第四纪研究  2019, Vol.39 Issue (6): 1357-1371   PDF    
两个气候模式对我国MIS 5e气候的模拟研究
冷姗1, 张仲石1,2,3, 戴高文1     
(1 中国地质大学(武汉)环境学院大气科学系, 湖北 武汉 430074;
2 中国科学院大气物理研究所竺可桢-南森国际研究中心, 北京 100029;
3 Uni Research Climate, Bjerknes Centre for Climate Research, Allégaten 70, Bergen 5007, Norway)
摘要:理解历史时期气候变化的现象和机制,对预测未来气候变化有重要的启示意义。过去多个间冰期中,末次间冰期最暖期(MIS 5e)被认为是研究未来气候变化的典型时期。我们利用NorESM-L和CESM两个气候模式对MIS 5e开展数值模拟研究。模拟结果揭示,由地球轨道参数导致的太阳辐射变化是造成MIS 5e温暖气候的主导因素。在我国,与工业革命前相比,MIS 5e年平均地表温度降低、夏季升高、冬季降低;年降水量和夏季降水量在中部地区减少、其他地区增加,冬季降水量一致减少。与地质记录重建的年平均结果相比,模拟结果整体上比代用资料重建偏冷、偏干。这种模拟与地质记录重建之间的差异可能由以下因素导致:地球系统模式的模拟方案存在简化、古气候代用指标的气候意义存在多解性、模拟的地表温度和降水与代用指标重建结果之间的对比存在不确定性。如何减小模拟与重建记录对比的差异,这仍需在今后的研究中不断探索。
关键词MIS 5e    NorESM-L    CESM    气候模拟    
中图分类号     P467;P534.63;P532                     文献标识码    A

0 引言

越来越多的证据表明,人类活动引起的大气CO2浓度增加是导致近百年来全球变暖加速的重要原因[1~2]。关于未来是否会持续变暖,政府间气候变化专门委员会(IPCC)在《第五次评估报告》(AR5)和《管理极端事件和灾害风险,推进气候变化适应特别报告》(SREX)中指出,21世纪末全球大部分陆地表面将会进一步增暖的可能性达到99 %以上;与1850~1900年相比,在RCP 4.5、RCP 6.0和RCP 8.5情景下全球表面升温可能超过1.5 ℃[3]

早在19世纪初,诺贝尔化学奖获得者Arrhenius[4]就提出大气CO2浓度的增加会导致全球变暖。然而,地质历史时期却存在很多不同的情况[5~7]。例如,末次间冰期最暖期(MIS 5e),其大气CO2浓度并不比现在高,但部分地区却比现在更为温暖。显然,MIS 5e温暖的气候很难归因于大气CO2浓度的增加。因此,MIS 5e对研究未来气候及区分自然变率对全球变暖的贡献有重要意义[1, 8]

虽然不同的代用指标揭示的我国MIS 5e气候状况存在差异,但大多数代用指标的重建结果表明我国MIS 5e气候比全新世或现代更暖、更湿。如冰芯记录中氧同位素含量研究显示青藏高原MIS 5e年平均温度较全新世平均态高2~5 ℃[9~11]。黄土记录中游离铁及全铁的质量分数、植硅体、磁化率等指标的重建结果显示,与全新世平均态相比,黄土高原MIS 5e年平均温度高1~6 ℃,年降水量多100~300 mm[12~29]。石笋记录中氧同位素含量重建结果显示,永兴洞、董哥洞、三宝洞MIS 5e的年降水量较全新世平均态多[30~33]。在湖泊沉积[34~38]和海洋沉积[39~54]中,氧同位素含量、Mg/Ca、U37K等指标重建的年平均温度较为一致,与全新世平均态相比,若尔盖盆地和南海等地区MIS 5e年平均温度升高0.2~5 ℃[34~54]。但是,MIS 5e南海地区的季节性温度变化却存在差异,郑范等[55]利用南海MD01-2392浮游有孔虫组合重建的MIS 5e夏季温度升高0.3 ℃、冬季升高0.6 ℃;而李小艳等[56]利用南海89PC柱样沉积物中的浮游有孔虫组合及碳酸钙碳氧同位素重建的夏季温度降低0.7 ℃、冬季降低2.8 ℃。

然而,地球系统模式对上述我国MIS 5e暖湿气候的模拟仍然存在困难。20世纪末以来,国际上许多研究团队用气候模式开展了MIS 5e古气候模拟工作[57~72],这些模式包括简单的能量平衡模式(Energy Balance Climate Mode,简称EBM)、中等复杂程度的地球系统模式(Earth system Models of intermediate complexity,简称EMIC)和复杂的环流模式(General Circulation Model,简称GCM)。多数模拟结果显示,与工业革命前相比,MIS 5e全球年平均地表温度和全球夏季地表温度升高,全球冬季地表温度下降。李雪松[73]使用二维气候模式LLN(Louvain-la-Neuve)模拟得到,与工业革命前相比,MIS 5e北半球冰量减少3×106 km3。最近,Yin和Berger[74]用LOVECLIM(LOch-Vecode-Ecbilt-CLioagIsm Model)模拟过去8个间冰期的气候,其模拟结果显示MIS 5e全球夏季地表温度比工业革命前高5 ℃,冬季地表温度比工业革命前低3 ℃。在这些模拟结果中,与工业革命前相比,我国MIS 5e年平均地表温度变化、夏季地表温度变化以及冬季地表温度变化与全球温度变化基本一致。最近,Lunt等[57]总结了14个气候模式对MIS 5e的模拟结果,其集合平均显示,与工业革命前相比,我国MIS 5e夏季地表温度升高,冬季地表温度降低;超过70 %的模式模拟出我国MIS 5e年平均温度以降温为主。因此,模式的分辨率、参数化方案、海洋模式的敏感性等差异都有可能导致模拟结果的不同。

显然,已有的MIS 5e研究中,不同模式的模拟结果、不同代用指标的重建结果都存在一定差异,且数值模拟与重建之间的差别更为明显。因此,本文使用NorESM-L和CESM分别开展MIS 5e气候模拟,在分析我国MIS 5e气候变化的基础上理解气候变化的机制,并将模式结果与代用指标重建结果进行对比,进一步探讨导致模拟与重建差别的可能原因。

1 试验设计

我们使用低分辨率挪威地球系统模式(Norwegian Earth System Model Version 1,简称NorESM-L,水平分辨率约3°)和较高分辨率公用地球系统模式(Community Earth System Model,简称CESM,水平分辨率约1°)对MIS 5e开展模拟研究。NorESM-L和CESM是在CCSM4(Community Climate System Model 4)基础上发展而来的气候模式,它们采用相同的陆面模块和海冰模块、类似的大气模块CAM4和不同的海洋模块。NorESM-L将海洋模块修改为迈阿密等密度面海洋模式(Miami Isopycnal Coordinate Ocean Model,简称MICOM),用位势密度作为垂直坐标[75~81];CAM模式在东亚季风气候模拟研究中已有成熟的应用[82~83]。我们选用这两个模式,不仅可以区分不同海洋过程是否会对MIS 5e模拟结果产生显著影响,还可以考虑不同分辨率对模拟结果的影响。

与全新世或现代气候相比,MIS 5e最显著的差别是地球轨道参数和温室气体浓度的不同。因此,我们的试验设计分为两组(表 1),第一组是参照试验(CON),采用工业革命前(PI)的气候边界条件;第二组是末次间冰期最暖期试验(MIS 5e),与参照试验相比,MIS 5e试验采用相同海陆分布、地形高度、植被等条件。但是,在第二组试验中,我们将CO2和CH4两种温室气体浓度分别设置为275.0 ppmv和652.5 ppbv;将地球轨道参数中的偏心率、地轴倾角、春分点的经度分别设置为0.041936、23.945°、288.8°。NorESM-L中MIS 5e试验和CON试验积分500 a,分别分析后100 a和200 a试验结果的多年平均;CESM中MIS 5e试验和CON试验分别积分900 a和1500 a,分析两个试验后200 a试验结果的多年平均。以上所有试验结果都达到了准平衡态。

表 1 试验设计与边界条件 Table 1 Experiment design and boundary condition
2 试验结果 2.1 地表温度变化

与参照试验相比,NorESM-L和CESM模拟的MIS 5e地表温度变化相似(图 1)。在我国,夏季地表温度升高、冬季地表温度和年平均地表温度降低。两个气候模式模拟的我国地表温度夏季增温幅度最大可以达到6~7 ℃,冬季降温幅度最大达到4~5 ℃。从我国逐月地表温度变化来看(图 2,蓝色折线),6~10月MIS 5e各月平均地表温度升高,1~5月和11~12月各月平均地表温度降低。各月温度变化对年平均地表温度的贡献显示(图 2,橙色矩形),冬季地表温度降低是导致年平均地表温度降低的主要原因,其贡献在NorESM-L和CESM中分别为86.8 %和73.1 %。温度的季节性变化与大气顶端总能量季节性变化一致(图 3),我国MIS 5e大气顶端总能量在夏季增加0~36 W/m2,冬季减少0~20 W/m2

图 1 地表温度变化(℃) (a~c)是NorESM-L模拟的地表温度变化,(d~f)是CESM模拟的地表温度变化;所有的变化均为MIS 5e-CON的差值结果图中显示的温度变化超过95 %显著性水平 Fig. 1 Simulated changes in surface temperature(℃). (a~c)show difference in surface temperature in NorESM-L and (d~f)show difference in surface temperature in CESM. All changes are results of MIS 5e minus CON. The temperature changes that are significant at the 95 % confidence level are shown

图 2 逐月温度变化(℃,蓝色曲线)及每个月对年平均地表温度的贡献(%,橙色柱状图) (a)为NorESM-L模拟的结果,(b)为CESM模拟的结果;月温度变化为MIS 5e-CON的差值结果 Fig. 2 Monthly temperature changes(℃, blue curve)and the contribution rate to the annual surface temperature(%, orange histogram). (a)shows the simulation results in NorESM-L; (b)shows the simulation results in CESM. The monthly temperature changes are results of MIS 5e minus CON

图 3 冬夏季大气顶端总能量变化(W/m2) (a)、(b)分别是NorESM-L模拟的大气顶端总能量变化,(c)、(d)分别是CESM模拟的大气顶端总能量变化;所有的变化均为MIS 5e-CON的差值结果;图中显示的顶端总能量变化超过95 %显著性水平 Fig. 3 Simulated changes in the energy balance of summer and winter at the top of atmosphere(W/m2). (a) and (b)show the energy balance at the top of atmosphere in NorESM-L; (c) and (d)show the energy balance at the top of atmosphere in CESM. All changes are results of MIS 5e minus CON. Atmospheric energy changes that are significant at the 95 % confidence level are shown
2.2 降水量变化

与参照试验相比,两个模式模拟的MIS 5e降水量变化结果相似(图 4)。模拟结果显示,NorESM-L和CESM模拟的年降水量变化与夏季降水量变化较为一致,在我国华南、华北和东北等地区增加0~0.8 mm/天;在青藏高原南缘年降水量增量可以达到1.2 mm/天,夏季超过2 mm/天;而在我国中部,年降水量减少0~1.2 mm/天,夏季降水量减少可达2 mm/天。与年降水量和夏季降水量相比,冬季降水量变化在我国较为一致,在两个气候模式中均减少0~1.6 mm/天。

图 4 降水量变化(mm/天) (a~c)是NorESM-L模拟的年降水量变化和季节性降水量变化,(d~f)是CESM模拟的年降水量变化和季节性降水量变化;所有的变化均为MIS 5e-CON的差值结果;图中显示的降水量差异超过95 %显著性水平 Fig. 4 Simulated changes in precipitation(mm/day). (a~c)show the difference annual precipitation and seasonal precipitation in NorESM-L; (d~f)show the difference annual precipitation and seasonal precipitation in CESM. All changes are results of MIS 5e minus CON. Precipitation changes that are significant at the 95 % confidence level are shown

从我国逐月降水量变化来看(图 5,橙色折线),与参照试验相比,MIS 5e降水量在6~9月增加,其他月份减少。各月降水量变化对年降水量变化的贡献显示(图 5,蓝色矩形),夏季是主导年降水量变化的季节。

图 5 逐月降水变化(mm,橙色曲线)及每个月对年平均降水量的贡献(%,蓝色柱状图) (a)为NorESM-L模拟的结果,(b)为CESM模拟的结果;月平均降水量变化为MIS 5e-CON的差值结果 Fig. 5 Monthly precipitation changes(mm, orange curve) and the contribution rate to the annual precipitation(%, blue histogram). (a)shows the simulation results in NorESM-L; (b)shows the simulation results in CESM. The monthly precipitation changes are results of MIS 5e minus CON

模拟的我国降水量变化与MIS 5e东亚夏季风的加强密切相关[84~85]。与参照试验相比,两个模式都模拟出,我国MIS 5e夏季有更充沛的水汽输送(图 6a6c);NorESM-L和CESM模拟的整层水汽输送分别增加0~160 kg/(m ·s)、0~320 kg/(m ·s)。然而,MIS 5e夏季副热带高压的西伸加强,使得我国长江、黄河一带大气下沉运动加强,NorESM-L和CESM模拟的下沉气流分别增强0.01~0.03 Pa/s、0~0.02 Pa/s(图 7),因此,使得该区域夏季降水减少。而MIS 5e冬季,我国的水汽输送减弱0~40 kg/(m ·s)(图 6b6d),对应着冬季降水量减少。

图 6 整层水汽输送的季节性变化(kg/(m ·s)) (a)、(b)分别是NorESM-L模拟的季节性整层水汽输送变化,(c)、(d)分别是CESM模拟的季节性整层水汽输送变化;所有的变化均为MIS 5e-CON的差值结果;图中显示的水汽输送变化超过95 %显著性水平,风矢量单位箭头为50 kg/(m ·s) Fig. 6 Simulated changes in all layer transport of water vapor(kg/(m ·s)) in summer and winter. (a) and (b)show difference in all layer transport of water vapor in NorESM-L; (c) and (d)show difference in all layer transport of water vapor in CESM. All changes are results of MIS 5e minus CON. Transport water vapor changes that are significant at the 95 % confidence level are shown. The unit arrow of wind vector is 50 kg/(m ·s)

图 7 夏季海平面气压变化(Pa)及30°N/120°E垂直运动变化(×10-2 Pa/s) (a~c)是NorESM-L模拟的夏季海平面气压变化(a)及垂直运动变化(b)、(c),(d~f)是CESM模拟的夏季海平面气压变化(d)及垂直运动变化(e)、(f);所有的变化均为MIS 5e-CON的差值结果;其中,显示的海表气压变化超过95 %显著性水平 Fig. 7 Simulated changes in sea level pressure(Pa) and vertical movement (×10-2 Pa/s)in summer. (a~c)show difference in sea level pressure (a) and vertical movement (b, c)in summer in NorESM-L; (d~f)show difference in sea level pressure (d) and vertical movement (e, f)in summer in CESM. All changes are results of MIS 5e minus CON. The sea level pressure changes that are significant at the 95 % confidence level are shown
3 模拟与地质记录的对比

表 2总结了冰芯、黄土、石笋以及湖泊和海洋记录重建的MIS 5e年平均温度和年降水量资料。大多数代用指标的重建显示,我国MIS 5e气候比全新世暖湿。同时,部分定量估计的结果显示,MIS 5e我国部分地区的年平均温度比全新世高出6 ℃,年降水增加超过100 mm。

表 2 地质记录的气候重建(MIS 5e-Holocene)* Table 2 Climate reconstruction of geological record(MIS 5e-Holocene)

然而,MIS 5e气候的模拟结果与代用资料重建结果之间有显著差异。与地质记录重建相比,两个模式模拟的MIS 5e气候更冷、更干(图 8)。虽然定量的代用指标重建存在不确定性,但与这些定量重建相比,在部分地区模拟的温度偏低可达1~7 ℃,年降水量偏少100~400 mm。

图 8 模拟的年平均地表温度变化(℃)及年降水量变化(mm)与地质记录的对比 (a)、(b)分别是NorESM-L模拟的年平均温度变化和年降水量变化,并叠加地质记录;(c)、(d)分别是CESM模拟的年平均温度变化和年降水量变化,并叠加地质记录;所有的变化均为MIS 5e-CON的差值结果;图中填色均超过95 %显著性检验◇冰芯记录,*黄土记录,石笋记录,●湖泊记录,⊙深海记录;温度(降水量)变化中红色/蓝色(蓝色/棕色)表示+/-的差异 Fig. 8 The comparison of simulated changes in annual surface temperature(℃)and annual precipitation(mm)and geological records. (a) and (b)show the difference annual surface temperature and annual precipitation in NorESM-L with geological records; (c) and (d)show the difference annual surface temperature and annual precipitation in CESM with geological records. All changes are results of MIS 5e minus CON. The changes that are significant at the 95 % confidence level are shown. ◇Ice core, *Loess, Stalagmite, ●Lake sediment, ⊙Deep sea sediment. Red/blue(blue/brown)indicates +/- in annual temperature(annual precipitation)
4 讨论与总结

本文模拟结果揭示,与参照试验相比,MIS 5e我国夏季增温、冬季降温、东亚夏季风增强。这些变化与已有的模拟结果相一致,反映了我国气候对MIS 5e地球轨道参数导致的太阳辐射变化的响应。但各模式模拟的MIS 5e我国夏季增温幅度和冬季降温幅度不可避免的存在一定差别。尤其是冬季降温幅度,很大程度上决定了模拟的MIS 5e我国全年平均温度的变化。即使NorESM-L和CESM采用相似的大气模式,它们模拟的冬季降温也存在差异,尤其是在我国西部和青藏高原地区。与14个模式的集合平均[57]相比,NorESM-L和CESM模拟的我国MIS 5e冬季降温度幅度偏大1~2 ℃,夏季增温幅度偏高1~2 ℃。

然而,我们的模拟与地质记录的对比显示二者之间存在矛盾之处。这种矛盾在古气候研究中十分常见,不仅仅是MIS 5e,在其他时期也存在,如全新世大暖期[86~88]、21 ka[89]等。模拟与代用指标重建的矛盾一直是古气候研究中争论的问题,造成两者矛盾的可能因素有以下3点:

第一、地球系统模式的一些模拟方案存在简化。例如,目前的气候模式在模拟时将每年固定为365天,季节划分固定为春季92天(3~5月)、夏季92天(6~8月)、秋季91天(9~11月)、冬季90天(12~2月)。而实际,随着地球轨道的改变,每年的长度或者各季节长度都有变化[90]。即使在固定的365天里,如果用温度来划分四季,四季的长度也不相同。我们以NorESM-L模拟为例,按照物候学以每5天平均气温大于22 ℃为夏季、小于10 ℃为冬季、介于二者之间为春秋。结果显示(表 3),在渭南地区(34°N,109°E),MIS 5e夏季长度的均值比工业革命前明显增加31天。

表 3 NorESM-L模拟的渭南地区季节长短变化(以物候学方案划分) Table 3 The length change of seasonal in Weinan (NorESM-L, based on phenological scheme)

第二、古气候代用指标的重建存在不确定性[91]。例如,冰芯中利用氧同位素含量重建古气候时,它同时与温度[92~96]、降水量[97~98]、大尺度季风环流有关[99]等有关;其中,反映降水的氧同位素含量还与水汽来源、水汽途径等多种因素有关[100]。黄土中利用植硅体重建古温度时,会面临植硅体不易保存、难以鉴定、生产率低等问题[13~14, 101]。深海沉积中利用有孔虫壳体的Mg/Ca重建古温度时,Mg/Ca同时受温度与海水Mg/Ca的影响[102];利用U37K重建温度时,重建区域的温度要低于29 ℃[103]。代用指标中的各种不确定因素对重建结果都会产生一定影响[104~105]

第三、模拟与代用指标重建参数的对比存在不确定性。例如,一些指标重建的温度可能反映了积温[106~113]或者夏季温度[114~116]。如果将模拟的年平均温度变化与将重建的积温或夏季温度变化相对比,其结果必然会产生差异。以NorESM-L为例,与工业革命前相比,模拟结果显示在渭南地区(34°N,109°E) MIS 5e年平均温度降低1 ℃以上,而≥10 ℃的活动积温(即大于等于10 ℃的日平均温度[108])在MIS 5e升高约2.2 ℃(表 4)。

表 4 NorESM-L模拟的渭南地区≥10 ℃积温 Table 4 ≥10 ℃ accumulated temperature in Weinan(NorESM-L)

综上所述,我们利用两个海洋模块不同的地球系统模式,模拟出类似的MIS 5e气候变化。与工业革命前的气候条件相比,我国MIS 5e年平均地表温度和冬季地表温度降低,夏季地表温度升高;年降水量和季节性降水量在我国长江、黄河一带均减少,而在其他地区年降水量和夏季降水量增加,冬季减少。由于试验设计中的变量只有温室气体浓度和地球轨道参数,因此,地球轨道参数导致的太阳辐射变化是驱动我国MIS 5e地表温度和降水变化的主导因素,而海气相互作用等气候系统的内部反馈相对次要。但是,模拟结果指示MIS 5e气候比工业革命前更冷、更干,这与大多数古气候代用指标重建之间存在明显差别。“模式物理过程的简化”、“代用指标的不确定性”以及“模拟和重建对比的不确定性”都可能是造成这一模拟与重建差别的原因。

致谢: 非常感谢审稿专家的修改意见;感谢编辑部杨美芳老师悉心的编辑和指导!

参考文献(References)
[1]
张兰生, 方修琦, 任国玉. 全球变化[M]. 北京: 高等教育出版社, 2000: 310.
Zhang Lansheng, Fang Xiuqi, Ren Guoyu. Global Change[M]. Beijing: Higher Education Press, 2000: 310.
[2]
方修琦, 余卫红. 物候对全球变暖响应的研究综述[J]. 地球科学进展, 2002, 17(5): 714-719.
Fang Xiuqi, Yu Weihong. Progress in the studies on the phenological responding to global warming[J]. Advance in Earth Sciences, 2002, 17(5): 714-719. DOI:10.3321/j.issn:1001-8166.2002.05.013
[3]
Stocker T F, Qin D, Plattner G K, et al. IPCC, 2013:Climate Change 2013:The physical science basis. Contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[J]. Computational Geometry, 2013, 18(2): 95-123.
[4]
Arrhenius S. On the influence of carbonic acid in the air upon the temperature of the ground[J]. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1896, 41(251): 237-276. DOI:10.1080/14786449608620846
[5]
Pearson P N, Palmer M R. Atmospheric carbon dioxide concentrations over the past 60 million years[J]. Nature, 2000, 406(6797): 695-699. DOI:10.1038/35021000
[6]
王志远, 刘健. 过去2000年全球典型暖期特征与机制的模拟研究[J]. 第四纪研究, 2014, 34(6): 1136-1145.
Wang Zhiyuan, Liu Jian. Modeling study on the characteristics and mechanisms of global typical warm periods over the past 2000 years[J]. Quaternary Sciences, 2014, 34(6): 1136-1145.
[7]
严蜜, 王志远, 刘健. 中国过去1500年典型暖期气候的模拟研究[J]. 第四纪研究, 2014, 34(6): 1166-1175.
Yan Mi, Wang Zhiyuan, Liu Jian. Simulation of the characteristics and mechanisms of Chinese typical warm periods over the past 1500 years[J]. Quaternary Sciences, 2014, 34(6): 1166-1175.
[8]
Felis T, Lohmann G, Kuhnert H, et al. Increased seasonality in Middle East temperatures during the last interglacial period[J]. Nature, 2004, 429(6988): 164-168. DOI:10.1038/nature02546
[9]
Petit J R, Jouzel J, Raynaud D, et al. Climate and atmospheric history of the past 420, 000 years from the Vostok ice core, Antarctica[J]. Nature, 1999, 399(6735): 429. DOI:10.1038/20859
[10]
邬光剑, 姚檀栋, Thompson L G, 等. 末次间冰期以来古里雅冰芯微粒记录与极地冰芯的对比[J]. 科学通报, 2004, 49(5): 475-479.
Wu Guangjian, Yao Tandong, Thompson L G, et al. The comparison between the records of particles in the Guliya Ice Core and the polar ice cores since the last interglacial[J]. Chinese Science Bulletin, 2004, 49(5): 475-479. DOI:10.3321/j.issn:0023-074X.2004.05.013
[11]
姚檀栋, 施雅风, 秦大河, 等. 古里雅冰芯中末次间冰期以来气候变化记录研究[J]. 中国科学:地球科学(D辑), 1997, 27(5): 447-452.
Yao Tandong, Shi Yafeng, Qin Dahe, et al. Research of climate change record in Guliya Ice Core since the last interglacial[J]. Science in China(Series D):Geoscience, 1997, 27(5): 447-452.
[12]
郭正堂, Fedoroff N, 刘东生. 全新世与上次间冰期气候差异的古土壤记录[J]. 第四纪研究, 1993(1): 41-55.
Guo Zhengtang, Fedoroff N, Liu Tungsheng. Paleosols as evidence of difference of climates between Holocene and the last interglacial[J]. Quaternary sciences, 1993(1): 41-55. DOI:10.3321/j.issn:1001-7410.1993.01.006
[13]
吕厚远, 吴乃琴, 刘东生, 等. 150 ka来宝鸡黄土植物硅酸体组合季节性气候变化[J]. 中国科学(D辑):地球科学, 1996, 26(2): 131-136.
Lü Houyuan, Wu Naiqin, Liu Tungsheng, et al. Seasonal climate change of BaoJi loess plant silicate since 150 ka[J]. Science in China(Series D), 1996, 26(2): 131-136.
[14]
Lu H Y, Wu N Q, Liu K B, et al. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China Ⅱ:palaeoenvironmental reconstruction in the Loess Plateau[J]. Quaternary Science Reviews, 2007, 26(5): 759-772.
[15]
陈旸, 陈骏, 刘连文, 等. 最近13万年来黄土高原Rb/Sr记录与夏季风时空变迁[J]. 中国科学(D辑), 2003, 33(6): 513-519.
Chen Yang, Chen Jun, Liu Lianwen, et al. The Rb/Sr record of the Loess Plateau and the temporal and spatial changes of the summer monsoon in the recent 130, 000 years[J]. Science in China(Series D), 2003, 33(6): 513-519.
[16]
赵锦慧, 李东平, 鹿化煜, 等. 中国北方四剖面CaCO3含量变化及其反映的古降水量[J]. 海洋地质与第四纪地质, 2004, 24(3): 117-122.
Zhao Jinhui, Li Dongping, Lu Huayu, et al. The variation of CaCO3 content in four profiles from the north of China and the reconstructed paleo-precipitations[J]. Marine Geology & Quaternary Geology, 2004, 24(3): 117-122.
[17]
吕连清. 15万年以来黄土高原西部、青藏高原东北部高分辨率气候变化研究[D].兰州: 兰州大学硕士学位论文, 1999: 1-53. Lü
Lianqing. High-resolution Climate Change in the Western Part of the Loess Plateau and Northeastern Qinghai-Tibet Plateau since 150, 000[D]. Lanzhou: The Master's Dissertation of Lanzhou University, 1999: 1-53. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y305437
[18]
刘志刚, 潘保田, 邬光剑, 等. 末次间冰期以来中国西北部沙漠边缘区夏季风变化初步研究[J]. 中国沙漠, 2000, 20(4): 375-377.
Liu Zhigang, Pan Baotian, Wu Guangjian, et al. Preliminary study on the summer monsoon change in the desert marginal area of Northwestern China since the last interglacial period[J]. Journal of Desert Research, 2000, 20(4): 375-377. DOI:10.3321/j.issn:1000-694X.2000.04.006
[19]
Ning Y F, Liu W G, An Z S. A 130-ka reconstruction of precipitation on the Chinese Loess Plateau from organic carbon isotopes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 270(1): 59-63.
[20]
温仰磊.天山北麓黄土记录的末次间冰期以来气候变化初探[D].兰州: 兰州大学硕士学位论文, 2015: 1-33.
Wen Yanglei. Preliminary Study on Climate Change since the Last Interglacial Period Recorded in the Northern Loess of Tianshan Mountains[D]. Lanzhou: The Master's Dissertation of Lanzhou University, 2015: 1-33. http://cdmd.cnki.com.cn/Article/CDMD-10730-1015352325.htm
[21]
Tang C, Yang H, Pancost R D, et al. Tropical and high latitude forcing of enhanced megadroughts in Northern China during the last four terminations[J]. Earth and Planetary Science Letters, 2017, 479: 98-107. DOI:10.1016/j.epsl.2017.09.012
[22]
Peterse F, Martínez-García A, Zhou B, et al. Molecular records of continental air temperature and monsoon precipitation variability in East Asia spanning the past 130, 000 years[J]. Quaternary Science Reviews, 2014, 83: 76-82. DOI:10.1016/j.quascirev.2013.11.001
[23]
Zhou W, Xian F, Du Y, et al. The last 130 ka precipitation reconstruction from Chinese loess 10Be[J]. Journal of Geophysical Research:Solid Earth, 2014, 119(1): 191-197. DOI:10.1002/2013JB010296
[24]
Beck J W, Zhou W, Li C, et al. A 550, 000-year record of East Asian monsoon rainfall from 10Be in loess[J]. Science, 2018, 360(6391): 877. DOI:10.1126/science.aam5825
[25]
靳鹤龄, 李明启, 苏志珠, 等. 220 ka BP来萨拉乌苏河流域地质剖面地球化学特征及其对全球气候变化的响应[J]. 冰川冻土, 2005, 27(6): 861-868.
Jin Heling, Li Mingqi, Su Zhizhu, et al. Geochemical features of a profile in Salawusu River valley and their response to global climate changes since 220 ka BP[J]. Journal of Glaciology and Geocryology, 2005, 27(6): 861-868. DOI:10.3969/j.issn.1000-0240.2005.06.012
[26]
Du S H, Li B S, Li Z W, et al. East Asian Monsoon precipitation and paleoclimate record since the last interglacial period in the Bohai Sea coastal zone, China[J]. Terrestrial Atmospheric and Oceanic Sciences Journal, 2016, 27(6): 825-836. DOI:10.3319/TAO.2016.02.04.01(TT)
[27]
张慧.临汾盆地13万年以来沉积环境与古气候变化研究[D].临汾: 山西师范大学硕士学位论文, 2013: 1-33.
Zhang Hui. Research on sedimentary environment and paleoclimate changes since 130 thousand years stage in Linfen Basin[D]. Linfen: The Master's Dissertation of Shanxi Normal University, 2013: 1-33. http://cdmd.cnki.com.cn/Article/CDMD-10118-1013202287.htm
[28]
Wen Q, Diao G, Jia R, et al. Geochemical records of palaeoclimatic changes in Weinan section since the last interglacial[J]. Chinese Geographical Science, 1997, 7(1): 39-46. DOI:10.1007/s11769-997-0070-5
[29]
孙继敏, 刁桂仪, 文启忠, 等. 用黄土地球化学参数进行古气候定量估算的初步尝试[J]. 地球化学, 1999, 28(3): 265-272.
Sun Jimin, Diao Guiyi, Wen Qizhong, et al. A preliminary study on quantitative estimate of Palaeoclimate by using geochemical transfer function in the Loess Plateau[J]. Geochimica, 1999, 28(3): 265-272. DOI:10.3321/j.issn:0379-1726.1999.03.008
[30]
姜修洋, 汪永进, 孔兴功, 等. 末次间冰期东亚季风气候不稳定的神农架洞穴石笋记录[J]. 沉积学报, 2008, 26(1): 139-143.
Jiang Xiuyang, Wang Yongjin, Kong Xinggong, et al. Climate variability in Shennongjia during the last interglacial inferred from a high-resolution stalagmite record[J]. Acta Sedmentologica sinica, 2008, 26(1): 139-143.
[31]
覃嘉铭, 袁道先, 林玉石, 等. 黔桂地区最近16万年高分辨率石笋记录的气候事件[J]. 地学前缘, 2001, 8(1): 99-105.
Qin Jiaming, Yuan Daoxian, Lin Yushi, et al. Records of high-resolution climate events from stalagmites since 160000 a B. P. in Guangxi and Guizhou provinces, China[J]. Earth Science Frontiers, 2001, 8(1): 99-105. DOI:10.3321/j.issn:1005-2321.2001.01.013
[32]
Cheng H, Edwards R L, Sinha A, et al. The Asian monsoon over the past 640, 000 years and ice age terminations[J]. Nature, 2016, 534(7609): 640. DOI:10.1038/nature18591
[33]
胡超涌, 汪颖钊, 李骜扬, 等. 中国东部季风区与西北干旱区降水变化的石笋记录对比[J]. 地球科学——中国地质大学学报, 2015, 40(1): 268-274.
Hu Chaoyong, Wang Yingzhao, Li Aoyang, et al. Comparison of stalagmite records of precipitation changes in eastern monsoon region and northwest arid region of China[J]. Earth Sciences-Journal of China University of Geosciences, 2015, 40(1): 268-274.
[34]
吴敬禄, 王苏民, 施雅风, 等. 若尔盖盆地200 ka以来氧同位素记录的古温度定量研究[J]. 中国科学(D辑), 2000, 30(1): 73-80.
Wu Jinglu, Wang Sumin, Shi Yafeng, et al. Quantitative study of paleotemperature of oxygen isotope records since 200 ka in Zoigê Basin[J]. Science in China(Series D), 2000, 30(1): 73-80.
[35]
沈才明, 唐领余, 王苏民, 等. 若尔盖盆地RM孔孢粉记录及其年代序列[J]. 科学通报, 2005, 50(3): 246-254.
Shen Caiming, Tang Lingyu, Wang Sumin, et al. RM pore sporopollen record and its chronological sequence in the Zoigê Basin[J]. Chinese Science Bulletin, 2005, 50(3): 246-254. DOI:10.3321/j.issn:0023-074X.2005.03.009
[36]
薛滨, 王苏民, 吴艳宏, 等. 若尔盖盆地RM孔揭示的过去14万年古环境[J]. 湖泊科学, 1999, 11(3): 206-212.
Xue Bin, Wang Sumin, Wu Yanhong, et al. Palaeoenvironmental reconstruction of Zoigê Basin of eastern Tibetan Plateau during the past 140 ka[J]. Journal of Lake Sciences, 1999, 11(3): 206-212.
[37]
温延星.腾冲北海湿地150 ka以来的沉积记录和南亚夏季风演化[D].北京: 中国地质大学(北京)硕士学位论文, 2007: 1-60.
Wen Yanxing. Sedimentary Records of the Tengchong Beihai Wetland since 150 ka and the Evolution of the South Asian Summer Monsoon[D]. Beijing: The Master's Dissertation of China University of Geosciences(Beijing), 2007: 1-60. http://cdmd.cnki.com.cn/article/cdmd-11415-2007067153.htm
[38]
郭平.苏北盆地兴化孔晚更新世以来的古植被和古气候记录[D].南京: 南京师范大学硕士学位论文, 2004: 1-39.
Guo Ping. Ancient Vegetation and Paleoclimatic Records since the late Pleistocene in Xinghua, Subei Basin[D]. Nanjing: The Master's Dissertation of Nanjing Normal University, 2004: 1-39.
[39]
Liang D, Li L, Li Q, et al. Hydroclimate implications of thermocline variability in the southern South China Sea over the past 180, 000 yr[J]. Quaternary Research, 2015, 83(2): 370-377.
[40]
Zhao M, Huang C Y, Wang C C, et al. A millennial-scale U37K, sea-surface temperature record from the South China Sea(8°N) over the last 150kyr:Monsoon and sea-level influence[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 236(1): 39-55.
[41]
Yamamoto M, Sai H, Chen M T, et al. The East Asian winter monsoon variability in response to precession during the past 150000 yr[J]. Climate of the Past, 2013, 9(6): 2777-2788. DOI:10.5194/cp-9-2777-2013
[42]
Li L, Wang H, Li J R, et al. Changes in sea surface temperature in western South China Sea over the past 450 ka[J]. Chinese Science Bulletin, 2009, 54(18): 3335-3343. DOI:10.1007/s11434-009-0083-9
[43]
Pelejero C, Grimalt J O, Heilig S, et al. High-resolution U37K temperature reconstructions in the South China Sea over the past 220 kyr[J]. Paleoceanography, 1999, 14(2): 224-231. DOI:10.1029/1998PA900015
[44]
Pelejero C, Grimalt J O, Sarnthein M, et al. Molecular biomarker record of sea surface temperature and climatic change in the South China Sea during the last 140, 000 years[J]. Marine Geology, 1999, 156(1-4): 109-121. DOI:10.1016/S0025-3227(98)00175-3
[45]
Wang P X, Li Q, Tian J, et al. Long-term cycles in the carbon reservoir of the Quaternary ocean:A perspective from the South China Sea[J]. National Science Review, 2014, 1(1): 119-143. DOI:10.1093/nsr/nwt028
[46]
周厚云, 李铁刚, 贾国东, 等. 应用长链不饱和烯酮重建末次间冰期以来冲绳海槽中部SST变化[J]. 海洋与湖沼, 2007, 38(5): 438-445.
Zhou Houyun, Li Tiegang, Jia Guodong, et al. Reconstruction of SST in the Central Okinawa Trough since the last interglacial period using long-chain unsaturated ketones[J]. Oceanologia et Limnologia Sinica, 2007, 38(5): 438-445. DOI:10.3321/j.issn:0029-814x.2007.05.007
[47]
Oppo D W, Sun Y. Amplitude and timing of sea-surface temperature change in the northern South China Sea:Dynamic link to the East Asian monsoon[J]. Geology, 2005, 33(10): 785-788. DOI:10.1130/G21867.1
[48]
Wei G, Deng W, Liu Y, et al. High-resolution sea surface temperature records derived from foraminiferal Mg/Ca ratios during the last 260 ka in the northern South China Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 250(1-4): 126-138. DOI:10.1016/j.palaeo.2007.03.005
[49]
Su X, Liu C, Beaufort L, et al. Late Quaternary coccolith records in the South China Sea and East Asian monsoon dynamics[J]. Global and Planetary Change, 2013, 111(12): 88-96.
[50]
仇晓华, 李铁刚, 南青云, 等. 西太平洋暖池北部15万年以来的碳同位素低值事件[J]. 海洋科学, 2014, 38(11): 116-121.
Qiu Xiaohua, Li Tiegang, Nan Qingyun, et al. Carbon isotope minimum events in the northern margin of western Pacific Warm Pool since during the past 150 ka[J]. Marine Sciences, 2014, 38(11): 116-121. DOI:10.11759/hykx20130319003
[51]
贺娟, 赵美训, 李丽, 等. 南海北部MD05-2904沉积柱状样26万年以来表层海水温度及陆源生物标记物记录[J]. 科学通报, 2008, 53(11): 1324.
He Juan, Zhao Meixun, Li Li, et al. Surface seawater temperature and terrestrial biomarker records of the sedimentary column of MD05-2904 in the northern South China Sea since 260, 000 years[J]. Chinese Science Bulletin, 2008, 53(11): 1324. DOI:10.3321/j.issn:0023-074X.2008.11.014
[52]
Zheng Z, Huang K Y, Deng Y, et al. A~200 ka pollen record from Okinawa Trough:Paleoenvironment reconstruction of glacial-interglacial cycles[J]. Science China:Earth Sciences, 2013, 56(10): 1731-1747. DOI:10.1007/s11430-013-4619-0
[53]
汪品先, 闵秋宝, 卞云华, 等. 十三万年来南海北部陆坡的浮游有孔虫及其古海洋学意义[J]. 地质学报, 1986, 60(3): 3-13.
Wang Pinxian, Min Qiubao, Bian Yunhua, et al. Planktonic foraminifera on the northern slope of the South China Sea during the past 130, 000 years and its paleoceanographic significance[J]. Acta Geologica Sinica, 1986, 60(3): 3-13.
[54]
姚菁.渤海南岸LZ908孔海陆交互相地层气候代用指标及沉积环境研究[D].青岛: 中国科学院研究生院(海洋研究所)博士学位论文, 2014: 1-100.
Yao Jing. Climatic Indicators and Sedimentary Environment Studies Inferred from Transgressive and Regressive Sediments of core LZ908, South Bohai Sea[D]. Qingdao: The Ph.D Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2014: 1-100. http://cdmd.cnki.com.cn/Article/CDMD-80068-1014308947.htm
[55]
郑范, 李前裕, 陈木宏, 等. 南海西南部晚更新世500 ka以来的古海洋学特征[J]. 地球科学——中国地质大学学报, 2005, 30(5): 534-542.
Zheng Fan, Li Qianyu, Chen Muhong, et al. Late Pleistocene paleoceanographic characteristics of the southwestern South China Sea since 500 ka[J]. Earth Science-Journal of China University of Geosciences, 2005, 30(5): 534-542.
[56]
李小艳, 翦知湣, 石学法, 等. 南海西北部89PC柱样沉积物中浮游有孔虫特征及其古环境意义[J]. 海洋地质与第四纪地质, 2009, 29(3): 89-96.
Li Xiaoyan, Jian Zhimin, Shi Xuefa, et al. Planktonic foraminifera in core 89PC from the northwestern South China Sea and their paleoenvironment significance[J]. Marine Geology & Quaternary Geology, 2009, 29(3): 89-96.
[57]
Lunt D J, Abeouchi A, Bakker P, et al. A multi-model assessment of last interglacial temperatures[J]. Climate of the Past, 2013, 9(2): 699-717. DOI:10.5194/cp-9-699-2013
[58]
Crowley T J, Kim K Y. Milankovitch forcing of the last interglacial sea level[J]. Science, 1994, 265(5178): 1566-1568. DOI:10.1126/science.265.5178.1566
[59]
Noblet N D, Braconnot P, Joussaume S, et al. Sensitivity of simulated Asian and African summer monsoons to orbitally induced variations in insolation 126, 115 and 6 kBP[J]. Climate Dynamics, 1996, 12(9): 589-603. DOI:10.1007/BF00216268
[60]
Nikolova I, Yin Q, Berger A, et al. The last interglacial(Eemian)climate simulated by LOVECLIM and CCSM3[J]. Climate of the Past Discussions, 2012, 8(5): 1789-1806.
[61]
Fischer N, Jungclaus J H. Effects of orbital forcing on atmosphere and ocean heat transports in Holocene and Eemian climate simulations with a Comprehensive System Model[J]. Climate of the Past, 2010, 6(2): 155-168. DOI:10.5194/cp-6-155-2010
[62]
Ottobliesner B L, Marshall S J, Overpeck J T, et al. Simulating Arctic climate warmth and icefield retreat in the last interglaciation[J]. Science, 2006, 311(5768): 1751-1753. DOI:10.1126/science.1120808
[63]
Montoya M, Von Storch H, Crowley T J. Climate simulation for 125 kyr BP with a Coupled Ocean Atmosphere General Circulation Model[J]. Journal of Climate, 2000, 13(6): 1057-1072. DOI:10.1175/1520-0442(2000)013<1057:CSFKBW>2.0.CO;2
[64]
Schurgers G, Mikolajewicz U, Ger M G, et al. Dynamics of the terrestrial biosphere, climate and atmospheric CO2 concentration during interglacials:A comparison between Eemian and Holocene[J]. Climate of the Past, 2006, 2(2): 2483-2490.
[65]
Schurgers G, Mikolajewicz U, Grger M, et al. Changes in terrestrial carbon storage during interglacials:A comparison between Eemian and Holocene[J]. Climate of the Past Discussions, 2006, 2(4): 449-483. DOI:10.5194/cpd-2-449-2006
[66]
Stone E J, Bakker P, Charbit S, et al. A climate model inter-comparison of last interlacial peak warmth[J]. PAGES News, 2013, 21(1): 32-33. DOI:10.22498/pages.21.1.32
[67]
Bakker P, Stone E J, Charbit S, et al. Last interglacial temperature evolution-A model inter-comparison[J]. Climate of the Past, 2013, 9(2): 605-619. DOI:10.5194/cp-9-605-2013
[68]
Bonelli S, Charbit S, Kageyama M, et al. Investigating the evolution of major Northern Hemisphere ice sheets during the last glacial-interglacial cycle[J]. Climate of the Past, 2009, 5(3): 329-345. DOI:10.5194/cp-5-329-2009
[69]
Ritz S P, Stocker T F, Joos F. A coupled dynamical ocean-energy balance atmosphere model for paleoclimate studies[J]. Journal of Climate, 2011, 24(2): 349-375. DOI:10.1175/2010JCLI3351.1
[70]
Goosse H, Brovkin V, Fichefet T, et al. Description of the Earth system model of intermediate 30 complexity LOVECLIOM version 1.2[J]. Geoscientific Model Development, 2010, 3: 603-633. DOI:10.5194/gmd-3-603-2010
[71]
Williams J H T, Smith R S, Valdes P J, et al. Optimising the FAMOUS climate model:Inclusion of global carbon cycling[J]. Geoscientific Model Development, 2013, 6(1): 141-160. DOI:10.5194/gmd-6-141-2013
[72]
Collins W D, Bitz C M, Blackmon M L, et al. The Community Climate System Model Version 3(CCSM3)[J]. Journal of Climate, 2004, 17(11): 2357-2376.
[73]
李雪松. 用数值模拟方法研究第四纪古气候——以LLN二维模式为例[J]. 第四纪研究, 1996(4): 289-299.
Li Xuesong. Simulating Quaternary paleoclimate with the LLN 2-D Model[J]. Quaternary Sciences, 1996(4): 289-299. DOI:10.3321/j.issn:1001-7410.1996.04.001
[74]
Yin Q, Berger A L. Insolation and CO2 contribution to the interglacial climates of the past 800, 000 years[J]. American Geophysical Union, 2010, 38(3-4): 709-724.
[75]
Zhang Z S, Nisancioglu K, Bentsen I, et al. Pre-industrial and mid-Pliocene simulations with NorESM-L[J]. Geoscientific Model Development, 2012, 5(2): 1203-1227. DOI:10.5194/gmdd-5-1203-2012
[76]
Bentsen M, Bethke I, Debernard J B, et al. The Norwegian Earth System Model, NorESM 1-M-Part 1:Description and basic evaluation[J]. Geoscientific Model Development, 2013, 6(3): 687-720. DOI:10.5194/gmd-6-687-2013
[77]
张仲石, 燕青, 张冉, 等. 第四纪北半球冰盖发育与东亚气候的遥相关[J]. 第四纪研究, 2017, 37(5): 1009-1016.
Zhang Zhongshi, Yan Qing, Zhang Ran, et al. Teleconnection between Northern Hemisphere ice sheets and East Asian climate during Quaternary[J]. Quaternary Sciences, 2017, 37(5): 1009-1016.
[78]
Zhang Z S, Nisancioglu K, Ninnemann U. Increased ventilation of Antarctic deep water during the warm mid-Pliocene[J]. Nature Communications, 2013, 4: 1499. DOI:10.1038/ncomms2521
[79]
Zhang Z S, Ramstein G, Schuster M, et al. Aridification of the Sahara desert caused by Tethys Sea shrinkage during Late Miocene[J]. Nature, 2014, 513: 401-404. DOI:10.1038/nature13705
[80]
Yan Q, Zhang Z S, Wang H J. Investigating uncertainty in the simulation of the Antarctic ice sheet during the mid-Piacenzian[J]. Journal of Geophysical Research:Atmosphere, 2016, 121(4): 1559-1574. DOI:10.1002/2015JD023900
[81]
王志远, 刘健, 王晓青, 等. 地球系统模式CESM1.0对太阳辐射和温室气体的敏感性差异研究[J]. 第四纪研究, 2016, 36(3): 758-767.
Wang Zhiyuan, Liu Jian, Wang Xiaoqing, et al. Divergent sensitivity of Earth System Model CESM1.0 to solar radiation versus greenhouse gases[J]. Quaternary Sciences, 2016, 36(3): 758-767.
[82]
Jiang Y, Yang X Q, Liu X. Seasonality in anthropogenic aerosol effects on East Asian climate simulated with CAM5[J]. Journal of Geophysical Research:Atmospheres, 2015, 120(20): 10837-10861. DOI:10.1002/2015JD023451
[83]
Wang L, Deng A, Huang R. Wintertime internal climate variability over Eurasia in the CESM large ensemble[J]. Climate Dynamics, 2019, 52(11): 6735-6748. DOI:10.1007/s00382-018-4542-3
[84]
Zhou T, Gong D, Li J, et al. Detecting and understanding the multi-decadal variability of the East Asian summer monsoon-Recent progress and state of affairs[J]. Meteorologische Zeitschrift, 2009, 18(4): 455-467. DOI:10.1127/0941-2948/2009/0396
[85]
姜大膀, 田芝平. 末次冰盛期和全新世中期东亚地区水汽输送的模拟研究[J]. 第四纪研究, 2017, 37(5): 999-1008.
Jiang Dabang, Tian Zhiping. Last glacial maximum and mid-Holocene water vapor transport over east Asia:A modeling study[J]. Quaternary Sciences, 2017, 37(5): 999-1008.
[86]
俞凯峰, 鹿化煜, Frank L, 等. 末次盛冰期和全新世大暖期中国北方沙地古气候定量重建初探[J]. 第四纪研究, 2013, 33(2): 293-302.
Yu Kaifeng, Lu Huayu, Frank L, et al. A Preliminary Quantitative Paleoclimate reconstruction of the dune fields of northern China during the last glacial maximum and Holocene optimum[J]. Quaternary Sciences, 2013, 33(2): 293-302. DOI:10.3969/j.issn.1001-7410.2013.02.11
[87]
Marcott S A, Shakun J D, Clark P U, et al. A reconstruction of regional and global temperature for the past 11, 300 years[J]. Science, 2013, 339(6124): 1198-1201. DOI:10.1126/science.1228026
[88]
Liu Z, Zhu J, Rosenthal Y, et al. The Holocene temperature conundrum[J]. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(34): 3501-5. DOI:10.1073/pnas.1407229111
[89]
王菁菁, 程军, 鹿化煜. 21 ka以来东亚夏季风区南部和北部气候变化的模拟与重建对比[J]. 第四纪研究, 2019, 39(3): 589-601.
Wang Jingjing, Cheng Jun, Lu Huayu. Comparative analysis of simulation and reconstruction of climate change in the south and north of the East Asian summer monsoon region over the last 21 ka[J]. Quaternary Sciences, 2019, 39(3): 589-601.
[90]
Berger A, Loutre M F, Yin Q. Total irradiation during any time interval of the year using elliptic integrals[J]. Quaternary Science Reviews, 2010, 29(17): 1968-1982.
[91]
汪品先, 田军, 黄恩清, 等. 地球系统与演变[M]. 北京: 科学出版社, 2018: 490-491.
Wang Pinxian, Tian Jun, Huang Enqing, et al. Earth systems and evolution[M]. Beijing: Science Press, 2018: 490-491.
[92]
章新平, 姚檀栋. 我国部分地区降水中氧同位素成分与温度和降水量之间的关系[J]. 冰川冻土, 1994, V16(1): 31-40.
Zhang Xinping, Yao Tandong. Relations of oxygen isotopic composition in precipitation with temperature and precipitation amount in some regions of China[J]. Journal of Glaciology and Geocryology, 1994, V16(1): 31-40.
[93]
章新平, 姚檀栋. 青藏高原降水中δ18O与温度和降水量的关系[J]. 地理科学, 1995, 15(1): 1-7.
Zhang Xinping, Yao Tandong. Relations of δ18O in precipitation with temperature and precipitation amount in Qinghai-Xizang Plateau[J]. Scientia Geographica Sinica, 1995, 15(1): 1-7.
[94]
姚檀栋, 丁良福, 蒲建辰, 等. 青藏高原唐古拉山地区降雪中δ18O特征及其与水汽来源的关系[J]. 科学通报, 1991, 36(20): 1570-1570.
Yao Tandong, Ding Liangfu, Pu Jianchen, et al. The characteristics of δ18O in snowfall over the Tanggula Mountain of the Qinghai-Tibet Plateau and its relationship with vapor sources[J]. Chinese Science Bulletin, 1991, 36(20): 1570-1570.
[95]
Vuille M, Werner M, Bradley R S, et al. Stable isotopes in precipitation in the Asian monsoon region[J]. Journal of Geophysical Research:Atmospheres, 2005, 110: D23108. DOI:10.1029/2005JD006022
[96]
田立德, 姚檀栋, 余武生, 等. 青藏高原水汽输送与冰芯中稳定同位素记录[J]. 第四纪研究, 2006, 26(2): 145-152.
Tian Lide, Yao Tandong, Yu Wusheng, et al. Stable isotope of precipitation and ice core on the Tibetan Plateau and moisture transports[J]. Quaternary Sciences, 2006, 26(2): 145-152. DOI:10.3321/j.issn:1001-7410.2006.02.001
[97]
曾方明. 晚第四纪黄土古温度定量重建研究进展[J]. 地质科技情报, 2013, 32(4): 84-88.
Zeng Fangming. Research progress on quantitative reconstruction of paleotemperature recorded in Loess deposit since Late Quaternary[J]. Geological Science and Technology Information, 2013, 32(4): 84-88.
[98]
Peterse F, Prins M A, Beets C J, et al. Decoupled warming and monsoon precipitation in East Asia over the last deglaciation[J]. Earth and Planetary Science Letters, 2011, 301(1-2): 256-264. DOI:10.1016/j.epsl.2010.11.010
[99]
Yao T D, Duan K Q, Xu B Q, et al. Temperature and methane changes over the past 1000 years recorded in Dasuopu glacier(central Himalaya)ice core[J]. Annals of Glaciology, 2002, 35(1): 379-383.
[100]
Thompson L G, Yao T D, Mosley-Thompson E, et al. A high-resolution millennial record of the South Asian monsoon from Himalayan ice cores[J]. Science, 2000, 289(5486): 1916-1919. DOI:10.1126/science.289.5486.1916
[101]
吴乃琴, 吕厚远, 孙湘君, 等. 植物硅酸体-气候因子转换函数及其在渭南晚冰期以来古环境研究中的应用[J]. 第四纪研究, 1994(3): 270-279.
Wu Naiqin, Lü Houyuan, Sun Xiangjun, et al. Climate transfer function from OPAL phytolith and its application in pleoclimate reconstruction of China loess-paleosol sequence[J]. Quaternary Sciences, 1994(3): 270-279. DOI:10.3321/j.issn:1001-7410.1994.03.008
[102]
Evans D, Müller W. Deep time foraminifera Mg/Ca paleothermometry:Nonlinear correction for secular change in seawater Mg/Ca[J]. Paleoceanography, 2012, 27: PA4205. DOI:10.1029/2012PA002315
[103]
吴永红. 湖泊沉积物Mg/Ca作为气候代用指标的局限性[J]. 安庆师范学院学报(自科版), 2016, 22(3): 102-105.
Wu Yonghong. Limitation of Mg/Ca ratio as a climate indicator in lake sediment[J]. Journal of Anqing Teachers College(Natural Science Edition), 2016, 22(3): 102-105.
[104]
胡镕. 全新世和末次间冰期北大西洋底栖有孔虫氧同位素对比的探索研究[J]. 第四纪研究, 2018, 38(5): 1142-1155.
Hu Rong. A comparative study of benthic foraminifera oxygen isotopes in the North Atlantic during Holocene and MIS 5e[J]. Quaternary Sciences, 2018, 38(5): 1142-1155.
[105]
段阜涛, 安成邦, 赵永涛, 等. 新疆湖泊岩芯记录的末次间冰期以来气候变化初步研究[J]. 第四纪研究, 2018, 38(5): 1156-1165.
Duan Futao, An Chengbang, Zhao Yongtao, et al. A preliminary study on the climate change since the last interglaciation based on lake sediments from Xinjiang, Northwest China[J]. Quaternary Sciences, 2018, 38(5): 1156-1165.
[106]
王锡稳, 王毅荣. 黄土高原积温变化的敏感性研究[J]. 干旱区地理, 2006, 29(6): 817-822.
Wang Xiwen, Wang Yirong. Sensitivity of total temperature change in China Loess Plateau[J]. Arid Land Geography, 2006, 29(6): 817-822. DOI:10.3321/j.issn:1000-6060.2006.06.008
[107]
樊晓春, 郭江勇, 杨小利. 西峰黄土高原冬季积温变化对作物发育期的影响[J]. 中国农业气象, 2007, 28(3): 318-321.
Fan Xiaochun, Guo Jiangyong, Yang Xiaoli. Influence of changes of accumulation temperature in winter on crop growing periods in Loess Plateau of Xifeng[J]. Chinese Journal of Agrometeorology, 2007, 28(3): 318-321. DOI:10.3969/j.issn.1000-6362.2007.03.020
[108]
李腹广, 徐啓元, 蒋尚雄, 等. 1981-2014年贵州省黔西南州≥ 10℃积温的变化特征[J]. 贵州农业科学, 2017, 45(3): 132-135.
Li Fuguang, Xu Qiyuan, Jiang Shangxiong, et al. Variation characteristics of ≥ 10℃ accumulated temperature in Qianxinan prefecture, Guizhou from 1981 to 2014[J]. Guizhou Agricultural Sciences, 2017, 45(3): 132-135. DOI:10.3969/j.issn.1001-3601.2017.03.033
[109]
Zhou Y. Analysis on the changes of accumulated temperature, initial and terminal dates and duration days of main boundary temperature in Zhangjiakou City[J]. Meteorological & Environmental Research, 2016, 7(5): 6-12.
[110]
邱新法, 王喆, 曾燕, 等. 1960-2013年中国≥ 10℃积温时空变化特征及其主导因素分析[J]. 江苏农业科学, 2017, 45(2): 220-225.
Qiu Xinfa, Wang Zhe, Zeng Yan, et al. Temporal and spatial variation characteristics of ≥ 10℃ accumulated temperature and its dominant factor over China from 1960 to 2013[J]. Jiangsu Agricultural Sciences, 2017, 45(2): 220-225.
[111]
Yan M H, Liu X T, Zhang W, et al. Spatio-temporal changes of ≥ 10℃ accumulated temperature in Northeastern China since 1961[J]. Chinese Geographical Science, 2011, 21(1): 17-26. DOI:10.1007/s11769-011-0438-4
[112]
戴君虎, 陶泽兴, 王焕炯, 等. 物候模型在气候定量重建中的应用[J]. 第四纪研究, 2016, 36(3): 702-710.
Dai Junhu, Tao Zexing, Wang Huanjiong, et al. Applications of phenological models in quantitative climate reconstruction[J]. Quaternary Sciences, 2016, 36(3): 702-710.
[113]
王毅荣. 1961-2005年黄土高原地区积温演变[J]. 冰川冻土, 2007, 29(1): 119-125.
Wang Yirong. Evolvement of the cumulative temperatures in China Loess Plateau[J]. Journal of Glaciology and Geocryology, 2007, 29(1): 119-125. DOI:10.3969/j.issn.1000-0240.2007.01.018
[114]
Newton M S, Grossman E L. Late Quaternary chronology of Tufa deposits, Walker Lake, Nevada[J]. Journal of Geology, 1988, 96(4): 417-433. DOI:10.1086/629237
[115]
Schelske C L, Hodell D A. Recent changes in productivity and climate of Lake Ontario detected by isotopic analysis of sediments[J]. Limnology & Oceanography, 1991, 36(5): 961-975.
[116]
张彭熹, 张保珍, 钱桂敏, 等. 青海湖全新世以来古环境参数的研究[J]. 第四纪研究, 1994(3): 225-228.
Zhang Pengxi, Zhang Baozhen, Qian Guimin, et al. Research on paleoenvironmental parameters of Qinghai Lake since Holocene[J]. Quaternary Sciences, 1994(3): 225-228. DOI:10.3321/j.issn:1001-7410.1994.03.004
Two climate model simulation of MIS 5e climate in China
Leng Shan1, Zhang Zhongshi1,2,3, Dai Gaowen1     
(1 Department of Atmospheric Science, School of Environmental Studies, China University of Geosciences(Wuhan), Wuhan 430074, Hubei;
2 Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;
3 Uni Research Climate, Bjerknes Centre for Climate Research, All égaten 70, Bergen 5007, Norway)

Abstract

Understanding the phenomena and mechanisms of climate change in the past are important implications for predicting future climate change. In the past multiple interglacial periods, the last interglacial warmest period (MIS 5e) considered to be a typical period to study future climate change. We use NorESM-L (Norwegian Earth System Model Version 1) and CESM (Community Earth System Model) to study MIS 5e. Firstly, the results reveal that changes in the Earth's orbital parameters are the dominant factors contributing to climate change in MIS 5e. Secondly, in China, compared with the pre-industrial period, the MIS 5e simulation results of the two climate models on the surface temperature are lower in annual average and winter, higher in summer. The annual precipitation and summer precipitation changes are less in middle areas, more in other areas, and winter precipitation is less in all places. However, compare with the annual average results of reconstruction, our simulation is colder and drier. The possible factors that cause the difference between simulation and geological record reconstruction are:the simplification of some simulation schemes of the Earth system model, multiple resolution of climatic meaning indicated by paleoclimate proxy index, the simulation results and the index reconstruction results may be parameters of different meanings. Finally, how to reduce the difference between numerical simulation and geological record reconstruction still needs to be explored in the future.
Key words: MIS 5e    NorESM-L    CESM    climate simulation