第四纪研究  2020, Vol.40 Issue (1): 229-237   PDF    
基于图像法和激光法的山东半岛黄岛海滩沉积物粒度特征对比
王克强1, 李德文1, 王有鹏1,2     
(1 中国地震局地壳动力学重点实验室/中国地震局地壳应力研究所, 北京 100085;
2 内蒙古自治区乌海市应急管理局, 内蒙古自治区 乌海 016000)
摘要:以新型快速成像及处理技术为基础的动态图像法可为单个样品快速建立百万至上亿个颗粒的图像及粒度、粒形参数数据库,可直观表现天然沉积物的海量颗粒的大小和形状信息,但目前对其与激光法测试结果之间的异同尚缺乏深入理解。本文对采自山东半岛黄岛地区黄海沿岸3处海滩共190个样品进行动态图像粒度分析,通过等效投影面积径(等积径)计算均值粒径、分选系数、偏度、峰度等粒度参数,并与激光法测试结果进行对比。结果表明:1)现代海滩沉积物图像法统计粒径比激光法稍粗,但二者之间的差异较之细粒沉积物较多的类型(如冲洪积物)而言已经很小;2)现代海滩沉积物图像法粒度分析较之激光法分选更优,偏度和峰度均更小;3)图像法和激光法粒度分析结果在沉积环境判别中具有相近的功能,但图像法对沉积环境和动力条件的响应更为敏感。这些认识为动态图像粒度分析技术的应用推广和资料解释提供了新的理论与技术支持。
关键词海滩沉积物    动态图像法    沉积环境判别    粒度分析    黄岛区    
中图分类号     P512.2;P941.7                     文献标识码    A

0 概述

天然沉积物粒度分布特征是蕴含着物源、风化、剥蚀、搬运和堆积作用信息的复合载体[1~2],可用于反演流域地质特征、搬运介质、沉积环境和动力条件等[3~7]。众多粒度分析方法中,图像法是国际地科联沉积委员会唯一推荐的粒度分析方法[2]。该方法不仅可以直接表达每个颗粒大小,且蕴含大量传统方法不能获取的粒形信息[8]。随着图像获取和处理技术的飞速发展,动态图像法在沉积粒度分析中开始普及,成为未来沉积粒度分析中一种极具潜力的手段。深入认识和理解动态图像法与传统方法之间的异同,是对比和分析不同来源粒度资料的前提和条件,目前这方面的研究尚为数不多[1, 9~12]。对同一样品的对比研究表明,当下流行的激光(衍射/散射)法与动态图像法分析结果之间存在显著差别。如赵旭锋等[11]研究表明图像法所测粒径在不同粒级均比激光法粗,且两种方法差异程度随样品粒级的变粗先变小后变大,显示了样品粗细的变化对两种方法所测结果差距的潜在影响。总体上看,尽管两种方法在表征沉积颗粒大小级配特征和甄别沉积环境方面具有相同或相似的功能,但基于图像法等效投影面积径即等积径计算的样品平均粒径和中值粒径通常显著大于激光法,如王有鹏等[12]对金沙江冲积物的研究表明,两种方法所获粒径相差可达5倍以上(相差可达0.68~2.40 ϕ)。但是,这些认识主要基于少量特定类型和组成的沉积物,其所获结论是否在不同的成因类型、不同粒度范围的样品上具有普适性,尚需进一步对比、检验和分析。本文基于山东半岛黄岛地区现代海滩前滨沉积样品的系统采集与测试分析,对比两种测试技术在海滩砂级沉积物上的粒度分析结果,进一步探讨两种方法之间的异同,为动态图像法应用推广和资料解释提供依据。

1 区域背景

黄岛区位于山东半岛东部,地理坐标范围大致在35°53′~36°08′N,120°01′~120°18′E,东邻黄海,行政上属于青岛市管辖(图 1)。黄岛区地质构造处于华北地台鲁东地盾的海阳-高密坳陷和胶南隆起的过渡区。除大面积的第四系地层外,中生代之后,随着胶莱断陷盆地的不断沉降,在前震旦纪古老的片麻岩基底之上,沉积了一层火山岩系、火山碎屑岩和沉积碎屑岩系。自太古代以来,长期处于稳定上升,剥蚀夷平过程中。到了中生代晚期才产生强烈的地壳运动,在坳陷区形成了厚层的沉积岩。地貌上属滨海丘陵,自西北向东及东南逐渐倾斜入海。海拔高度在50 m以下,地形较平坦,由河流冲积物和海积物形成[13]

图 1 研究区位置分布图 (a)区域地质特征(据资料[16]修改):Q为第四纪地层,PreQ为前第四纪地层;(b)风河三角洲;(c)金沙滩;(d)银沙滩(局部放大图据谷歌地球卫星图像修改) Fig. 1 Geographical distribution maps of the study area, Huangdao district, Qingdao (a)Regional geographical features of the study area(based on the Geologic Map of the Lingshanwei area at scale 1 ︰ 200000, with little modification): Q—Quaternary strata; PreQ—pre-Quaternary strata; (b)Fenghe River Delta and adjacent area; (c)Jinshatan Beach; (d)Yinshatan Beach(the local detailed maps are from Google Earth satellite images with little modification)

研究区位于黄岛区黄海海岸,自西南向东北包括风河三角洲附近、银沙滩和金沙滩三处海滩。风河口附近采样区主要包括风河三角洲和风河与隐珠河之间的海滩,包括沙滩和小型河口潮汐汊道组合等地貌形态[14],是3个采样区地貌条件比较复杂的区域。银沙滩和金沙滩沉积动力过程主要受波浪和潮汐控制[15],水动力条件相对较为简单。

2 材料与方法 2.1 样品采集

根据研究区不同的动力条件和沉积环境组合,本研究共采集了8组样品。第1至4组循垂直于岸线方向在高潮位与低潮位之间布设采样线,按大约5 m的采样间隔顺序采集;共采集106个样品,其中金沙滩2组(J1组样品21个,J2组样品19个),银沙滩2组(Y1组样品32个、Y2组样品34个)。第5组从风河三角洲顶端向前缘方向布置,现场根据实际情况不等距采样(HDf组,样品20个);第6组在风河至隐珠河之间沿岸线方向布置,根据现场情况不等距采样(HDl组,样品36个);第7、8组为当日滩面短剖面。根据现场剖面分层厚度和特征,采集潜水位以上各层样品,其中一组采自风河三角洲前缘低潮位附近(HDp组,样品12个),另一组采自银沙滩高潮位向海一侧(Yp组,样品16个)。累计共采集样品190个,各组样品采样断面和短剖面及其样品分布见图 1b~1d

2.2 样品测试

为最大限度降低前处理对样品测量结果的影响和样品间对比,样品前处理过程力求简单。取0.5~0.8 g样品放入250 ml烧杯中,加入清水搅拌,使得样品充分分散;将烧杯加满水覆盖静置24 h后,移除清洗液,准备测试。每个样品分为两份,用动态图像法和激光衍射法两种方法分别测试。图像法测试仪器配置为德国新帕泰克公司QICPIC动态颗粒图像分析仪,MIXCEL湿法进样单元和M6镜头(量程:5~1705 μm)。超声时间60 s,功率设定为100 %。激光法使用德国新帕泰克公司HELOS激光粒度仪,重复性误差小于1 %,采用QUIXEL湿法进样单元,R1+R4+R7共3个镜头联测(量程R1:0.18~35.00 μm,R4:1.8~350.00 μm,R7:18~3500 μm)。密度设为2.65 g/cm3,形状因子设为1。

2.3 数据处理

动态图像法粒度分析可采用不同的方法计算颗粒图像对应的粒径,本文中图像法粒度参数是基于等面积投影径(DE)计算的。图像法(DE)和激光法(DJ1)粒径参数均由WINDOX系统处理与统计。为了消除不同粒径测试范围对结果的影响,还根据图像法测试粒径范围对激光法数据进行同量程化处理后重新计算相应粒径(DJ2)参数进行对比。本文中各参数采用目前较为流行的Folk-Ward公式[17]计算,具体细节如下:

中值粒径:Md50

均值粒径:

分选系数:

偏度:

峰度:

其中,φi为百分含量为i时对应的粒径值。

3 结果与分析 3.1 图像法粒度分布

中值粒径、均值粒径、分选系数、偏度、峰度是粒度分析中5个常用粒度参数[18],研究区图像法中值粒径Md介于0.34~2.34 ϕ,均值粒径Mz介于0.36~2.30 ϕ,以粗砂至细砂为主,分选系数σ1=0.37~1.02,分选良好至较差;偏度Sk1=-0.45~0.42,极负偏至极正偏;峰度KG=0. 66~1.43,极平至尖锐。

不同样品组之间粒度特征存在明显差异(图 2),大致反映了沉积环境、泥沙来源和动力条件的不同。典型潮间带沉积物(图 2a~2d,即Y1、Y2、J1和J2组)的峰态、粒度(包括中值粒径和均值粒径)、分选、偏度和峰度在高潮位和低潮位附近变化较大,而位于过渡地带样品峰态和各种参数变化相对较小,特别是银沙滩Y2断面最为明显。三角洲环境沉积物(HDf断面样品)峰态和粒径从三角洲顶端向前缘存在低频变化。而分选、峰度和偏度大致稳定。从风河三角洲向远离河口的方向(HDl断面样品)沉积物无论峰态、粒度还是分选、偏度和峰度,均明显表现出复杂多变的特征。银沙滩高潮位沉积物(短剖面Yp)峰态及各粒度参数在深度上均存在明显变异,与之相反风河三角洲前缘低潮位附近沉积物(HDp剖面)除粒度向上变粗外,其他参数在剖面上趋于稳定。另外,不同环境之间沉积物粒度分布曲线也存在明显不同差异(图 2)。

图 2 图像法粒度参数变化 (a~d)分别为银沙滩潮间带Y1组、Y2组和金沙滩潮间带J1组、J2组,H和L分别代表高、低潮位;(e)为风河三角洲从顶点到前缘的HDf组,其中DT和DF代表风河三角洲的顶点和前缘;(f)为从风河口(SW)至隐珠河口(NE)的HDl组;(g)为银沙滩高潮位附近的短剖面Yp组;(h)为风河三角洲前缘低潮位附近的短剖面HDp组;其中T为短剖面顶部,B为短剖面底部 Fig. 2 Changes of grain-size parameters based on dynamic image method (a~d)are the Y1 group, the Y2 group from intertidal zone at Yinshatan Beach and the J1 group and J2 group collected from intertidal zone at Jinshatan Beach, the H and L respectively represent the high and low tide level; (e)is the group HDf collected on the Fenghe River Delta from top point to frontier, where DT and DF represent the top point and frontier of the Fenghe River Delta; (f)is the HDl group from the Fenghe River Estuary(SW)to the Yinzhuhe River Estuary(NE); (g)is the short-section Yp group near the high tide level of the Yinshatan Beach; (h)is the short-section HDp group near the low tide level in the frontier of the Fenghe River Delta; where T is the top of the short section and B is the bottom
3.2 与激光法结果的对比

两种测试方法所获频率分布曲线见图 3,变化趋势基本一致;但图像法峰值粒径大多较激光法粗;且随着峰值粒径的变细,激光法与图像法结果差异先变大后变小(图 4d)。从样品累计频率曲线看,两种测量结果之间的主要差别集中在细粒部分(图 4a~4b)。图像法与激光法曲线均在粒径3 ϕ附近发生转折,对应的累积频率图像法大于激光法。在样品粒径粗于3 ϕ时,激光法与图像法曲线斜率差异不大。但图像法曲线在4.5 ϕ附近有明显拐点,当粒径细于4.5 ϕ时曲线斜率比3.0~4.5 ϕ之间要大。相比之下,激光法曲线在粒径细于3 ϕ的范围未出现明显的斜率变化。

图 3 图像法与激光法粒度频率分布特征与对比 频率分布曲线中,实线为图像法,点线为激光法,同量程化后的激光法频率分布曲线与原始数据重合;(a~d)分别为银沙滩潮间带Y1组、Y2组和金沙滩潮间带J1组、J2组,H和L分别代表高、低潮位;(e)为风河三角洲从顶点到前缘的HDf组,其中DT和DF代表风河三角洲的顶点和前缘;(f)为从风河口(SW)至隐珠河口(NE)的HDl组;(g)为银沙滩高潮位附近的短剖面Yp组;(h)为风河三角洲前缘低潮位附近的短剖面HDp组;其中T为短剖面顶部,B为短剖面底部(图 2图 3符号相同) Fig. 3 Comparisons of the characteristic of grain-size probability distribution between imaging and laser methods The probability distribution curves obtained by dynamic image method(solid lines)and laser-diffraction method(dotted lines). The laser-diffraction datas after normalization with range of dynamic image method are superimposed with the original laser-diffraction datas. Among them, (a~d)are the Y1 group, the Y2 group from intertidal zone at Yinshatan Beach and the J1 group and J2 group collected from intertidal zone at Jinshatan Beach, the H and L respectively represent the high and low tide level; (e)is the group HDf collected on the Fenghe River Delta from top point to frontier, where DT and DF represent the top point and frontier of the Fenghe River Delta; (f) is the HDl group from the Fenghe River Estuary(SW)to the Yinzhuhe River Estuary(NE); (g) is the short-section Yp group near the high tide level of the Yinshatan Beach; (h) is the short-section HDp group near the low tide level in the frontier of the Fenghe River Delta; where T is the top of the short section and B is the bottom(the symbols in Fig. 2 are the same as Fig. 3)

图 4 图像法(等积径)与激光法粒度分析结果对比 (a~c)分别为图像法、激光法以及激光法同量程化后的粒度概率累计曲线;(d~i)为图像法(横轴)与激光法(纵轴)粒度参数散点图,其中(d)峰值粒径,(e)中值粒径,(f)均值粒径,(g)分选系数,(h)偏度,(i)峰度 Fig. 4 Comparisons of grain-size analysis results between dynamic image method(equivalent-projection area diameter)and laser-diffraction one (a~c)represent respectively the grain size cumulative-probability curves obtained by dynamic image method, laser-diffraction method and laser-diffraction datas after normalization with range of dynamic image method; (d~i)are scatter plots of grain size parameters of the image(X-axis)and laser(Y-axis)methods, among them, (d)for peak grain size, (e)for median size, (f)for mean size, (g)for standard deviation, and (h) for skewness and (i) for kurtosis

激光法中值粒径介于0.46~2.50 ϕ,均值粒径0.50~2.51 ϕ(与图像法相差0.004~0.448 ϕ),总体上较图像法细(图 4e~4f)。分选系数0.41~1.09,分选程度较图像法差,这一趋势在分选较好的样品中表现更为明显;对于分选相对较差的样品,激光法与图像法差异减小,投影点离散(图 4g)。激光法偏度介于-0.34~0.26,整体上较图像法低,约为图像法偏度的60 % ~70 %,无论样品是正偏还是负偏都大抵如此(图 4h)。对于接近正态分布的样品,激光法与图像法所获偏度相差最小。激光法峰度介于0.75~1.75,激光法大多较图像法大;但随着峰态变尖,二者之间离散性增强(图 4i)。总体上看,两种方法所获参数之间有良好的相关性(图 4d~4i)。

3.3 与激光法同量程化结果的对比

两种方法量程(激光法量程0.18~3500 μm,图像法5~1705 μm)之间存在较大差异。在图像法量程之外,激光法粒径测量结果细于5 μm(7.47 ϕ)的部分占比0.25 % ~2.16 %,粗于1705 μm(-0.86 ϕ)的部分占比0~2.41 %。为考察量程差异对对比结果的影响,本文以图像法量程为准,对激光法数据进行同量程化处理后重新对比。结果表明,同量程化前后各组样品激光法所得频率分布曲线没有明显差异(图 3)。表明量程对海滩砂样品频率分布曲线峰态和组成影响不大。同量程化前后的峰值粒径也未发生变化(图 4d)。同量程化后的中值粒径(0.46~2.49 ϕ)和均值粒径(0.49~2.50 ϕ,与图像法相差0.005~0.441 ϕ)较同量程化前上下限略粗(图 4e~4f),但仍然较图像法细。分选系数(0.38~1.05)变小,与图像法之间的差异缩小(图 4g)。偏度(-0.39~0.26)降低,与图像法的差异表现为在正偏样品中加大,负偏样品中减小,正态分布样品差异依然最小(图 4h)。同量程化之后峰度变小(0.74~1.40),更接近图像法(图 4i)。总的来说,同量程化前、后结果与图像法对比所获认识一致。

3.4 沉积环境判别的对比

粒度分析的目的通常在于沉积环境和动力条件的甄别。Tanner[19]提出可用于沉积环境判别的μ-δ判别图以及δμδ判别图。前一判别图中的μ和δ是指样品组内各个样品细粒部分(>4 ϕ)百分含量的平均值和标准差;后一判别图中的δμ和δδ分别是一组样品均值的标准差与标准差的标准差。黄岛海滩8组样品的投影结果见图 5,显示图像法与激光法同量程化前、后结果投影的位置大致一致,尽管在具体的判别区域上,μ-δ图上的投影结果显示图像法、激光法及其同量程化后结果均落在“河流环境”范围(图 5a)。在δμδ图上的投影结果显示除HDp落到投影范围以外,其余组样品则处于“低坡降水流”与“冲刷水流”的环境,与样品采集环境相符合(图 5b)。对比结果表明不同方法测试结果在传统滨岸沉积环境判别中具有相同或相似的作用和意义,与以往的结论相似。

图 5 样品组参数沉积环境判别图,投影范围据Tanner[19]重绘 (a)μ-δ判别图,(b)δμδ判别图;红色点为图像法等积径计算结果,蓝色点和绿色点为同量程化前后的激光法测试结果;D为沙丘环境,MB为成熟海滩,R为河流环境,CB为封闭盆地环境;下三角:Y1组,菱形:Y2组,左三角:J1组,右三角:J2组,方形:HDf组,圆形:HDl组,五角星:Yp组,上三角:HDp组 Fig. 5 Discrimination of sedimentary environments based on statistic parameters of sample groups(projected areas are from Tanner[13] with little modification) (a)μ-δ discrimination, (b)δμδ discrimination. The red points in figures are for dynamic image method, the blue and green ones are for laser diffraction data before and after normalization with range of dynamic image method; D—Dune, MB—Mature Beach, R—River, CB—Closed Basin. Down-triangle:Y1 group, rhombus:Y2 group, left-triangle:J1 group, right-triangle:J2 group, rectangle:HDf group, circle:HDl group, star:Yp group, up-triangle:HDp group
4 讨论与结论 4.1 沉积物类型与特征对图像法与激光法测试结果差异的影响

过去的研究表明,图像法粒度分析所获平均粒径和中值粒径普遍大于激光法结果。其中对冲积物的研究结果表明,图像法与激光法所获粒径的差别可达到5倍之多[12]。而基于同样的研究思路和采样策略,黄岛海滩沉积物动态图像法粒度分析所获平均粒径、中值粒径与激光法结果则较为接近。这可能反映黄岛现代海滩沉积物具有粒度较粗(以砂级为主)、石英矿物为主、个体形态趋于球形(分选磨圆好)等特征,与激光粒度分析解算模型假设的条件更为接近[8, 20],因而两种测试结果更为接近。无论如何,这种沉积特征对测试方法的敏感性,表明在选择具体的粒度测试方法时,沉积物本身的类型和特征是需要认真考虑的问题。

4.2 控制黄岛海滩砂成熟度低的主要过程

尽管各组样品均采自黄海现代海滩,但无论激光法还是图像法粒度分析结果,在环境判别图上均未落入“成熟海滩”范围,显示研究区现代海滩沉积物成熟程度不高。其原因可能与沉积环境有关,也受人类活动的深刻影响。风河三角洲及其与隐珠河河口之间的海滩沉积物,在河流过程建设作用与滨岸过程破坏改造作用之间的动态平衡中。在河流泥沙持续补给的条件下,河流过程占据主导作用不难理解。金沙滩、银沙滩远离现代河口,较少受河流影响。但为了防止用于旅游开发的海滨浴场海滩砂粗化,经常性地通过人工的方式向海滩补砂,同时人类的频繁活动也可能导致滩面沉积物结构构造特征发生变异。以上几个方面,可能是导致研究区海滩沉积物成熟度偏低的根本原因。这一点与北戴河中海滩人工养护后出现的现象相似[21]

4.3 河流与滨岸过程之间的相互作用

尽管研究区海滩沉积物成熟度低,对比判别图(图 5)中各组沉积物的相对投影位置仍可看出滨岸过程与河流过程之间的互为消长的关系。在受河流持续影响的风河口附近,从代表三角洲沉积环境的HDf到风河泥沙持续补给的HDl,再到三角洲前缘低潮位的沉积剖面HDp,这3组样品细粒组分逐渐减少,在环境判别图上的位置(图 5a)逐渐向“成熟海滩”方向漂移,显示河流作用逐渐减弱而滨岸改造作用逐渐加强。而在缺乏持续性河流泥沙补给的金沙滩和银沙滩,Y1、Y2、J1、J2、Yp这5组样品细粒组分的均值和方差相对于风河地区更小,投影位置进一步向“成熟海滩”方向移动(图像法结果表现更为清楚),显示滨岸改造作用的进一步加强。

4.4 局部沉积动力条件对沉积物粒度组成的影响

黄岛沿岸地区局部地形变异大,对沉积物粒度组成的影响复杂[19]。基于有限的采样断面,能够识别出来的影响主要有两种。一是局部礁石的存在与潮间带沉积物的颗粒众数迁移具有良好的对应关系。如从风河口向隐珠河口方向采集的HDl样品组,在礁石附近的沉积物表现出显著的峰态迁移(图 3f)。二是高低潮位附近的沉积物表现出更加复杂多样的峰态特征。如金沙滩J1、J2和银沙滩Y1、Y2以及位于银沙滩高潮位的Yp剖面和风河三角洲低潮位的HDp剖面等均表现出这一特点(图 3a~3d3g~3h)。可能反映高、低潮位动力持续时间较长、动力稳定性差、蚀积交替频繁等多重因素的影响。

5 结论

基于对山东半岛黄岛现代海岸地貌与沉积特征的野外调查,对风河口至隐珠河口段、金沙滩和银沙滩这3个地段的沉积物进行系统采样。通过对3个地点8组共190个沉积物样品的动态图像法和激光法衍射法粒度分析,对比不同的沉积环境,获得以下主要认识。

(1) 黄岛现代海滩沉积物两种粒度频率分布曲线对比表明,图像法与激光法主要的差异体现在细粒部分,激光法细粒部分占比通常远超图像法;从累积频率曲线上看,激光法通常显示出更为复杂的分段特征和曲线形态。

(2) 两种方法所获粒径结果对比表明,研究区沉积物图像法粒径比激光法稍粗,差值不超过40 % (直接对比相差0.004~0.448 ϕ,同量程化后相差0.005~0.441 ϕ)。该值较之富含细粒物质的沉积物(如金沙江冲积物的0.68~2.40 ϕ,可达5倍以上)要小得多,表明激光法与图像法测量结果差异与沉积物的类型和特征有着密切关系。

(3) 研究区沉积物粒度分布统计参数显示图像法分析所获分选系数(0.37~1.02)总是小于激光法分选系数(0.41~1.09),显示图像法分选性比激光法优;图像法偏度无论是正偏还是负偏,绝对值总体上均较图像法小;图像法峰度也较激光法小。

(4) 研究区沉积物图像法与激光法两种粒度分析结果均未体现成熟海滩的特点,可能与持续性的河流砂输入和人工补给砂有关,但两种测试结果在沉积环境判别中均具有相似或相同的功能。不同沉积环境样品组之间的对比表明,图像法对沉积环境和动力条件的响应更为敏感。

(5) 上述结论在同量程化之后仍然成立。

致谢: 匿名审稿人和编辑部杨美芳老师仔细审阅文稿并提出了详细的修改意见,谨致深切谢意!

参考文献(References)
[1]
康艳蕊, 李德文, 李大伟. 图像法粒度分析及其测试结果与激光衍射法粒度测试结果的比较[J]. 地壳构造与地壳应力文集, 2014, 26: 83-93.
Kang Yanrui, Li Dewen, Li Dawei. Image particle size analysis and measurements and comparison between image and laser diffraction particle size analyses[J]. Bulletin of the Institute of Crustal Dynamics, 2014, 26: 83-93.
[2]
Mccave I N, Syvitski J P M. Principles and methods of geological particle size analysis[M]//Syvitski J P M. Principles, Methods and Application of Particle Size Analysis. New York: Cambridge University Press, 1991: 3-21.
[3]
朱筱敏. 沉积岩石学(第四版)[M]. 北京: 石油工业出版社, 2007: 64-79.
Zhu Xiaomin. Sedimentary Petrology(4th Edition)[M]. Beijing: Petroleum Industry Press, 2007: 64-79.
[4]
李德文, 康艳蕊, 李大伟. 基于动态图像法的河流砂和湖滩砂粒形-粒度特征对比[J]. 第四纪研究, 2015, 35(2): 484-492.
Li Dewen, Kang Yanrui, Li Dawei. Comparison of grain-size and grain-shape characters of alluvial and lakeshore sands based on dynamic image analysis[J]. Quaternary Sciences, 2015, 35(2): 484-492.
[5]
胡凡根, 李志忠, 靳建辉, 等. 福建晋江海岸带老红砂多期发育模式初步研究[J]. 第四纪研究, 2012, 32(6): 1207-1220.
Hu Fangen, Li Zhizhong, Jin Jianhui, et al. A primary research on multiphase development pattern of "Old red sand" in Jinjiang coast of south east Fujian[J]. Quaternary Sciences, 2012, 32(6): 1207-1220. DOI:10.3969/j.issn.1001-7410.2012.06.14
[6]
赵杰, 李德文, 孙昌斌, 等. 末次冰期以来乌兰布和沙漠北缘的环境变迁[J]. 第四纪研究, 2017, 37(2): 380-392.
Zhao Jie, Li Dewen, Sun Changbin, et al. Environmental evolution of the northern border of Ulan Buh Desert since Last Glaciation[J]. Quaternary Sciences, 2017, 37(2): 380-392.
[7]
秦亚超, 李日辉. 表层沉积物粒度所指示的渤海现代沉积体系[J]. 第四纪研究, 2017, 37(3): 654-666.
Qin Yachao, Li Rihui. Implications of surface sediment grain size for the depositional systems in the Bohai Sea[J]. Quaternary Sciences, 2017, 37(3): 654-666.
[8]
Kennedy S K, Mazzullo J. Image analysis method of grain size measurement[M]//Syvitski J P M. Principles, Methods and Application of Particle Size Analysis. New York: Cambridge University Press, 1991: 76-87.
[9]
万晓丹, 李兰涛. 黄河悬移质泥沙粒度分布动态图像法的应用评价[J]. 水电能源科学, 2017, 35(7): 148-150.
Wan Xiaodan, Li Lantao. Application of dynamic image method in analysis of particle size distribution of suspended sediments in the Yellow River[J]. Water Resources and Power, 2017, 35(7): 148-150.
[10]
罗章, 陈沈良, 张国安, 等. 动态图像仪与激光粒度仪的测试对比及其应用[J]. 海洋技术学报, 2017, 36(2): 46-52.
Luo Zhang, Chen Shenliang, Zhang Guo'an, et al. Comparison and application of the dynamic image analyzer with laser particle size analyzer[J]. Journal of Ocean Technology, 2017, 36(2): 46-52.
[11]
赵旭锋, 贾建军, 王欣凯, 等. 新型动态激光粒度粒形仪分析结果的对比与评价[J]. 海洋地质与第四纪地质, 2015, 35(6): 175-184.
Zhao Xufeng, Jia Jianjun, Wang Xinkai, et al. Evaluation of a new dynamic laser particle size & shape analyzer and comparison with the sieving and laser diffraction particle size analyzer[J]. Marine Geology & Quaternary Geology, 2015, 35(6): 175-184.
[12]
王有鹏, 李德文, 王锦鹏. 金沙江巧家段冲积物动态图像法粒度特征研究[J]. 地质论评, 2019, 65(2): 503-513.
Wang Youpeng, Li Dewen, Wang Jinpeng. Analysis on grain size of alluvial sediments in the Qiaojia segment, upper Yangtze River, based on dynamic image method[J]. Geological Review, 2019, 65(2): 503-513.
[13]
山东省地质矿产局. 山东省区域地质志[M]. 北京: 地质出版社, 1991: 224-248.
Geology and Minerals Bureau of Shandong Province. Regional Geology of Shandong Province[M]. Beijing: Geological Publishing House, 1991: 224-248.
[14]
边淑华, 刘建强, 张志恒, 等. 潮汐汊道及其沙滩的安全风险和动力机制[J]. 海洋开发与管理, 2019, 36(2): 80-85.
Bian Shuhua, Liu Jianqiang, Zhang Zhiheng, et al. Risk and the dynamic mechanism of the beach close to the tidal inlets[J]. Ocean Development and Management, 2019, 36(2): 80-85. DOI:10.3969/j.issn.1005-9857.2019.02.017
[15]
宋湦, 冯秀丽, 刘杰, 等. 凤凰岛东侧海域表层沉积物粒度分布特征与运移趋势分析[J]. 海洋科学, 2016, 40(4): 94-99.
Song Sheng, Feng Xiuli, Liu Jie, et al. Grain-size characteristics of sediments and transport patterns in the eastern sea area of the Fenghuangdao Island[J]. Marine Sciences, 2016, 40(4): 94-99.
[16]
山东省地质局805队1分队.青岛幅J-51-31、灵山卫幅I-51-11/20万区域地质测量报告[R]. 1970(内部报告)(图件可在网址http://www.ngac.org.cn/Document/Map.aspx?MapId=EC7E1A7A7B6F1954E0430100007F182E下载)
The 1st Unit, 805th Geological Brigade, Geological Bureau of Shandong Province. The 1/200000 regional geological survey report of Qingdao map J-51-31 and Lingshanwei map I-51-1[R]. 1970(internal report).
[17]
Folk L R, Ward W C. Brazos river bar:A study in the signification of grain size parameters[J]. Journal of Sedimentary Petrology, 1957, 27(1): 3-27. DOI:10.1306/74D70646-2B21-11D7-8648000102C1865D
[18]
Sly P G, Thomas R L, Pelletier B R. Comparison of sediment energy-texture relationships in marine and lacustrine environments[J]. Hydrobiologia, 1982, 91-92(1): 71-84. DOI:10.1007/BF02391923
[19]
Tanner W F. Suite statistics: The hydrodynamic evolution of the sediment pool[M]//Syvitski J P M. Principles, Methods and Application of Particle Size Analysis. New York: Cambridge University Press, 1991: 225-236.
[20]
Agrawal Y C, Mccave I N, Rdley J B. Laser diffraction size analysis[M]//Syvitski J P M. Principles, Methods and Application of Particle Size Analysis. New York: Cambridge University Press, 1991: 119-128.
[21]
褚智慧, 王永红, 庄振业, 等. 北戴河中海滩人工养护前后沉积物粒度变化特征[J]. 海洋地质前沿, 2013, 29(2): 62-70.
Chu Zhihui, Wang Yonghong, Zhuang Zhenye, et al. Changes in sediment grain size before and after beach nourishment in middle Beidaihe Beach[J]. Marine Geology Frontiers, 2013, 29(2): 62-70.
Comparisons of grain-size analysis results of beach sediments in the Huangdao district, Qingdao, based on imaging and laser methods
Wang Keqiang1, Li Dewen1, Wang Youpeng1,2     
(1 Key Laboratory of Crustal Dynamics, Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085;
2 Wuhai Emergency Management Bureau, Wuhai 016000, Inner Mongolia)

Abstract

The dynamic image method, based on rapid image-processing technology, can quickly create a massive database of grain size, shape and parameters for natural sediment, directly represent the size and shape information of grains up to a hundred million for each sample. However, at present, there is still a lack of deep understanding of the similarities and differences between them and the test results of other traditional methods. In this paper, 8 groups of samples were collected from the Yellow Sea coast of Huangdao District (35°53'~36°08'N, 120°01'~120°18'E), Qingdao City, Shandong Province. Among them, 1 group of samples is taken from the apex to the front of the Fenghe River Delta, 1 group from the beach between Fenghe River and Yinzhuhe River, 4 groups from two intertidal zones located at Jinshatan Beach (two groups) and the Yinshatan Beach (two groups), respectively, and 2 groups from two short profiles located at the front of the Fenghe River Delta and near the high tide level of Yinshatan Beach, respectively. A total of 190 samples were analyzed by dynamic-image grain-sizer and laser grain-sizer, respectively. The results of dynamic image method are based on the equivalent-projection area diameter to calculate the median grain-size, mean grain-size, sorting, skewness, kurtosis and others, and compare them with the corresponding parameters by laser one. The results show that:(1) The comparison of grain-size frequency distributions shows that the major difference between two methods is concentrated on the finer tail, and the portion of finer grains by laser method usually far exceeds that by image one. As to the cumulative frequency curve, the laser method usually shows more complex segments than the imaging one. (2) The comparison of grain-size data indicates that the grain-size by imaging method in the study area is slightly coarser than that of the laser one (the direct contrast is between 0.004~0.448 phi, and the difference under the same measurement range is 0.005~0.441 phi; the maximum difference of physical size is about 36%). The difference value is much lower than that of the sediment rich in the fine-grained material (such as the Jinshajiang River alluvium of 0.68~2.40 phi). This indicates that the difference between two methods is closely related to the type and characteristics of the deposit. (3) The sorting coefficient (0.37~1.02) by image method in this study is always smaller than that by laser one (0.41~1.09), showing that the sorting by image method is better than that by laser one; the absolute value of skewness by image method is always smaller than that by laser one, and the kurtosis by image method is also smaller than that by laser one. (4) The grain-size analysis results by two methods in this study have not reflected the characteristics of mature beach, which may be related to sand input by both rivers and/or human. However the results by two methods have similar function in sedimentary environment discrimination. The comparison between the sample groups of different sedimentary environments shows that the image method is more sensitive to the sedimentary environment and dynamic conditions. (5) The above conclusions are still valid after the same measurement range. These understandings provide new theoretical and technical support for the application of dynamic image granularity analysis technology and its data interpretation.
Key words: beach sediments    dynamic image method    sedimentary environments discrimination    grain-size analysis    Huangdao district