经网络的时间序列预报[J]. 中国西部科技, 2009, 8(10): 27-28.
Yan Qiyan. Time series predicting based on PCA and dynamic neural network[J]. Science and Technology of West China, 2009, 8(10): 27-28.
[56]
Roland K, Peter M, Andreas U. Lightweight detection of additive watermarking in the DWT-domain[J]. IEEE Transactions on Image Processing, 2011, 20(2): 474-484. DOI:10.1109/TIP.2010.2064327
[57]
余建英. 数据统计分析与SPSS应用[M]. 北京: 人民邮电出版社, 2003: 1-476.
Yu Jianying. Data Statistical Analysis and SPSS Application[M]. Beijing: The People's Posts and Telecommunications Press, 2003: 1-476.
[58]
李月丛, 丁国强, 王永, 等. 泥河湾盆地早更新世(2.6-2.1 Ma)植被和气候变化[J]. 第四纪研究, 2018, 38(4): 830-841.
Li Yuecong, Ding Guoqiang, Wang Yong, et al. Early Pleistocene(2.6-2.1 Ma)vegetation and climate changes in the Nihewan Basin[J]. Quaternary Sciences, 2018, 38(4): 830-841.
[59]
张贵林, 王建, 周新郢, 等. 末次冰消期内蒙古东部气候不稳定性:布日敦湖花粉记录[J]. 第四纪研究, 2019, 39(4): 938-951.
Zhang Guilin, Wang Jian, Zhou Xinying, et al. Pollen from Buridun Lake recorded instable climate change of east Inner Mongolia during the last deglaciation[J]. Quaternary Sciences, 2019, 39(4): 938-951.
[60]
范保硕, 张文胜, 张茹春, 等. 华北平原小冰期以来干湿变化与人类活动特征[J]. 第四纪研究, 2019, 39(2): 483-496.
Fan Baoshuo, Zhang Wensheng, Zhang Ruchun, et al. Characteristics of dry-wet changes and human activities in the North China Plain since the Little Ice Age[J]. Quaternary Sciences, 2019, 39(2): 483-496.
[61]
何晓群. 现代统计分析方法与应用[M]. 北京: 中国人民大学出版社, 1998: 316-332.
He Xiaoqun. Mordern Statistical Analysis Method and Application[M]. Beijing: Publishing House of Renmin University of China, 1998: 316-332.
[62]
贾俊平. 统计学基础[M]. 北京: 中国人民大学出版社, 2014: 185-232.
Jia Junping. Fundamentals of Statistics[M]. Beijing: Publishing House of Renmin University of China, 2014: 185-232.
[63]
Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20: PA1003. DOI:10.1029/2004pa001071
[64]
杨胜利, 方小敏, 李吉均, 等. 表土颜色和气候定性至半定量关系研究[J]. 中国科学(D辑), 2001, 31(增刊): 175-181.
Yang Shengli, Fang Xiaomin, Li Jijun, et al. Transformation functions of soil color and climate[J]. Science in China(Series D), 2001, 31(Suppl.): 175-181.
[65]
Sun Y B, Liu H, Liang L J, et al. Changing color of Chinese loess:Geochemical constraint and paleoclimatic significance[J]. Journal of Asian Earth Sciences, 2011, 40(6): 1131-1138. DOI:10.1016/j.jseaes.2010.08.006
[66]
Robertson A R. The CIE 1976 color-difference formulae[J]. Color Research & Application, 1977, 2(1): 7-11.
[67]
Singh B, Gilkes R J. Properties and distribution of iron oxides and their association with minor elements in the soils of South-Western Australia[J]. European Journal of Soil Science, 1992, 43(1): 77-98. DOI:10.1111/j.1365-2389.1992.tb00121.x
[68]
Bigham J M, Golden D C, Buol S W, et al. Iron oxide mineralogy of well-drained ultisols and oxisols:Ⅱ. Influence on color, surface area, and phosphate retention[J]. Soil Science Society of America Journal, 1978, 42(5): 825. DOI:10.2136/sssaj1978.03615995004200050034x
[69]
卢升高, 董瑞斌, 俞劲炎, 等. 中国东部红土的磁性及其环境意义[J]. 地球物理学报, 1999, 42(6): 764-771.
Lu Shenggao, Dong Ruibin, Yu Jinyan, et al. Magnetic measurement characterisation of red earth profile in Eastern China and its environmental implications[J]. Chinese Journal of Geophysics, 1999, 42(6): 764-771.
[70]
卢升高. 第四纪红土的磁性与氧化铁矿物学特征及其古环境意义[J]. 土壤学报, 2000, 37(2): 182-191.
Lu Shenggao. Characterization of magnetism and iron oxide minerals of Quaternary red earth and its paleoenvironmental implications[J]. Acta Pedologica Sinica, 2000, 37(2): 182-191.
[71]
胡雪峰, 龚子同, 夏应菲, 等. 安徽宣州黄棕色土和第四纪红土的比较研究及其古气候意义[J]. 土壤学报, 1999, 36(3): 301-307.
Hu Xuefeng, Gong Zitong, Xia Yingfei, et al. Comparative study of yellow-brown earth and Quaternary red clay in Xuanzhou, Anhui Province and its palaeo-climate significance[J]. Acta Pedologica Sinica, 1999, 36(3): 301-307.
[72]
邓黄月, 郑祥民, 杨立辉, 等. 长江中下游地区第四纪红土磁学特征及其环境意义[J]. 沉积学报, 2015, 33(2): 285-298.
Deng Huangyue, Zheng Xiangmin, Yang Lihui, et al. Magnetic properties of Quaternary red earth profile in Yangtze River Valley and its paleo-environmental implications[J]. Acta Sedimentologica Sinica, 2015, 33(2): 285-298.
[73]
刘秀铭, 夏敦胜, 刘东生, 等. 中国黄土和阿拉斯加黄土磁化率气候记录的两种模式探讨[J]. 第四纪研究, 2007, 27(2): 210-220.
Liu Xiuming, Xia Dunsheng, Liu Tungsheng, et al. Discussion on two models of paleoclmatic records of magnetic susceptibility of Alaskan and Chinese loess[J]. Quaternary Sciences, 2007, 27(2): 210-220.
[74]
刘秀铭, 刘东生, 夏敦胜, 等. 中国与西伯利亚黄土磁化率古气候记录——氧化和还原条件下的两种成土模式分析[J]. 中国科学(D辑), 2007, 37(10): 1382-1391.
Liu Xiuming, Liu Tungsheng, Xia Dunsheng, et al. Two pedogenic models for paleoclimatic records of magnetic susceptibility from Chinese and Siberian loess[J]. Science in China(Series D), 2007, 37(10): 1382-1391.
[75]
Dearing J A, Livingstone I P, Bateman M D, et al. Palaeoclimate records from QIS 8.0-5.4 recorded in loess-palaeosol sequences on the Matmata Plateau, southern Tunisia, based on mineral magnetism and new luminescence dating[J]. Quaternary International, 2001, 76-77: 43-56. DOI:10.1016/S1040-6182(00)00088-4
[76]
Zhao Q C, Xue S K, Shi H, et al. Preliminary study on element leaching and current soil-forming process of red soils[J]. Pedosphere, 1991, 1(2): 117-126.
[77]
李凤全, 叶玮, 王天阳, 等. 网纹红土红色基质与白色条纹铁迁移模型[J]. 第四纪研究, 2018, 38(2): 306-313.
Li Fengquan, Ye Wei, Wang Tianyang, et al. The model for iron migration between white reticulated mottles and red matrix[J]. Quaternary Sciences, 2018, 38(2): 306-313.
[78]
朱景郊. 网纹红土的成因及其研究意义[J]. 地理研究, 1988, 7(4): 14-22.
Zhu Jingjiao. Genesis and research significance of the plinthitic horizon[J]. Geographical Research, 1988, 7(4): 14-22.
[79]
李凤全, 叶玮, 朱丽东, 等. 第四纪网纹红土的类型与网纹化作用[J]. 沉积学报, 2010, 28(2): 346-355.
Li Fengquan, Ye Wei, Zhu Lidong, et al. The types and formation of Quaternary plinthitic red earth[J]. Acta Sedimentologica Sinica, 2010, 28(2): 346-355.
[80]
尹秋珍, 郭正堂. 中国南方的网纹红土与东亚季风的异常强盛期[J]. 科学通报, 2006, 51(2): 186-193.
Yin Qiuzhen, Guo Zhengtang. Mid-Pleistocene vermiculated red soils in Southern China as an indication of unusually strengthened East Asian monsoon[J]. Chinese Science Bulletin, 2006, 51(2): 186-193.
[81]
Lu S G, Xue Q F, Zhu L, et al. Mineral magnetic properties of a weathering sequence of soils derived from basalt in Eastern China[J]. Catena, 2008, 73(1): 22-33.
[82]
胡忠行, 朱丽东, 张卫国, 等. 江西九庐公路红土剖面的磁学特征及其反映的风化成土作用[J]. 地球物理学报, 2011, 54(5): 1319-1326.
Hu Zhongxing, Zhu Lidong, Zhang Weiguo, et al. Magnetic properties of red clay section along the Jiulu Highway at Jiujiang, Jiangxi and implication for pedogenesis[J]. Chinese Journal of Geophysics, 2011, 54(5): 1319-1326.
[83]
吕厚远, 韩家懋, 吴乃琴, 等. 中国现代土壤磁化率分析及其古气候意义[J]. 中国科学(B辑), 1994, 24(12): 1290-1297.
Lü Houyuan, Han Jiamao, Wu Naiqin, et al. Magnetic susceptibility of Chinese and its paleoclimatic significance[J]. Science in China(Series B), 1994, 24(12): 1290-1297.
[84]
黄雨振, 陈秀玲, 吕镔, 等. 福建北部闽江流域第四纪红土的磁学特征及其环境意义[J]. 山地学报, 2018, 36(4): 527-535.
Huang Yuzhen, Chen Xiuling, Lü Bin, et al. Magnetic characteristics of Quaternary red earth sequence from the Minjiang drainage basin in northern Fujian and its environmental significance[J]. Mountain Research, 2018, 36(4): 527-535.
[85]
Balsam W L, Ellwood B B, Ji J F, et al. Magnetic susceptibility as a proxy for rainfall:Worldwide data from tropical and temperate climate[J]. Quaternary Science Reviews, 2011, 30(19-20): 2732-2744. DOI:10.1016/j.quascirev.2011.06.002
[86]
Zachos J C, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65 Ma to present[J]. Science, 2001, 292(5517): 686-693. DOI:10.1126/science.1059412
[87]
朱丽东, 周尚哲, 李凤全, 等. 庐山JL红土剖面的色度气候意义[J]. 热带地理, 2007, 27(3): 193-197.
Zhu Lidong, Zhou Shangzhe, Li Fengquan, et al. Climatic implication of the chroma of JL red earth section in the Lushan Mountain[J]. Tropical Geography, 2007, 27(3): 193-197.
[88]
陈秀玲, 李志忠, 靳建辉, 等. 中国南方第四纪红土研究进展[J]. 福建师范大学学报(自然科学版), 2009, 25(5): 118-124.
Chen Xiuling, Li Zhizhong, Jin Jianhui, et al. Research advance of Quaternary red earth in South China[J]. Journal of Fujian Normal University(Natural Science Edition), 2009, 25(5): 118-124.
[89]
袁宝印, 夏正楷, 李保生, 等. 中国南方红土年代地层学与地层划分问题[J]. 第四纪研究, 2008, 28(1): 1-13.
Yuan Baoyin, Xia Zhengkai, Li Baosheng, et al. Chronostratigraphy and stratigraphic division of red soil in Southern China[J]. Quaternary Sciences, 2008, 28(1): 1-13.
[90]
Clark P U, Alley R B, Pollard D. Northern Hemisphere ice-sheet influences on global climate change[J]. Science, 1999, 286(5442): 1104-1111. DOI:10.1126/science.286.5442.1104
[91]
Hao Q Z, Wang L, Oldfield F, et al. Delayed build-up of Arctic ice sheets during 400, 000-year minima in insolation variability[J]. Nature, 2012, 490(7420): 393-396. DOI:10.1038/nature11493
[92]
Ding Z L, Liu T S, Rutter N W, et al. Ice-volume forcing of East Asian winter monsoon variations in the past 800, 000 years[J]. Quaternary Research, 1995, 44(2): 149-159. DOI:10.1006/qres.1995.1059
[93]
Guan Q Y, Pan B T, Li N, et al. Timing and significance of the initiation of present day deserts in the northeastern Hexi Corridor, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 306(1-2): 70-74. DOI:10.1016/j.palaeo.2011.03.029
[94]
Pan B T, Burbank D, Wang Y X, et al. A 900 k.y. record of strath terrace formation during glacial-interglacial transitions in Northwest China[J]. Geology, 2003, 31(11): 957-960. DOI:10.1130/G19685.1
[95]
Yang S X, Wang F G, Xie F, et al. Technological innovations at the onset of the mid-Pleistocene climate transition in high-latitude East Asia[J]. National Science Review, 2020. DOI:10.1093/nsr/nwaa053
[96]
刘东生, 等. 黄土与环境[M]. 北京: 科学出版社, 1985: 191-207.
Liu Tungsheng, et al. Loess and the Environment[M]. Beijing: Science Press, 1985: 191-207.
[97]
Liu T S, Ding Z L, Rutter N. Comparison of Milankovitch periods between continental loess and deep sea records over the last 2.5 Ma[J]. Quaternary Science Reviews, 1999, 18(10-11): 1205-1212. DOI:10.1016/S0277-3791(98)00110-3
Middle Pleistocene transition and its environmental effects revealed by red earth of South China
Xiong Wenting1, Zhu Lidong1, Zhang Xiao1, Guo Licheng2,3, Ye Wei1, Xiong Shangfa2,4     
(1 College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang;
2 Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029;
3 CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044;
4 College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049)

Abstract

The Mid-Pleistocene Transition(MPT, approximately 1.2 Ma to 0.5 Ma) was marked by fundamental changes in Earth's climate state, where the low-frequency, high-amplitude, quasi-periodic(100-ka) glacial variability emerged and characterized the Later Pleistocene and Holocene. Previously published MPT records reveal that evidences from the marine realm are abundant and high-resolution. However, discontinuity and low-resolution of the continental MPT records mainly limited the practice of further researches from land area. Moreover, only a few studies have tried to explore diverse manifestations of the Middle Pleistocene climate transition by terrestrial deposits. Consequently, further work is needed to fully understand and explore characteristics, mechanisms, and implications for MPT recorded in terrestrial deposits. In South China, red earth has been recognized as an important definition of this area, as it is covered by red soil at a large scale. Especially, red earth in South China deposited during the Quaternary period and documented the evolution of regional environment, which has enormous potential to decipher the environmental changes across the MPT. Thus, we selected the JL red earth section(29°42'N, 116°02'E) located in Mount Lushan, Jiujiang, Jiangxi Province as study section, where the depth of the section is about 18.46 m. A total of 920 samples were taken at 2 cm interval from the JL red earth sections for particle size, color and magnetic susceptibility measurements. Our principal aim is to investigate the manifestations and the main causal mechanisms of the MPT based on works of ESR dating and multi-proxies analyses. A more careful analysis of chronology of our section and other red earth section in South China suggests that the chronostratigraphic framework of JL red earth section can be estimated to span ca. 1200 ka to 233 ka. The multi-proxies analysis will be focused on Principal Component Analysis(PCA). Results of PCA analysis indicates that PCA F1 is a sensitive proxy for the degree of regional warming and cooling, which provides significant information for identifying the three MPT processes:early MPT(1200~738 ka), late MPT(738~536 ka) and post MPT(536~233 ka). Analyzing lithology of the typical Quaternary red earth sections in South China and the PCA F1 of JL red earth section shows that, during the early MPT, the average value of PCA F1 is 1.24 and vermiculated morphology of red earth sections is typical dense and thick, with clear stripes, which implying that the homochronous climate is warm and humid; during the late MPT, the average value of PCA F1 decreased to -0.31 with unconspicuous vermiculated characteristics, indicating a drier and cooler regional climate; during the post MPT, the average value of PCA F1 changed to -2.25 and maximum value of PCA F1 is about 0, when vermiculated morphology vanished and inversely yellowish-brown soil deposited, these evidences proved that regional climate deteriorated distinctly. However, the average value of global deep-sea oxygen isotope composition nearly maintained the same value from 1200 ka to 233 ka. Apparently the Pleistocene environment in South China recorded by JL red earth section failed to match changes in global ice volume, and after the MPT, preceding equilibrium state of regional climate system may be crossed, and the subsequent development of dry and cold climate marked that the regional environmental shifted irreversibly during this interval. The combination of our records and previous study suggests that increased global ice volume and global cooling and enhanced Siberian High Pressure integrally affected the evolution of environment in South China during the Pleistocene. In addition, the spatial distribution of MPT records in the East Asian region shows that wide-ranging aridification in the region may have exceeded the upper limit existed before the Middle Pleistocene.
Key words: red earth    Mid-Pleistocene Transition    principal component analysis    Siberian High Pressure