第四纪研究  2019, Vol.39 Issue (4): 975-984   PDF    
云南高海拔湖泊对末次冰消期气候突变的响应
孙晓双1,2, 张灿1,2, 柴轶凡1,2, 赵成1     
(1 中国科学院南京地理与湖泊研究所, 湖泊与环境国家重点实验室, 江苏 南京 210008;
2 中国科学院大学, 北京 100049)
摘要:气象观测资料表明,在当前全球暖化背景下高海拔地区的增温速率更快,其气候对全球气候变化的响应更为敏感。但是,高海拔地区如何响应快速气候事件,由于古气候古环境重建资料在高海拔地区较少,这一问题还没有很好的回答。为此选择云南省高山湖泊错恰湖为研究对象(海拔约3960 m),分析了湖泊沉积岩芯(深度范围90~244 cm)中正构烷烃的分布特征,重建了末次冰消期(19000~9500 a B.P.)沉积物有机质来源的变化,进而推断古气候演变。在17800~17000 a B.P.,错恰湖有机质以陆源输入为主,水生贡献相对减少,气候以暖湿为主;在17000~15100 a B.P.,水生有机质的贡献的比例增加,气候以冷干为主;在15100~12700 a B.P.,湖泊沉积有机质的陆源贡献增加,水生贡献相对减少,气候相对暖湿;在12700~11400 a B.P.时段,湖泊沉积水生有机质来源相对增多,气候相对冷干。与其他区域和全球气候记录对比发现,错恰湖的沉积记录指示的气候变化事件,受高纬冰量以及北大西洋驱动的西南季风突变所影响,在末次冰消期记录的4个明显的千年尺度气候事件,在时间上与First warmth、H1、B-A和YD事件相对应。与云南地区其他湖泊记录对比发现,小型湖泊或高海拔湖泊对这些全球快速气候事件的响应更加敏感。
关键词西南季风    末次冰消期    高海拔湖泊-错恰湖    正构烷烃    古气候    
中图分类号     P941.78;P593;P534.63;P532                     文献标识码    A

0 引言

近年来,全球气候变暖是人类社会面临的最严峻挑战之一。气候变化导致的极端气候事件发生的频率也显著增加[1],造成了极大的社会经济损失。气象观测资料表明,在过去50年高海拔地区升温幅度超过全球平均升温幅度的2倍[2]。在全球气候变暖背景下,青藏高原的热力作用发生了变化,对季风环流产生了影响[3]。中国西南地区位于青藏高原的东南侧,地形起伏大,受西南季风的影响,近年来,西南气候出现严重的干旱趋势[4]

末次冰消期是末次冰期向全新世转变的重要时期,该时期气候波动频繁,经历了多次冷-暖变化的千年尺度气候波动,如Heinrich 1 (H1)事件、Bølling-Alllerød(B-A)事件、Younger Dryas(YD)事件等[5~6]。过去几十年来,国内外学者对西南季风区末次冰消期以来的季风演化进行了大量研究。当前,较多的古气候重建结果如石笋记录[7~9]、湖泊记录[10~11]已经证明,存在多次显著的气候突变事件。高分辨率的石笋δ18O记录显示,在末次冰消期西南季风存在3次明显的千年尺度气候波动事件,严重影响西南季风区的降水变化[7~9]。但是石笋洞穴大多分布在低海拔地区,如董哥洞(海拔680 m)[5]、三星洞(海拔720 m)[8]、衙门洞(海拔640 m)[9],难以反映高海拔地区的气候变化。湖泊沉积物具有分布广泛、连续沉积、分辨率高的特点,作为环境物质迁移的载体,可以很好地记录区域及全球的气候变化[12~14]。大多数已发表的湖泊沉积重建记录并没有检测到冰消期以来的气候突变事件,如星云湖(海拔1723 m)[15]、杞麓湖(海拔1797 m)[15]、泸沽湖(海拔2685 m)[16]。即便少数几个湖泊沉积的重建结果有所记录,但也只捕捉到一个或两个气候事件,如西湖(海拔1980 m)[17]的沉积记录显示只存在明显的H1事件,洱海(海拔1974 m)[18~19]的沉积记录只揭示了B-A与YD事件,邛海湖(海拔1508 m)[20~21]的沉积记录只表明了H1和YD事件的存在。相对比,位于高海拔的天才湖(海拔为3898 m)的孢粉记录清晰地捕捉到了H1事件、B-A事件和YD事件[22]。出现该差异可能是不同海拔造成的,由于目前高海拔的湖泊沉积记录相对较少,仍需更多的高山湖泊沉积记录重建该时期的气候事件。

因此,为了研究西南季风区高海拔湖泊沉积对末次冰消期气候事件的响应,本文以云南高山湖泊错恰湖为研究对象,基于湖泊沉积物中正构烷烃代用指标指示的湖泊沉积物有机质来源,重建了末次冰消期(19000~9500 a B. P.)的千年尺度气候事件,并讨论了影响气候突变事件的可能驱动机制。

1 研究区域及样品采集 1.1 研究区域概况

错恰湖(27°24′N,99°46′E;海拔3960 m)地处青藏高原东南缘横断山脉,距离云南省香格里拉县约20 km,属于西南季风区(图 1a1b)。错恰湖为冰川遗迹湖,接近树线,流域广布冷杉(Abies)和高山杜鹃(Rhododendron)。错恰湖湖泊面积约为0.07 km2,平均水深约13.2 m,最大深度26 m(图 1c),主要受降水和积雪融水补给[23~24]。距离错恰湖20 km处的香格里拉气象站(27°30′N,99°25′E;海拔3276.7 m)监测数据显示,当地降水主要集中在6~9月,年均降水量624.72 mm,年均温为6.01 ℃[24]

图 1 错恰湖地理位置 (a)中国省份图;(b)文中提及的云南地区湖泊分布图;(c)错恰湖等深线图(m),修改自孔令阳等[23] Fig. 1 Locationof Lake Cuoqia.(a)Map of China; (b)Lakes in Yunnan Province; (c)Bathymetry(m) map of Lake Cuoqia, modified from Kong et al. [23]
1.2 样品采集、实验分析

2014年5月利用UWITEC平台系统(UWITEC piston corer system)在湖心处(水深26 m)钻取了沉积物岩芯CQ(图 1c)。CQ岩芯柱全部由富含有机质的腐殖质黑泥组成,总长度244 cm,运回实验室后以1 cm间隔分样,置于冷库(4 ℃)保存,以便冷冻干燥,实验过程在中国科学院南京地理与湖泊研究所有机地球化学实验室完成,步骤如下。

(1) 用药匙从样品袋中取5 g冷冻干燥的沉积物样品,装入使用二氯甲烷/甲醇(DCM:MeOH(v/v=9 ︰ 1))清洗3遍的60 ml聚四氟乙烯离心管中。

(2) 向样品中加入10 ml DCM:MeOH(v/v=9 ︰ 1)的混合液,利用涡旋震荡混合均匀后,超声15 min,静置1 min后离心5 min。用滴管将离心管内上层清液转移至15 ml的玻璃试管中,并用氮气低温(30 ℃)吹干。以上过程反复4次,保证尽可能萃取所需组分。

(4) 取4 ml的皂化液(6 %NaOH的甲醇溶液)加入氮气吹干的15 ml玻璃试管中,利用涡旋充分震荡,超声15 min,静置超过12 h。

(5) 向样品中加入1.5 ml的5 %NaCl水溶液,用1.5 ml的正己烷萃取,反复3次,将萃取的组分转移到4 ml进样瓶中,自然风干。

(6) 将已干的萃取组分过硅胶柱层析,硅胶柱高约5 cm,用二氯甲烷和正己烷分别润洗,然后,用正己烷作为洗脱液获取正构烷烃。

已完成前处理分析的沉积物样品的非极性组分利用安捷伦7890 A气相色谱Gas Chromatography(GC)进行正构烷烃的量化分析。该仪器所用毛细管柱为DB-1 ms型(60 m×0.32 mm×0.25 μm直径),载气为N2,进样口温度为310 ℃,柱流速1.3 ml/min,进样量1 μL。气相色谱分析在中国科学院南京地理与湖泊研究所完成。通过GC仪器测得正构烷烃峰面积,计算CPI、ACL、Paq等相关的指标。

CPI(碳优势指数,Carbon Preference Indices)是表示正构烷烃奇偶碳数的相对组分[25],其计算公式为:

CPI=8/ 9(C17+C19+C21…C33)/(C18+C20+C22…+C32)

ACL(平均碳链长度,Average Chain Length)是表示沉积物有机质中陆生高等植被的变化及贡献大小[26],其计算公式为:

ACL=(17C17+19C19+…33C33)/(C17+C19+…C33)

Paq(Aquatic macrophyte versus aquatic macrophyte and terrestrial plant ratio)是表示沉水植物/浮游植物相对陆生植被输入比值的指标[27],其计算公式为:

Paq=(C23+C25)/(C23+C25+C29+C31)

M/L(Middlechain/Longchain)表示中链正构烷烃与长链正构烷烃的比值,其计算公式为:M/L=(C23+C25)/(C27+C29+C31+C33)

S/L(Shortchain/Longchain)表示短链正构烷烃与长链正构烷烃的比值,其计算公式为:

S/L=(C17+C19+C21)/(C27+C29+C31+C33)

2 结果分析 2.1 年代结果

本研究选取6个陆生植物残体送至美国Beta实验室进行AMS14C测年。表 1列出了6个植物残体样品测年结果,本文年代模型是基于“R”语言利用CLAM 2.2完成,采用“B.P.”年代格式(距1950 A. D.之前),利用Intcal 13数据库,将14C年龄校正为日历年龄[28],采取线性内插与外推方式建立错恰湖钻孔年代序列(图 2)。在16170 a B. P.处沉积速率的突变,可能与该时期处于气候转型期有关。错恰湖沉积物记录覆盖了19000~9500 a B. P.以来的年代范围(深度范围90~244 cm)(图 2)。

表 1 错恰湖岩芯AMS 14C的测年结果 Table 1 AMS 14C ages from core at Lake Cuoqia

图 2 错恰湖CQ钻孔年代结果 Fig. 2 Theage model of Lake Cuoqia
2.2 正构烷烃结果

错恰湖正构烷烃碳数分子分布范围为nC17~nC33,碳链数大多为单峰型分布特征。短链碳数(nC17、nC19和nC21)的分布并没有明显的奇偶优势;中链碳数为nC23和nC25,具有明显的奇偶优势;长链碳数为nC27、nC29、nC31和nC33,具有明显的奇偶优势。从整个湖泊沉积正构烷烃记录中选取4个具有代表性的层位,可以反映相应时段的正构烷烃各碳链分布模式。在沉积柱203 cm处,以长链正构烷烃nC27为主峰,成单峰型;在沉积柱181 cm位置,以短、中链正构烷烃nC21、nC23为主峰,成双峰模式;在沉积柱138 cm左右,正构烷烃以nC29、nC31长链为主峰,成单峰模式;湖泊沉积柱121 cm左右成单峰型,以短链正构烷烃nC21为主峰(图 3a~3d)。

图 3 错恰湖沉积物正构烷烃碳数分布 相对百分量=峰面积nCi/总峰面积nC17~nC33,i为正构烷烃碳数 Fig. 3 Thedistributions ofn-alkanesfrom sediment of Lake Cuoqia. Relative abundance=peak areanCi/total peak areanC17~nC33, i represent the number of n-alkanes

正构烷烃CPI值基本上都大于2,ACL值在23.74~28.11之间波动,Paq值在0.31~0.82之间变化(图 4a4b4c)。在18900~17800 a B. P.时期,CPI与Paq快速增大,ACL不断减小,M/L的比值与Paq相似,S/L比值无明显变化;在17800~17000 a B. P.之间,ACL突增到极大值,Paq达到极小值,CPI没有明显的变化,M/L的比值不断减小,S/L比值与CPI无明显变化;在17000~15100 a B. P.之间,ACL降到最小值,Paq增加到最大值,CPI小幅度增加,M/L与S/L比值也出现了大幅度的波动;15100~12700 a B. P.时段,ACL呈现出波动增加趋势,Paq的变化与ACL相反,CPI无明显变化,M/L比值由大减小,随后呈现较小的波动变化,S/L与M/L变化相似;在12700~11400 a B. P.时段,ACL和CPI小幅度减小,Paq小幅度增加;在11400~9500 a B. P.时段,ACL明显增加,Paq明显减小,CPI变化不大,M/L比值没有变化,S/L比值有小幅度增加。

图 4 错恰湖正构烷烃指标的分布 (a)CPI;(b)ACL;(c)Paq;(d)M/L;(e)S/L Fig. 4 Theindices of n-alkanesin Lake Cuoqia
3 讨论 3.1 正构烷烃指标的古气候意义

正构烷烃是植物叶蜡的重要组成部分,化学成分是由脂类化合物组成,湖泊沉积物中的有机脂类化合物受到有机物的输入和沉积保留共同决定的[29]。湖泊沉积物中的有机质包括内源和外源输入,他们的组成和丰度变化能够反映古气候变化的状态[29]。正构烷烃的不同链长可以区分沉积物中有机质的来源,通常来说,长链正构烷烃(nC27~nC33)主要来源于陆生高等植物,具有显著的奇偶优势[30];中链正构烷烃(nC23~nC25)主要来源于沉水植物和浮游植物,奇偶优势明显[27, 29];短链正构烷烃(nC17~nC21)主要来源于细菌和藻类生物,奇偶优势不明显[31]。因此,湖泊沉积物不同来源的正构烷烃可以反映有机质来源的变化[32~33]。碳优势指数CPI值,受正构烷烃来源的影响,外源陆生植被的CPI值偏高,内源水生植被、藻类和细菌的CPI值相对较低[34~35]。由于叶蜡正构烷烃的碳链越长,其保水性能越强,在较暖的气候条件下,为减少叶片水分蒸发,植物合成较长碳链叶蜡,ACL值越大;在较冷的气候条件下,合成较短碳链叶蜡,ACL值相对较小[36]。因此,ACL值越大表明气候偏暖;ACL低值表明气候偏冷[34, 36~37]。Paq值越高,说明水生有机质的贡献相对增多,反之亦然[27]。M/L比值越大,中链相对于长链的比重增加,代表水生有机质相对于陆生有机质的贡献增大。S/L比值越大,短链相对于长链的比重增加,代表藻类等相对于陆生有机质的贡献增大。前人研究发现,水生植物的相对增加,陆生高等植被的衰退,从而导致低ACL、低CPI、高Paq[38]。正构烷烃碳分子数越高,代表生物生产率越高,说明当时的气候为温度上升、夏季降水增多[39~40]。大九湖泥炭的正构烷烃记录能够解译气候变化与植被组成的历史,ACL、CPI为低值,Paq为高值,正好对应于千年尺度弱亚洲季风[40]。错恰湖是位于云南省西北部的高山湖泊,有机质的来源主要以降水以及径流输入为主;通过分析近两百年来正构烷烃指标发现,指出ACL增加,Paq减少时,湖泊陆源有机质快速增加;ACL降低,Paq增加时,湖泊水生有机质的贡献相对增多,且正构烷烃指标与气象数据的相关性较好[24]。结合近两百年来正构烷烃的分析结果以及与该地区的石笋记录对比发现,在相对暖湿的气候状态下,错恰湖沉积物陆源有机质增多,水生有机质相对减少,反之亦然[8, 9, 24]

3.2 错恰湖记录的末次冰消期气候环境变化

Herzschuh[41]于2006年根据75条古气候记录,重建了亚洲季风区的古湿度演化,显示在18500~17000 a B. P.之间有一个相对较稳定的湿润期,把该湿润事件称为“First warmth”。通过分析错恰湖正构烷烃发现,在17800~17000 a B. P.之间湖泊沉积物以陆源有机质的贡献为主,说明了该时期气候相对暖湿,在时间上与“First warmth”事件相对应(图 4a图 5a5b)。位于亚洲季风区的葫芦洞石笋记录显示,在18500~17800 a B. P.时段石笋氧同位素偏负至- 6.5 ‰,亚洲季风强度增加,降水增多[5];也门石笋M1-5的氧同位素在19000~17400 a B. P.之间偏负,指示西南季风降水增加[42];南北半球的温度梯度也显示,在该时期北半球相对较暖[43]。同时,Li等[44]对位于云南省的腾冲青海湖(海拔1885 m)硅藻数据表明(图 5c),在17200~17100 a B. P.之间嗜酸硅藻的种类增加,气候相对暖湿;但是其粒度记录没有明显变化[45]。Xiao等[22, 46]分析了同样位于云南横断山脉的天才湖孢粉数据发现(图 5d),在17700~17000 a B. P.处于相对温和湿润时期。Wang等[16]的研究表明,18000~17000 a B. P.泸沽湖流域植被比例有一定的增加,但湖泊仍处于冷水环境,一直维持到14500 a B. P.(图 5e);与之对应,17700~17100 a B. P.时期,在该地区的属都湖的草本面积增加,松属孢粉浓度上升(图 5f),湖泊周围的气候处于暖湿状态[47~48]。然而,星云湖孢粉记录显示,末次冰盛期以来耐寒性群落不断增加,在17600 a B. P.时达到最大值,表明该时期的气候为冷干气候;17600 a B. P.以来气候不断变暖[49]

图 5 错恰湖与西南季风区其他记录对比 (a)错恰湖ACL;(b)错恰湖Paq;(c)腾冲青海湖嗜酸硅藻[44];(d)天才湖孢粉PCA1[22, 46];(e)泸沽湖Small Fragilaria含量[16];(f)属都湖Pinus浓度[47~48];(g)Mawmluh洞石笋δ18O[51];(h)衙门洞石笋δ18O[9] Fig. 5 Comparisonof Lake Cuoqia records with those of the southwest monsoon region.(a)ACL of Lake Cuoqia; (b)Paq of Lake Cuoqia; (c)Acidophilous diatoms of Lake Tengchongqinghai[44]; (d)Pollen PCA1 of Lake Tiancai[22, 46]; (e)Small Fragilaria of Lake Lugu[16]; (f)Pinus concentrations of Lake Shudu[47~48]; (g)Stalagmite δ18O of Mawmluh Cave[51]; (h)Stalagmite δ18O of Yamen Cave[9]

在17000~15100 a B. P.时段,错恰湖正构烷烃指标显示,该时期水生有机质的贡献相对增加,而陆源有机质的贡献相对降低,说明了该时期错恰湖区域相对冷干的气候,对应于H1冷事件(图 5a5b)。该时期大量淡水注入北大西洋,打断了北大西洋经向翻转环流(Atlantic Meridional Overturning Circulation,简称AMOC),对全球气候产生了很大的影响,该事件在全球很多古气候记录中都有发现。葫芦洞[5]、豪猪洞[50]等石笋记录,在该时期都显示了石笋氧同位素相对偏正,表明了东亚夏季风强度减弱,降水减少;Mawmluh洞[51]、衙门洞[9]作为印度季风区的石笋记录显示(图 5g5h),氧同位素值出现很明显的偏正,对应印度夏季风减弱。在H1冷期,腾冲青海湖硅藻记录[44](图 5c)、孢粉[52]、木炭[53]、黑炭[54]、粒度[45]等沉积记录显示,气候以冷干为主。天才湖的孢粉记录显示(图 5d),该时期木本孢粉浓度较低,草本孢粉浓度较高,高山草甸扩大,林线向上移动,气候处于冷干状态[22, 46]。Cook等[47~48]从属都湖的沉积记录得出,在H1时期δ13C值相对较高,总孢粉浓度较低,指示了冷干的气候(图 5f)。云南西湖的孢粉记录的植被变化表明,在17000~15000 a B. P.时山地针叶林与硬叶松的生物量受控于冷-半湿润的气候[17];星云湖的沉积记录对H1事件也有一定的响应[55]

在15100~12700 a B. P.期间,错恰湖的正构烷烃记录表明湖泊沉积物的有机质来源由水生转换成陆源,气候由冷干快速进入暖湿,与B-A暖期相对应(图 5a5b)。该时期是H1冷事件之后,一次非常明显的快速气候增暖,气候出现较大幅度的波动。在洞穴的石笋记录中都有体现,如葫芦洞[5]、Mawmluh洞[51]等(图 5g),都响应了亚洲季风增强、降水增加的信号。在14800 a B. P.之后,那冷湖区域出现了高山草甸和柳属灌木,山地森林孢粉浓度的增加,都说明了季风增强、温度升高[56]。在B-A暖期,腾冲青海湖硅藻记录显示嗜酸硅藻浓度上升[44](图 5c),西南季风降水增加,气候处于暖湿状态[45];火灾活动减弱[53~54]。天才湖的孢粉记录显示阔叶木本孢粉浓度达到最大值,树线上升,植被类型的变化是温度升高、降水增加的结果,意味着强西南季风[22, 46](图 5d)。泸沽湖的硅藻记录表明了,在14500 a B. P.湖泊环境发生了很大转变,浮游生物的种类增多,反应了温度的上升,流域植被生产率的增加[16](图 5e)。在15100~11900 a B. P.期间,亚洲季风强度增强,属都湖水生植物的生产率快速增加,喜温喜湿植物的孢粉浓度增加[47~48](图 5f)。云南西湖的孢粉记录显示,在15000~10500 a B. P.期间湖泊位于混合林带以上,表现出了强烈的季节性波动[17]

在12700~11400 a B. P.时段,错恰湖的正构烷烃记录显示出该时期有机质来源以水生为主,说明气候以冷干为主,与YD事件相对应(图 5a5b)。与该地区的石笋记录对比发现,正构烷烃指标与石笋氧同位素有很好的一致性,说明错恰湖的正构烷烃记录能够很好的响应气候变化[9](图 5h)。在YD冷期,腾冲青海湖硅藻记录[44](图 5c)、孢粉[52]、木炭[53]、黑炭[54]、粒度[45]等沉积记录显示,该时期温度下降、降水减小,表明了西南季风的减弱,对应于YD冷事件;天才湖的孢粉记录显示,在12900~11500 a B. P.之间温度、湿度明显的减小,对应于YD事件[22, 46](图 5d);星云湖重建的水文记录都捕捉到了YD事件[55];洱海沉积记录显示,被子植物在14200 a B. P.增加,在12500 a B. P.减少,与B-A、YD事件相对应[18~19];在末次冰消期时段,杞麓湖的湖泊沉积记录,并没有记录到千年尺度的气候突变事件[15]

通过以上分析可以发现,云南地区湖泊沉积记录在18000~17000 a B. P.之间确实存在一个暖期,称之为(“First warmth”)[41],且该气候事件对区域内的植被、土壤、湖泊沉积环境等产生了明显的影响。但对于H1冷期、B-A暖期、YD冷期这3次冷暖波动事件,泸沽湖和杞麓湖并没有记录,在腾冲青海湖、天才湖、错恰湖各代用指标中有很好的响应(表 2),这可能一方面可能由于泸沽湖和杞麓湖面积较大,而其他3个湖泊面积较小,大型湖泊存在较强的“库”效应,对气候变化的信息记录不够敏感,而小型湖泊对气候变化响应更为敏感[29];另一方面可能由于天才湖和错恰湖海拔较高,高海拔地区湖泊记录的气候事件变化幅度较大[2]

表 2 云南湖泊沉积记录对比 Table 2 Comparison of sedimentary records from lakes in Yunnan
3.3 末次冰消期气候演化及突变的驱动机制

末次冰消期以来,气候异常波动,存在着一系列千年尺度的气候突变事件[5~6, 57]。温度与降水作为古气候研究的重要组成部分,是影响湖泊有机质来源的主要因素[29]。在轨道尺度上,错恰湖正构烷烃各指标指示的气候变化在整体趋势上与当地(27°N)夏季太阳辐射相一致[58],表明太阳辐射主要驱动着西南季风区末次冰消期气候演变(图 6a)。前人在分析古气候记录时,发现在18000~17000 a B. P.之间有一个较暖期(“First warmth”),Herzschuh[41]认为是末次冰盛期结束后气候第一次转暖;Johnsen等[59]通过北高纬的冰芯记录对比发现,高纬度地区温度有小幅度升高(图 6b);印度洋海表温度上升[60](图 6c),印度夏季风增强,气候相对暖湿。错恰湖记录的3次千年尺度气候突变事件(H1、B-A和YD),都与高纬冰量[59]、北大西洋经向翻转环流(AMOC)[6]、印度洋海表面温度的变化[60]存在很好的相关性,表明高纬冰量淡水输入,通过扰动北大西洋经向翻转流,改变印度洋海表温度,进而影响西南季风演变,导致云南地区气候发生多次突变的主要原因(图 6b6c6f)。此外,重建的北半球温度在这3个时期也表现出明显的波动变化[61],H1时期温度降低,B-A时期北半球大幅度升温,YD时期温度较H1时期略高(图 6g),这也说明了错恰湖沉积物记录的YD事件的波动变化要弱于H1事件(图 6d6e)。

图 6 错恰正构烷烃记录与其他记录对比 (a)27°N夏季太阳辐射[58];(b)格陵兰冰芯GRIP[59];(c)印度洋海表温度[60];(d)错恰湖ACL;(e)错恰湖Paq;(f)AMOC指标[6];(g)集成的北半球温度[61] Fig. 6 Thecomparison of records between index-alkanes of Lake Cuoqia with other records.(a)JJA insolation at 27°N[58]; (b)δ18O of GRIP[59]; (c)SST of India Ocean[60]; (d)ACL of Lake Cuoqia; (e)Paq of Lake Cuoqia; (f)Index of AMOC[6]; (g)Stack of North Hemisphere[61]
4 结论

对高山湖泊错恰湖为研究对象(海拔约3960 m),分析了湖泊沉积岩芯(90~244 cm)中正构烷烃的分布特征,重建了末次冰消期(19000~9500 a B. P.)沉积物有机质来源的变化,进而推断古气候演变,结果如下:

(1) 错恰湖正构烷烃碳数分子分布范围为nC17~nC33,碳链数大多为单峰型分布特征。CPI大于2,ACL值在23.74~28.11之间波动变化,Paq值在0.31~0.82之间变化。

(2) 错恰湖沉积记录的正构烷烃分布特征指示了陆源-水生有机质来源的变化,揭示出在185000~9500 a B. P.(First warmth)、15100~12700 a B. P.(B-A)期间,湖泊有机质以陆源为主,对应相对暖湿的气候状态;在17000~15100 a B. P.(H1)、12700~11400 a B. P.(YD)期间,湖泊有机质水生来源相对增加,气候处于冷干状态。

(3) 错恰湖正构烷烃记录揭示出在末次冰消期存在4次气候波动事件,受北高纬冰量和北大西洋的气候波动影响,导致云南地区气候发生变化;并且西南季风区高山和小型湖泊对这些气候事件都有响应,说明小型湖泊响应敏感,或者高海拔湖泊记录的气候波动较大。

致谢: 感谢审核老师和编辑杨美芳老师建设性的修改意见,使文章得以完善!

参考文献(References)
[1]
丁一汇, 张锦, 宋亚芳. 天气和气候极端事件的变化及其与全球变暖的联系——纪念2002年世界气象日"减低对天气和气候极端事件的脆弱性"[J]. 气象, 2002, 28(3): 3-7.
Ding Yihui, Zhang Jin, Song Yafang. Changes in weather and climate extreme events and their association with the global warming[J]. Meteorological Monthly, 2002, 28(3): 3-7.
[2]
陈德亮, 徐柏青, 姚檀栋, 等. 青藏高原环境变化科学评估:过去、现在与未来[J]. 科学通报, 2015, 60(32): 3025-3035.
Chen Deliang, Xu Baiqing, Yao Tandong, et al. Assessment of past, present and future environmental changes on the Tibetan Plateau[J]. Chinese Science Bulletin, 2015, 60(32): 3025-3035.
[3]
王颖, 李栋梁. 变暖背景下青藏高原夏季风变异及其对中国西南气候的影响[J]. 气象学报, 2015, 75(5): 910-924.
Wang Ying, Li Dongliang. Variation of the Tibetan Plateau summer monsoon under the background of global warming and its impact on the climate in Southwestern China[J]. Acta Meteorological Sinica, 2015, 75(5): 910-924.
[4]
Webster P J, Magaña V O, Palmer T N, et al. Monsoons:Processes, predictability, and the prospects for prediction[J]. Journal of Geophysical Research:Oceans, 1998, 103(C7): 14451-14510. DOI:10.1029/97JC02719
[5]
Wang Y J, Cheng H, Edwards R L, et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China[J]. Science, 2001, 294(5550): 2345-2348. DOI:10.1126/science.1064618
[6]
McManus J F, Francois R, Gherardi J M, et al. Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes[J]. Nature, 2004, 428(6985): 834-837. DOI:10.1038/nature02494
[7]
Dykoski C A, Edwards R L, Cheng H, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China[J]. Earth and Planetary Science Letters, 2005, 233(1-2): 71-86. DOI:10.1016/j.epsl.2005.01.036
[8]
姜修洋, 杨邦, 王晓艳, 等. 黔北洞穴石笋记录的末次冰消期至早全新世百年十年际气候变化[J]. 地理科学, 2015, 35(6): 773-781.
Jiang Xiuyang, Yang Bang, Wang Xiaoyan, et al. The centennial to decadal scale variation of summer monsoon precipitation in northern Guizhou Province during the Last Deglacial[J]. Scientia Geographica Sinica, 2015, 35(6): 773-781.
[9]
杨琰, 袁道先, 程海, 等. 末次冰消期亚洲季风突变事件的精确定年:以贵州衙门洞石笋为例[J]. 中国科学:地球科学, 2010, 40(2): 199-210.
Yang Yan, Yuan Daoxian, Cheng Hai, et al. Precise dating of abrupt shifts in the Asian monsoon during the last deglaciation based on stalagmite data from Yamen Cave, Guizhou Province, China[J]. Science China:Earth Sciences, 2010, 40(2): 199-210.
[10]
Zhang E L, Chang J, Cao Y M, et al. Holocene high-resolution quantitative summer temperature reconstruction based on subfossil chironomids from the southeast margin of the Qinghai-Tibetan Plateau[J]. Quaternary Science Reviews, 2017, 165: 1-12. DOI:10.1016/j.quascirev.2017.04.008
[11]
Zhang E L, Chang J, Shulmeister J, et al. Summer temperature fluctuations in Southwestern China during the end of the LGM and the last deglaciation[J]. Earth and Planetary Science Letters, 2019, 509: 78-87. DOI:10.1016/j.epsl.2018.12.024
[12]
谭金凤, 肖霞云, 李艳玲. 滇西北格贡错那卡湖沉积记录揭示的晚全新世气候变化[J]. 第四纪研究, 2018, 38(4): 900-911.
Tan Jinfeng, Xiao Xiayun, Li Yanling. Late Holocene climatic change revealed by sediment records in Gegongcuonaka Lake, northwestern Yunnan Province[J]. Quaternary Sciences, 2018, 38(4): 900-911.
[13]
韩鹏, 刘兴起. 内蒙古中东部查干淖尔湖流域7000年以来的气候演变[J]. 第四纪研究, 2017, 37(6): 1381-1390.
Han Peng, Liu Xingqi. The climate evolution inferred from Chagan-Nuur in middle-east part of Inner Mongolia since the last 7000 years[J]. Quaternary Sciences, 2017, 37(6): 1381-1390.
[14]
刘思丝, 黄小忠, 强明瑞, 等. 孢粉记录的青藏高原东北部更尕海地区中晚全新世植被和气候变化[J]. 第四纪研究, 2016, 36(2): 247-256.
Liu Sisi, Huang Xiaozhong, Qiang Mingrui, et al. Vegetation and climate change during the mid-Late Holocene reflected by the pollen record from Lake Genggahai, northeastern Tibetan Plateau[J]. Quaternary Sciences, 2016, 36(2): 247-256.
[15]
Hodell D A, Brenner M, Kanfoush S L, et al. Paleoclimate of Southwestern China for the past 50, 000 yr inferred from lake sediment records[J]. Quaternary Research, 1999, 52(3): 369-380. DOI:10.1006/qres.1999.2072
[16]
Wang Q, Yang X D, Anderson N J, et al. Diatom response to climate forcing of a deep, alpine lake(Lugu Hu, Yunnan, SW China)during the Last Glacial Maximum and its implications for understanding regional monsoon variability[J]. Quaternary Science Reviews, 2014, 86: 1-12. DOI:10.1016/j.quascirev.2013.12.024
[17]
Lin S M, Qiao Y L, Walker D. Late Pleistocene and Holocene vegetation history at Xihu, Eryuan, Yunnan Province, Southwest China[J]. Journal of Biogeography, 1986, 13(5): 419-440. DOI:10.2307/2844966
[18]
Tareq S M, Kitagawa H, Ohta K. Lignin biomarker and isotopic records of paleovegetation and climate changes from Lake Erhai, Southwest China, since 18.5 ka BP[J]. Quaternary International, 2011, 229(1-2): 47-56. DOI:10.1016/j.quaint.2010.04.014
[19]
Shen J, Jones R T, Yang X D, et al. The Holocene vegetation history of Lake Erhai, Yunnan Province Southwestern China:Role of climate and human forcings[J]. The Holocene, 2006, 16(2): 256-276.
[20]
Wang G, Wang Y L, Wei Z F, et al. Paleoclimate changes of the past 30 cal ka BP inferred from lipid biomarkers and geochemical records from Qionghai Lake, Southwest China[J]. Journal of Asian Earth Sciences, 2019, 172: 346-358. DOI:10.1016/j.jseaes.2018.09.019
[21]
Wang G, Wei Z, Wang Y, et al. High-resolution paleoclimatic records spanning the past 30 cal ka BP inferred from Qionghai Lake sediments in south-West China:Insights from geochemical investigations and grain-size characteristics[J]. Geological Journal, 2018, 1-13. DOI:10.1002/gj.3308
[22]
Xiao X Y, Haberle S G, Yang X D, et al. New evidence on deglacial climatic variability from an alpine lacustrine record in northwestern Yunnan Province, Southwestern China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 406: 9-21. DOI:10.1016/j.palaeo.2014.04.008
[23]
孔令阳, 羊向东, 王倩. 高山湖泊吉仁错枝角类古生态变化及其对气候环境的响应[J]. 湖泊科学, 2017, 29(3): 730-739.
Kong Lingyang, Yang Xiangdong, Wang Qian. Paleoecological change of cladoceran and the response to climatic environmental changefrom an alpine Lake-Jiren Co[J]. Journal of Lake Sciences, 2017, 29(3): 730-739.
[24]
柴轶凡, 张灿, 孔令阳, 等. 云南错恰湖两百年来气候环境变化与重金属污染[J]. 湖泊科学, 2018, 30(6): 1732-1744.
Chai Yifan, Zhang Can, Kong Lingyang, et al. Climatic changes and heavy metal pollution over the past 200 years records by Lake Cuoqia, southwestern Yunnan Province[J]. Journal of Lake Sciences, 2018, 30(6): 1732-1744.
[25]
Marzi R, Torkelson B E, Olson R K. A revised carbon preference index[J]. Organic Geochemistry, 1993, 20(8): 1303-1306. DOI:10.1016/0146-6380(93)90016-5
[26]
Poynter J, Eglinton G. Molecular composition of three sediments from hole 717C:The Bengal Fan[M]//Cochran J R, Stow D A V eds. Proceedings of the Ocean Drilling Program, 116 Scientific Results, 1990, 116:155-161. doi:10.2973/odp.proc.sr.116.151.1990.
[27]
Ficken K J, Li B, Swain D L, et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes[J]. Organic Geochemistry, 2000, 31(7): 745-749.
[28]
Reimer P J, Bard E, Bayliss A, et al. IntCal13 and marine 13 radiocarbon age calibration curves 0-50, 000 years cal BP[J]. Radiocarbon, 2016, 55(4): 1869-1887.
[29]
Meyers P A. Applications of organic geochemistry to paleolimnological reconstructions:A summary of examples from the Laurentian Great Lakes[J]. Organic Geochemistry, 2003, 34: 261-289. DOI:10.1016/S0146-6380(02)00168-7
[30]
Eglinton G, Hamilton R J. Leaf epicuticular waxes[J]. Science, 1967, 156(3780): 1322-1335. DOI:10.1126/science.156.3780.1322
[31]
Cranwell P A, Eglinton G, Robinson N. Lipids of aquatic organisms as potential contributors to lacustrine sediments-Ⅱ[J]. Organic Geochemistry, 1987, 11(6): 513-527. DOI:10.1016/0146-6380(87)90007-6
[32]
Chu G Q, Sun Q, Xie M M, et al. Holocene cyclic climatic variations and the role of the Pacific Ocean as recorded in varved sediments from Northeastern China[J]. Quaternary Science Reviews, 2014, 102: 85-95. DOI:10.1016/j.quascirev.2014.08.008
[33]
Sun H L, Bendle J, Seki O, et al. Mid-to -Late Holocene hydroclimatic changes on the Chinese Loess Plateau:Evidence from n-alkanes from the sediments of Tianchi Lake[J]. Journal of Paleolimnology, 2018, 60(4): 511-523. DOI:10.1007/s10933-018-0037-9
[34]
Zheng Y H, Zhou W J, Meyers P A, et al. Lipid biomarkers in the Zoigê-Hongyuan peat deposit:Indicators of Holocene climate changes in West China[J]. Organic Geochemistry, 2007, 38(11): 1927-1940. DOI:10.1016/j.orggeochem.2007.06.012
[35]
Zhang Y, Meyers P A, Gao C Y, et al. Holocene climate change in Northeastern China reconstructed from lipid biomarkers in a peat sequence from the Sanjiang Plain[J]. Organic Geochemistry, 2017, 113: 105-114. DOI:10.1016/j.orggeochem.2017.07.018
[36]
Gagosian R B. The importance of atmospheric input of terrestrial organic material to deep sea sediments[J]. Organic Geochemistry, 1986, 10(4): 661-669.
[37]
Zhang Y, Meyers P A, Liu X T, et al. Holocene climate changes in the Central Asia mountain region inferred from a peat sequence from the Altai Mountains, Xinjiang, Northwestern China[J]. Quaternary Science Reviews, 2016, 152: 19-30. DOI:10.1016/j.quascirev.2016.09.016
[38]
Ling Y, Zheng M P, Sun Q, et al. Last deglacial climatic variability in Tibetan Plateau as inferred from n-alkanes in a sediment core from Lake Zabuye[J]. Quaternary International, 2017, 454: 15-24. DOI:10.1016/j.quaint.2017.08.030
[39]
Saini J, Günther F, Aichner B, et al. Climate variability in the past~19, 000 yr in NE Tibetan Plateau inferred from biomarker and stable isotope records of Lake Donggi Cona[J]. Quaternary Science Reviews, 2017, 157: 129-140. DOI:10.1016/j.quascirev.2016.12.023
[40]
He Y X, Zhao C, Zheng Z, et al. Peatland evolution and associated environmental changes in Central China over the past 40, 000 years[J]. Quaternary Research, 2017, 84(2): 255-261.
[41]
Herzschuh U. Palaeo-moisture evolution in monsoonal Central Asia during the last 50, 000 years[J]. Quaternary Science Reviews, 2006, 25(1-2): 163-178. DOI:10.1016/j.quascirev.2005.02.006
[42]
Shakun J D, Burns S J, Fleitmann D, et al. A high-resolution, absolute-dated deglacial speleothem record of Indian Ocean climate from Socotra Island, Yemen[J]. Earth and Planetary Science Letters, 2007, 259(3-4): 442-456. DOI:10.1016/j.epsl.2007.05.004
[43]
Mcgee D, Donohoe A, Marshall J, et al. Changes in ITCZ location and cross-equatorial heat transport at the Last Glacial Maximum, Heinrich Stadial 1, and the mid-Holocene[J]. Earth and Planetary Science Letters, 2014, 390: 69-79. DOI:10.1016/j.epsl.2013.12.043
[44]
Li Y L, Chen X, Xiao X Y, et al. Diatom-based inference of Asian monsoon precipitation from a volcanic lake in Southwest China for the last 18.5 ka[J]. Quaternary Science Reviews, 2018, 182: 109-120. DOI:10.1016/j.quascirev.2017.11.021
[45]
Zhang E L, Zhao C, Xue B, et al. Millennial-scale hydroclimate variations in Southwest China linked to tropical Indian Ocean since the Last Glacial Maximum[J]. Geology, 2017, 45(5): 435-438. DOI:10.1130/G38309.1
[46]
Xiao X Y, Haberle S G, Shen J, et al. Latest Pleistocene and Holocene vegetation and climate history inferred from an alpine lacustrine record, northwestern Yunnan Province, Southwestern China[J]. Quaternary Science Reviews, 2014, 86: 35-48. DOI:10.1016/j.quascirev.2013.12.023
[47]
Cook C G, Jones R T, Langdon P G, et al. New insights on Late Quaternary Asian palaeomonsoon variability and the timing of the Last Glacial Maximum in Southwestern China[J]. Quaternary Science Reviews, 2011, 30(7-8): 808-820. DOI:10.1016/j.quascirev.2011.01.003
[48]
Cook C G, Leng M J, Jones R T, et al. Lake ecosystem dynamics and links to climate change inferred from a stable isotope and organic palaeorecord from a mountain lake in Southwestern China(ca. 22.6-10.5 cal ka BP)[J]. Quaternary Research, 2012, 77(1): 132-137. DOI:10.1016/j.yqres.2011.09.011
[49]
Chen X M, Chen F H, Zhou A F, et al. Vegetation history, climatic changes and Indian summer monsoon evolution during the Last Glaciation(36, 400-13, 400 cal yr BP)documented by sediments from Xingyun Lake, Yunnan, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 410: 179-189. DOI:10.1016/j.palaeo.2014.05.027
[50]
Zhang H B, Griffiths M L, Huang J H, et al. Antarctic link with East Asian summer monsoon variability during the Heinrich Stadial-Bølling interstadial transition[J]. Earth and Planetary Science Letters, 2016, 453: 243-251. DOI:10.1016/j.epsl.2016.08.008
[51]
Dutt S, Gupta A K, Clemens S C, et al. Abrupt changes in Indian summer monsoon strength during 33, 800 to 5500 years B. P.[J]. Geophysical Research Letters, 2015, 42(13): 5526-5532. DOI:10.1002/2015GL064015
[52]
Xiao X Y, Shen J, Haberle S G, et al. Vegetation, fire, and climate history during the last 18500 cal a BP in south-western Yunnan Province, China[J]. Journal of Quaternary Science, 2015, 30(8): 859-869. DOI:10.1002/jqs.2824
[53]
Xiao X Y, Haberle S G, Shen J, et al. Postglacial fire history and interactions with vegetation and climate in southwestern Yunnan Province of China[J]. Climate of the Past, 2017, 13(6): 613-627. DOI:10.5194/cp-13-613-2017
[54]
Zhang E L, Sun W W, Zhao C, et al. Linkages between climate, fire and vegetation in Southwest China during the last 18.5 ka based on a sedimentary record of black carbon and its isotopic composition[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 435: 86-94. DOI:10.1016/j.palaeo.2015.06.004
[55]
Wu D, Zhou A F, Chen X M, et al. Hydrological and ecosystem response to abrupt changes in the Indian monsoon during the last glacial, as recorded by sediments from Xingyun Lake, Yunnan, China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 421: 15-23. DOI:10.1016/j.palaeo.2015.01.005
[56]
Kramer A, Herzschuh U, Mischke S, et al. Late glacial vegetation and climate oscillations on the southeastern Tibetan Plateau inferred from the Lake Naleng pollen profile[J]. Quaternary Research, 2017, 73(2): 324-335.
[57]
张恩楼, 孙伟伟, 刘恩峰, 等. 末次冰盛期以来洱海沉积物元素碳同位素特征与区域植被组成变化[J]. 第四纪研究, 2017, 37(5): 1027-1036.
Zhang Enlou, Sun Weiwei, Liu Enfeng, et al. Vegetation change reconstructed by a stable isotope record of elemental carbon from Lake Erhai, Southwest China since the Last Glacial Maximum[J]. Quaternary Sciences, 2017, 37(5): 1027-1036.
[58]
Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth[J]. Astronomy & Astrophysics, 2004, 428(1): 261-285.
[59]
Johnsen S J, Clausen H B, Dansgaard W, et al. The δ18 O record along the Greenland Ice Core Project deep ice core and the problem of possible Eemian climatic instability[J]. Journal of Geophysical Research:Oceans, 1997, 102(C12): 26397-26410. DOI:10.1029/97JC00167
[60]
Rashid H, Flower B P, Poore R Z, et al. A~25 ka Indian Ocean monsoon variability record from the Andaman Sea[J]. Quaternary Science Reviews, 2007, 26(19-21): 2586-2597. DOI:10.1016/j.quascirev.2007.07.002
[61]
Shakun J D, Clark P U, He F, et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation[J]. Nature, 2012, 484(7392): 49-54. DOI:10.1038/nature10915
High-altitude lake sediments in response to abrupt climatic events during the last deglaciation in Southwestern China
Sun Xiaoshuang1,2, Zhang Can1,2, Chai Yifan1,2, Zhao Cheng1     
(1 State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, Jiangsu;
2 University of Chinese Academy of Sciences, Beijing 100049)

Abstract

Modern instrumental data show that high-elevation regions, such as the Tibetan Plateau and its surrounding areas, are more sensitive to global climate change than anywhere else in the world. However, little is known about the climate and environmental responses to abrupt degalcial global climate events in high-elevation regions, largely due to the lack of high quality paleoclimate and paleoenvironment reconstructions. Here, we present results of n-alkane distributions inferred from a sediment core collected from Lake Cuoqia (27°24'N, 99°46'E; 3960 m) in Hengduan Mountain, Yunnan Province, Southwestern China, in order to reconstruct and evaluate climate and environmental responses to abrupt deglacial climate events in high-elevation regions. We collected a 244-cm-long core from the lake center under a water depth of ca. 26 m in May 2015, using a Uwitech Corer system, and then sectioned at 1-cm intervals in the laboratory. The high-altitude Lake Cuoqia adjoined Tibetan Plateau in the Yunnan of China southwest monsoon region was chosen to reconstruct the climatic events. In this study, we focus on the period of the last deglaciation, equivalent to the depth interval between 90~244 cm. The chronology of the core was established by 6 AMS-14C dates of terrestrial plant fragments at Beta Laboratory, which shows the analyzed section spans from 19000 a B. P. to 9500 a B. P. We analyzed the n-alkanes distribtution of this section of the core, at every 1-cm interval in State Key Laboratory of Lake Science and Environment in Nanjing Institute of Geography and Limnology. The n-alkane molecules of Cuoqia Lake range from nC17 to nC33, with ACL values of 23.74~28.11 and Paq values of 0.31~0.82. Long-and mid-chain n-alkanes show a significant odd predomination, while short-chain n-alkanes do not show this. From 17800 a B. P. to 17000 a B. P., our data indicate that the organic matter of lake sediments was mainly from terrestrial inputs with relative low aquatic sourced organic contributions, suggesting a relatively warm and humid climate. From 17000 a B. P. to 15100 a B. P., the increased contribution of aquatic organic matter indicated a relatively cold and dry climate. From 15100 a B. P. to 12700 a B. P., the increased contribution of terrestrial organic matter suggested a relatively warm and humid climate. From 12700 a B. P. to 11400 a B. P., the increased aquatic contributions showed a relatively cold and dry condition. The four distinct millennial-scale climatic events recorded by our data likely correspond to the well-documented First warmth、Heinrich 1 event (H1)、Bølling-Alllerød (B-A) and Younger Dryas (YD) events, probably related to high-latitude climate and abrupt variations in Atlantic Meridional Overturning Circulation and Indian Ocean Sea Surface temperatures. Together with other published reconstructions from lakes at different elevations in Yunnan, we conclude that small lakes from higher-elevation sites are more sensitive to these abrupt climatic events during the last deglaciation.
Key words: southwestern monsoon    last deglaciation    high-altitude lake of Cuoqia    n-alkanes    paleoclimate