[1] |
Hays J D, Imbrie J, Shackleton N J. Variations in the Earth's orbit:Pacemaker of the ice ages[J]. Science, 1976, 194(4270): 1121-1132. DOI:10.1126/science.194.4270.1121 |
[2] |
Ruddiman W F, Raymo M E, Martinson D G, et al. Pleistocene evolution:Northern hemisphere ice sheets and North Atlantic Ocean[J]. Paleoceanography, 1989, 4(4): 353-412. DOI:10.1029/PA004i004p00353 |
[3] |
Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20: PA1003. DOI:10.1029/2004PA001071 |
[4] |
Herbert T D, Peterson L C, Lawrence K T, et al. Tropical ocean temperatures over the past 3.5 million years[J]. Science, 2010, 328(5985): 1530-1534. DOI:10.1126/science.1185435 |
[5] |
Rohling E J, Foster G L, Grant K M, et al. Sea-level and deep-sea-temperature variability over the past 5.3 million years[J]. Nature, 2014, 508(7497): 477-482. DOI:10.1038/nature13230 |
[6] | |
[7] |
Raymo M E, Oppo D W, Curry W. The Mid-Pleistocene climate transition:A deep sea carbon isotopic perspective[J]. Paleoceanography, 1997, 12(4): 546-559. DOI:10.1029/97PA01019 |
[8] |
Imbrie J, Berger A, Boyle E A, et al. On the structure and origin of major glaciation cycles 2. The 100, 000 year cycle[J]. Paleoceanography, 1993, 8(6): 699-735. DOI:10.1029/93PA02751 |
[9] |
Farmer J R, Hönisch B, Haynes L L, et al. Deep Atlantic Ocean carbon storage and the rise of 100, 000-year glacial cycles[J]. Nature Geoscience, 2019, 12(5): 355-360. DOI:10.1038/s41561-019-0334-6 |
[10] |
Willeit M, Ganopolski A, Calov R, et al. Mid-Pleistocene transition in glacial cycles explained by declining CO 2 and regolith removal[J]. Science Advances, 2019, 5(4): eaav7337. DOI:10.1126/sciadv.aav7337 |
[11] |
Clark P, Archer D, Pollard D, et al. The Middle Pleistocene transition:Characteristics, mechanisms, and implication for long-term changes in atmospheric pCO2[J]. Quaternary Science Reviews, 2006, 25(23): 3150-3184. |
[12] |
Elderfield H, Ferretti P, Greaves M, et al. Evolution of ocean temperature and ice volume through the mid-Pleistocene climate transition[J]. Science, 2012, 337(6095): 704-709. DOI:10.1126/science.1221294 |
[13] |
Ford H L, Raymo M E. Regional and global signals in seawater δ18O records across the mid-Pleistocene transition[J]. Geology, 2020, 48(2): 113-117. DOI:10.1130/G46546.1 |
[14] |
Pena L D, Goldstein S L. Thermohaline circulation crisis and impacts during the mid-Pleistocene transition[J]. Science, 2014, 345(6194): 318-322. DOI:10.1126/science.1249770 |
[15] | |
[16] |
刘瑞璇, 鹿化煜, 王珧, 等. 东阿拉伯海拉克希米盆地浊流沉积序列的粒度变化及其对中更新世气候转型的响应[J]. 第四纪研究, 2018, 38(5): 1120-1129. Liu Ruixuan, Lu Huayu, Wang Yao, et al. Grain size analysis of a depositional sequence in the Laxmi Basin(IODP Hole U1456A, Arabian Sea)reveals the Indian monsoon shift at the mid-Pleistocene Climatic Transition[J]. Quaternary Sciences, 2018, 38(5): 1120-1129. |
[17] |
王海粟, 党皓文, 翦知湣. 中更新世转型时期南海北部上层水体结构演化特征——ODP1146站浮游有孔虫稳定同位素记录[J]. 第四纪研究, 2019, 39(2): 316-327. Wang Haisu, Dang Haowen, Jian Zhimin. Variations in the upper water structure of northern South China Sea during the mid-Pleistocene Climate Transition Period:Planktonic foraminifera oxygen isotope records of ODP site 1146[J]. Quaternary Sciences, 2019, 39(2): 316-327. |
[18] |
Sun Y, Yin Q, Crucifix M, et al. Diverse manifestations of the mid-Pleistocene climate transition[J]. Nature Communications, 2019, 10: 352. DOI:10.1038/s41467-018-08257-9 |
[19] |
Ding Z L, Derbyshire E, Yang S L, et al. Stepwise expansion of desert environment across Northern China in the past 3.5 Ma and implications for monsoon evolution[J]. Earth and Planetary Science Letters, 2005, 237(1-2): 45-55. DOI:10.1016/j.epsl.2005.06.036 |
[20] |
Wu F, Fang X, Ma Y, et al. Plio-Quaternary stepwise drying of Asia:Evidence from a 3-Ma pollen record from the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2007, 257(1-2): 160-169. DOI:10.1016/j.epsl.2007.02.029 |
[21] |
Zhou X Y, Yang J L, Wang S Q, et al. Vegetation change and evolutionary response of large mammal fauna during the mid-Pleistocene Transition in temperate northern East Asia[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 505: 287-294. DOI:10.1016/j.palaeo.2018.06.007 |
[22] |
An Z, Liu T, Lu Y, et al. The long-term paleomonsoon variation recorded by the loess-paleosol sequence in Central China[J]. Quaternary International, 1990, 7-8: 91-95. DOI:10.1016/1040-6182(90)90042-3 |
[23] |
Zhang J, Li J, Guo B, et al. Magnetostratigraphic age and monsoonal evolution recorded by the thickest Quaternary loess deposit of the Lanzhou region, western Chinese Loess Plateau[J]. Quaternary Science Reviews, 2016, 139: 17-29. DOI:10.1016/j.quascirev.2016.02.025 |
[24] |
Sun Y, An Z, Clemens S C, et al. Seven million years of wind and precipitation variability on the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2010, 297(3-4): 525-535. DOI:10.1016/j.epsl.2010.07.004 |
[25] |
Chen X, Fang X, An Z, et al. An 8.1 Ma calcite record of Asian summer monsoon evolution on the Chinese central Loess Plateau[J]. Science China:Earth Sciences, 2007, 50(3): 392-403. DOI:10.1007/s11430-007-0016-x |
[26] |
Meng X, Liu L, Wang X T, et al. Mineralogical evidence of reduced East Asian summer monsoon rainfall on the Chinese loess plateau during the Early Pleistocene interglacials[J]. Earth and Planetary Science Letters, 2018, 486: 61-69. DOI:10.1016/j.epsl.2017.12.048 |
[27] |
An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons an phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times[J]. Nature, 2001, 411(6833): 62-66. DOI:10.1038/35075035 |
[28] |
Song Y, Fang X, King J W, et al. Magnetic parameter variations in the Chaona loess/paleosol sequences in the central Chinese Loess Plateau, and their significance for the Middle Pleistocene climate transition[J]. Quaternary Research, 2014, 81(3): 433-444. DOI:10.1016/j.yqres.2013.10.002 |
[29] |
沈吉, 薛滨, 吴敬禄, 等. 湖泊沉积与环境演化[M]. 北京: 科学出版社, 2010: 1-473. Shen Ji, Xue Bin, Wu Jinglu, et al. Lake Sediments and Environmental Evolution[M]. Beijing: Science Press, 2010: 1-473.
|
[30] |
Yancheva G, Nowaczyk N R, Mingram J, et al. Influence of the intertropical convergence zone on the East Asian monsoon[J]. Nature, 2007, 445(7123): 74-77. DOI:10.1038/nature05431 |
[31] |
An Z, Colman S M, Zhou W, et al. Interplay between the Westerlies and Asian monsoon recorded in Lake Qinghai sediments since 32 ka[J]. Scientific Reports, 2012, 2: 619. DOI:10.1038/srep00619 |
[32] |
Xu D, Lu H, Chu G, et al. 500-year climate cycles stacking of recent centennial warming documented in an East Asian pollen record[J]. Scientific Reports, 2014, 4: 3611. DOI:10.1038/srep03611 |
[33] |
Zhou X, Sun L, Zhan T, et al. Time-transgressive onset of the Holocene Optimum in the East Asian monsoon region[J]. Earth and Planetary Science Letters, 2016, 456: 39-46. DOI:10.1016/j.epsl.2016.09.052 |
[34] |
Liu X, Zhan T, Zhou X, et al. Late onset of the Holocene rainfall maximum in Northeastern China inferred from a pollen record from the sediments of Tianchi Crater Lake[J]. Quaternary Research, 2019, 92(1): 1-13. DOI:10.1017/qua.2019.4 |
[35] |
范佳伟, 肖举乐, 温锐林, 等. 内蒙古达里湖沉积记录的中晚全新世干旱事件[J]. 第四纪研究, 2019, 39(3): 701-716. Fan Jiawei, Xiao Jule, Wen Ruilin, et al. Middle to Late Holocene drought events recorded by the sediments from Dali Lake, Inner Mongolia[J]. Quaternary Sciences, 2019, 39(3): 701-716. |
[36] |
崔巧玉, 赵艳. 大兴安岭阿尔山天池湖泊沉积物记录的全新世气候突变[J]. 第四纪研究, 2019, 39(6): 1346-1356. Cui Qiaoyu, Zhao Yan. Climatic abrupt events implied by lacustrine sediments of Arxan Crater Lake, in the central Great Khingan Mountains, NE China during Holocene[J]. Quaternary Sciences, 2019, 39(6): 1346-1356. |
[37] |
张菀漪, 张静雅, Nusrat Nazir, 等. 青藏高原东北缘冬给错纳湖全新世湖面波动[J]. 第四纪研究, 2019, 39(4): 1018-1033. Zhang Wanyi, Zhang Jingya, Nusrat Nazir, et al. The records of Donggi Cona lake-level fluctuations since the Holocene in the northeastern Tibetan Plateau[J]. Quaternary Sciences, 2019, 39(4): 1018-1033. |
[38] |
李婷, 张虎才, 蔡萌, 等. 抚仙湖全新世自生碳酸盐及其区域气候和湖泊水位指示意义[J]. 第四纪研究, 2019, 39(3): 642-654. Li Ting, Zhang Hucai, Cai Meng, et al. The composition of carbonate matters in the sediments from Lake Fuxian and significance of paleoclimate and water level changes[J]. Quaternary Sciences, 2019, 39(3): 642-654. |
[39] |
裘善文, 夏玉梅, 李凤华, 等. 松辽平原第四纪中期古地理研究[J]. 科学通报, 1984, 29(3): 172-174. Qiu Shanwen, Xia Yumei, Li Fenghua, et al. Mid-Quaternary paleogeography of Songliao Plain of China[J]. Chinese Science Bulletin, 1984, 29(3): 172-174. |
[40] |
裘善文, 夏玉梅, 汪佩芳, 等. 松辽平原更新世地层及其沉积环境的研究[J]. 中国科学(B辑), 1988, 18(4): 431-442. Qiu Shanwen, Xia Yumei, Wang Peifang, et al. Pleistocene stratigraphy and sedimentary environment in Songliao Plain of China[J]. Science in China(Series B), 1988, 18(4): 431-442. |
[41] |
裘善文, 王锡魁, 张淑芹, 等. 松辽平原古大湖演变及其平原的形成[J]. 第四纪研究, 2012, 32(5): 1011-1021. Qiu Shanwen, Wang Xikui, Zhang Shuqin, et al. The evolution of the large paleolake in Songliao Plain and its formation[J]. Quaternary Sciences, 2012, 32(5): 1011-1021. |
[42] |
詹涛, 曾方明, 谢远云, 等. 东北平原钻孔的磁性地层定年及松嫩古湖演化[J]. 科学通报, 2019, 64(11): 1179-1190. Zhan Tao, Zeng Fangming, Xie Yuanyun, et al. Magnetostratigraphic dating of a drill core from the Northeast Plain of China:Implications for the evolution of Songnen paleo-lake[J]. Chinese Science Bulletin, 2019, 64(11): 1179-1190. |
[43] |
贺伟, 布仁仓, 熊在平, 等. 1961-2005年东北地区气温和降水变化趋势[J]. 生态学报, 2013, 33(2): 519-531. He Wei, Bu Rencang, Xiong Zaiping, et al. Characteristics of temperature and precipitation in Northeastern China from 1961 to 2005[J]. Acta Ecologica Sinica, 2013, 33(2): 519-531. |
[44] |
张龙吴, 张虎才, 常凤琴, 等. 云南异龙湖沉积物粒度空间变化特征及其环境指示意义[J]. 第四纪研究, 2019, 39(5): 1159-1170. Zhang Longwu, Zhang Hucai, Chang Fenqin, et al. Spatial variation characteristics of sediment size and its environmental indication significance in Lake Yilong, Yunnan Province[J]. Quaternary Sciences, 2019, 39(5): 1159-1170. |
[45] |
Yan H, Sun L, Oppo D W, et al. South China Sea hydrological changes and Pacific Walker Circulation variations over the last millennium[J]. Nature Communications, 2011, 2: 293. DOI:10.1038/ncomms1297 |
[46] |
Xiao J, Chang Z, Wen R, et al. Holocene weak monsoon intervals indicated by low lake levels at Hulun Lake in the monsoonal margin region of northeastern Inner Mongolia, China[J]. The Holocene, 2009, 19(6): 899-908. DOI:10.1177/0959683609336574 |
[47] |
吴铎, 周爱锋, 张家武, 等. 我国季风边缘区湖泊沉积记录的全新世亚洲夏季风衰退事件[J]. 第四纪研究, 2019, 39(3): 665-677. Wu Duo, Zhou Aifeng, Zhang Jiawu, et al. Abrupt decreasing of Holocene Asian summer monsoon recorded by lake sediments from monsoon margin[J]. Quaternary Sciences, 2019, 39(3): 665-677. |
[48] |
Sun Y, Chen J, Clemens S C, et al. East Asian monsoon variability over the last seven glacial cycles recorded by a loess sequence from the northwestern Chinese Loess Plateau[J]. Geochemistry, Geophysics, Geosystems, 2006, 7: Q12Q02. DOI:10.1029/2006GC001287 |
[49] |
Hao Q, Wang L, Oldfield F, et al. Delayed build-up of Arctic ice sheets during 400, 000-year minima in insolation variability[J]. Nature, 2012, 490: 393-396. DOI:10.1038/nature11493 |
[50] |
Ding Z, Derbyshire E, Yang S L, et al. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record[J]. Paleoceanography, 2002, 17(3): 5-1-5-21. DOI:10.1029/2001PA000725 |
[51] |
Ding Z, Liu T, Rutter N, et al. Ice-volume forcing of the East Asia winter monsoon variation in the past 800, 000 years[J]. Quaternary Research, 1995, 44(2): 149-159. |
[52] |
杨石岭, 丁仲礼. 黄土高原黄土粒度的空间变化及其古环境意义[J]. 第四纪研究, 2017, 37(5): 934-944. Yang Shiling, Ding Zhongli. Spatial changes in grain size of loess deposits in the Chinese Loess Plateau and implications for palaeoenvironment[J]. Quaternary Sciences, 2017, 37(5): 934-944. |
[53] |
李涛, 李高军. 斜度驱动第四纪冰期-间冰期转换——来自中国黄土的证据[J]. 第四纪研究, 2018, 38(5): 1111-1119. Li Tao, Li Gaojun. Obliquity pacing of deglaciations in the Pleistocene:Evidence from the Chinese loess deposits[J]. Quaternary Sciences, 2018, 38(5): 1111-1119. |
[54] |
郭飞, 王婷, 刘宇明, 等. 临夏黄土记录的26万年来季风快速变化[J]. 第四纪研究, 2019, 39(3): 557-564. Guo Fei, Wang Ting, Liu Yuming, et al. Rapid Asian monsoon changes recorded by loess depositions in Linxia since 260 ka B.P.[J]. Quaternary Sciences, 2019, 39(3): 557-564. |
[55] | |
[56] |
An Z, Clemens S, Shen J, et al. Glacial-interglacial Indian summer monsoon dynamics[J]. Science, 2011, 333(6043): 719-723. DOI:10.1126/science.1203752 |
[57] |
Koutsodendris A, Sachse D, Appel E, et al. Prolonged monsoonal moisture availability preconditioned glaciation of the Tibetan Plateau during the mid-Pleistocene transition[J]. Geophysical Research Letters, 2018, 45(23). DOI:10.1029/2018GL079303 |
[58] |
Nakagawa T, Okuda M, Yonenobu H, et al. Regulation of the monsoon climate by two different orbital rhythms and forcing mechanisms[J]. Geology, 2008, 36(6): 491-494. DOI:10.1130/G24586A.1 |
[59] |
Zhang R, Delworth T L. Simulated tropical response to a substantial weakening of the Atlantic thermohaline circulation[J]. Journal of Climate, 2005, 18(12): 1853-1860. DOI:10.1175/JCLI3460.1 |
[60] |
Sun Y, Clemens S C, Morrill C, et al. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon[J]. Nature Geoscience, 2012, 5(1): 46-49. DOI:10.1038/ngeo1326 |