第四纪研究  2019, Vol.39 Issue (4): 803-811   PDF    
阿拉善高原古湖岸堤释光测年与晚第四纪湖面变化
李国强1, 陶淑娴1, 佘琳琳1, 金明1, 魏海涛1, 李芳亮1, 黄新1, 王中1, 杨和1, 王晓艳1, 杨丽萍3, 陈发虎1,2     
(1 兰州大学资源环境学院, 西部环境教育部重点实验室, 甘肃 兰州 730000;
2 中国科学院青藏高原研究所, 中国科学院青藏高原地球科学卓越创新中心, 北京 100101;
3 长安大学地质工程与测绘学院, 陕西 西安 710054)
摘要:阿拉善高原位于现代西风环流与东亚季风环流过渡带,该地区分布的湖泊对全球性气候变化响应极为敏感,阿拉善高原广泛分布的古湖岸堤为较准确地重建晚第四纪湖泊水位变化提供了良好载体。近年对黑河、石羊河尾闾湖泊以及吉兰泰盐池、雅布赖盆地等地的古湖岸堤的沉积地层以及石英和钾长石释光测年研究,重建了不同区域较高分辨率的末次间冰期以来湖泊时空演化过程。发现早在300 ka以前阿拉善高原就已经形成了高水位湖泊,黑河尾闾额济纳盆地在MIS 11或更早、MIS 9、MIS 7、MIS 5和MIS 1形成了高湖面湖泊,高湖面湖泊形成存在100 ka的周期。阿拉善高原在末次间冰期及全新世形成了稳定高湖面湖泊,但间冰期内部湖面波动具有空间差异性,东部区域湖泊高湖面出现在MIS 5e~5c和中全新世,西部湖泊高湖面出现在MIS 5a~5c和晚全新世。湖面变化的空间差异性很可能与冰期-间冰期旋回尺度及间冰期内部东亚夏季风与西风气候系统在阿拉善高原的相互作用密切相关。
关键词阿拉善高原    古湖岸堤    释光测年    湖泊演化    间冰期    全新世    
中图分类号     P467;P534.63;P941.7                     文献标识码    A

0 前言

位于蒙古高原南部的阿拉善高原地区是亚欧大陆中部干旱区的重要组成部分,面积约25×104 km2。这些戈壁-沙漠地区降水量少,气候干旱,天然植被稀疏,地表裸露,是我国乃至全世界最为干旱的地区之一。在整个第四纪,戈壁沙漠地区释放大量的粉尘物质通过风力搬运沉积在黄土高原地区[1~4],部分粉尘物质经高空搬运,甚至在格陵兰冰川地区的冰芯里面也有发现[5]。此外,远距离搬运的粉尘物质携带的大量铁离子为大洋浮游生物生长提供了养料[6~7],粉尘通过影响海洋生物初级生产力的方式调节大气CO2浓度,其间引发的各种反馈机制影响着地球系统的能量平衡[8]。蒙古高原南部戈壁沙漠地区作为北半球最主要的粉尘源区在全球气候生态系统中起着重要作用[9~10]。戈壁沙漠地区第四纪沉积的河流冲积物及湖泊沉积物为近地表粉尘释放提供了重要的物质来源[11]。此外,戈壁沙漠等干旱区下垫面、植被类型、地面反照率等的改变,都会引起气候的变化[12~13]。因此研究第四纪以来戈壁沙漠地区环境变化及该地区河流湖泊形成演化对理解全球气候变化具有重要意义。

阿拉善高原位于现代西风与东亚夏季风相互作用的过渡区域(图 1),环境变化过程剧烈且复杂,对全球不同尺度气候变化响应极为敏感,是开展第四纪气候变化响应研究的典型区域[14]。阿拉善高原广泛分布着一系列封闭型湖泊,其湖泊地貌及湖泊沉积序列记录了丰富的过去湖泊环境变化信息。保存完好的古湖岸堤代表着当时相对长时间稳定的水文环境,为过去湖泊水位波动重建提供了可靠的沉积证据[15~19]。通过古湖岸堤的测年及空间分布研究,重建晚第四纪湖泊水位变化历史,对于理解干旱区湖泊环境变化过程及其对东亚夏季风和西风气候系统相互作用的响应具有重要意义。

图 1 阿拉善高原遥感影像及已有主要研究点分布图 Fig. 1 Map showing the locations of the Alxa Plateau(AP)and the studied shoreline sections

阿拉善高原(37°~42°N,99°~107°E),位于青藏高原和戈壁阿尔泰山脉之间,由北部戈壁阿尔泰山、南部祁连山、西部马鬃山、东部贺兰山等山系环绕,地质构造为长期稳定隆起的剥蚀地块,与阿拉善地台相当,地表起伏平缓,平均海拔约1300 m,地势由南向北缓倾,有若干相对海拔100~250 m的干燥剥蚀低山丘陵,把高原分割为许多内陆盆地。阿拉善高原景观主要以洪积戈壁、流动沙丘、荒漠草原为主,自西向东分布着戈壁额济纳盆地、巴丹吉林沙漠、腾格里沙漠和乌兰布和沙漠,沙漠腹地大小不一的湖泊星罗棋布,不少湖泊已经干涸而湖盆裸露[20]。发源于青藏高原东北部祁连山区的内陆水系如黑河、石羊河、疏勒河、布哈河等贯穿全境,形成颇具区域特色的山地-内陆河-戈壁沙漠-绿洲-湖泊系统。位于阿拉善高原东部的吉兰泰盐池是我国大型内陆盐湖之一,与乌兰布和沙漠毗邻。阿拉善高原属于温带大陆性干旱气候,全年降水主要集中于夏季,降水量区域差异显著,年均降水量由东南部400 mm降至西北部50 mm,而年均潜在蒸发高达2000~3500 mm[21]。该区域主要为典型荒漠、荒漠化草原、草原化荒漠植被。

前人通过对腾格里沙漠白碱湖湖盆、戈壁沙漠额济纳湖盆、吉兰泰盐池以及雅布赖盐池等地保存完整的古湖岸堤以及湖泊沉积开展了详细的野外地貌调查、地层分析以及年代框架建立,结合现代遥感影像,以期重建晚第四纪以来湖泊演化过程,取得了一系列的进展[21~36],随着研究的不断深入,对于该区域湖泊晚第四纪湖面变化尤其是高湖面出现的时间等问题上存在一些争议[28, 35],这些争议的出现主要是由于常用的14C测年在干旱区的测年上限在30~40 ka[36],而石英OSL测年用于60~70 ka以上样品的时候也存在可能低估的问题[37~40],因此限制了对末次冰期以前湖泊演化研究的认识。最近几年已经成熟的钾长石红外后红外释光测年[41~43],使用没有衰退的稳定pIRIR信号,可以用于西北干旱区250~300 ka以来样品的年龄测定[44~46],这为在更长时间尺度上重建湖泊演化历史,理解干旱区湖泊环境变化驱动机制提供了新的技术手段和思路。

1 阿拉善高原古湖岸堤钾长石及石英释光测年及水位重建进展

在前人已有研究基础上,我们对阿拉善高原古湖岸堤进行了系统地考察。首先利用差分DPS系统测量了黑河尾闾额济纳湖盆和石羊河尾闾白碱湖盆系列古湖岸堤的准确高程[47~51]。为了获得连续完整的古湖岸堤沉积记录,我们使用装载机系统开挖了分布在额济纳盆地和白碱湖盆地的22条[47~51]及Long等[35]的两条古湖岸堤剖面(表 1),详细描述了剖面沉积序列以及系统采集剖面释光测年样品(研究点分布见图 2a~2c)。在实验室开展了粗颗粒石英OSL测年和钾长石pIRIR测年条件实验,建立了可用于研究区古湖岸堤样品年龄测定的实验室流程。钾长石pIRIR释光生长曲线拟合获得的饱和剂量指数(2D0)表明pIRIR测年可用于该地区约300 ka以来钾长石年龄测定。在额济纳盆地、白碱湖盆地古湖岸堤剖面共计获得了49个石英OSL年龄、47个钾长石pIRIR年龄[47~51]以及Long等[35]的15个石英OSL年龄(表 2),石英和钾长石释光年龄数据的相互检验结果表明在测量 < 0 ka样品年龄时,石英OSL年龄和钾长石pIRIR年龄具有良好的一致性,在测量≥60 ka的样品年龄时,石英OSL年龄和钾长石pIRIR年龄相比系统偏小,表明石英OSL测年可用于约60 ka以来样品年龄测定,钾长石pIRIR测年可用于300 ka以来样品的年龄测定[47~49]。使用 < 0 ka的石英年龄和 > 60 ka的钾长石年龄,建立了这些湖岸堤沉积序列的年龄框架。需要注意的是,我们在使用钾长石pIRIR测年用于湖岸堤样品年龄测定过程中,也发现了部分钾长石pIRIR年龄存在可能由于晒退不充分导致的高估问题[48],因此开展钾长石pIRIR信号晒退实验及信号特征分析,开展多种测年方法的交叉验证对于获得没有高估的钾长石pIRIR年龄尤为重要。最终通过石英钾长石年龄交叉验证,建立了各个古湖岸堤剖面的可靠年龄序列。基于现代DEM和前期古湖岸堤准确高程测量结果,重建晚第四纪两个区域尾闾湖泊时空演化过程[50]

表 1 阿拉善高原古湖岸堤探槽剖面信息 Table 1 The summary of paleolake shoreline sections in Alxa Plateau

图 2 阿拉善高原黑河及白碱湖尾闾湖泊晚第四纪湖面变化及间冰期内部湖面变化的空间差异性(依据Li等[49~50]改绘) (a)和(b)分别为额济纳盆地次一级嘎顺淖尔-苏古淖尔盆地[48]和居延泽盆地古湖岸堤[47, 51]研究点分布;(c)白碱湖彭迪古湖岸堤研究点分布[35, 50];(d)研究区概况图,其中蓝色点线为现代季风边界线[52],红色虚线为可能的东亚夏季降水影响最西大致范围[50];(e)冰期-间冰期旋回时间尺度额济纳盆地湖泊时空演化过程[49];(f)和(g)分别为末次间冰期以来及全新世内部阿拉善高原东西部湖泊水位变化过程[50],其中圆圈代表年龄数据引自Long等[35] Fig. 2 The reconstructed lake level changes during Late Quaternary and spatial variation during insides interglacial in the terminal-lake basin of Heihe River and Shiyang River of Alxa Plateau, modified from Li et al. [49~50]. (a) and (b) are distribution of paleolake shorelines at Gaxun Nur-Sogu Nur Basin[48] and Juyanze Basin[47, 51], respectively. (c) is distribution of paleolake shorelines at Baijian Lake Basin[35, 50]. (d) is the map of study area, the blue dotted line is the boundary of modern East Asia summer monsoon[52] and red dash line is the boundary of possible maximum EASM precipitation dominance at study area[50]. (e) is the reconstructed lake level changes in Ejina Basin on glacial-interglacial cycles[49]. (f) and (g) are the reconstructed lake level changes at Alexa Plateau since last interglacial and during Holocene, respectively[50], and the cycles age data used in the fig are cited from Long et al. [35]

表 2 阿拉善高原古湖岸堤剖面石英OSL年龄与钾长石pIRIR年龄结果 Table 2 Summary of quartz OSL and K-feldspar pIRIR ages of samples from paleolake shorelines at Alxa Plateau

野外调查发现,额济纳盆地次一级居延泽盆地周围有944 m、940 m、927 m、924 m、920 m、918 m、914 m和912 m共8级保存良好的古湖岸堤,高出现代湖盆中心(895 m)约49~17 m,表明晚第四纪期间居延泽地区曾发育水深49~17 m不等的古湖,湖面波动剧烈[47, 51]。阿拉善高原最老的湖岸堤位于居延泽盆地东部,高出现代湖盆约45 m,年代结果表明该湖岸堤形成于距今至少330 ka以前,由于该级湖岸堤钾长石样品pIRIR信号已经饱和,因此这级古湖岸堤形成的准确年龄还有待进一步研究[47]。系列古湖岸堤的测年结果表明,居延泽盆地在 > 330 ka、约314~303 ka、约220~181 ka、约122~76 ka和约3~1 ka期间形成稳定湖面的古湖(图 2e),这些时段分别对应于MIS 11或更早、MIS 9、MIS 7、MIS 5和全新世,古湖泊形成演化表现出了100 ka周期,可能与偏心率周期变化引起的气候波动有关[49]。在MIS 9和MIS 7形成水深约49 m,覆盖居延泽、嘎顺淖尔-苏泊淖尔盆地的额济纳统一古湖,湖面面积达到约10000 km2。MIS 5和全新世期间居延泽湖泊水深可达32 m,湖面面积可达1800 km2[49~50]

根据额济纳盆地末次间冰期与全新世的古湖岸堤释光测年和差分GPS高程测量,结果表明嘎顺诺尔-苏古诺尔在约121 ka前开始发育,121~89 ka期间(MIS 5e~5c)湖面水位已从5 m升至10 m,至约85~77 ka(MIS 5c~5a)水位升至末次间冰期最高水位约21 m。类似地,居延泽在约122 ka时湖面开始上升,在约122~96 ka期间其水位应低于约23 m,约96~76 ka期间水位持续上升并在约76 ka达到最高水深约25 m(图 2f)[50]。进入全新世后,嘎顺诺尔-苏古诺尔湖泊水位在约8.4~6.3 ka时间段内先上升而后稳定在15 m附近,约6~5 ka时水位下降,5~3 ka时期水位回升达该湖全新世时期最高水深约16 m,约3 ka后湖泊水位持续下降至今,嘎顺诺尔-苏古诺尔湖泊已彻底消失。居延泽盆地在中晚全新世5~3 ka期间水位不断上涨,在约3 ka时水位升高至约26 m,达全新世时期最高。约3~2 ka湖泊水位下降低于20 m,约2.0~1.5 ka期间居延泽湖面水位再次上升,并在约1.5 ka时达到全新世最高湖面约26 m(图 2g)[50]

腾格里沙漠白碱湖古湖岸堤测年结果表明,石羊河尾闾白碱湖在MIS 5期间发育了水深24~27 m的湖泊,高出现代湖盆约27 m的最高湖面出现于约125~97 ka(MIS 5e~5c)期间,之后水位下降,到100~80 ka(MIS 5c~5a)下降到24 m。全新世早全新世湖泊水位逐渐增加,在约8~7 ka(中全新世)时发育了水深约24 m的高湖面湖泊,随后湖面在约7~4 ka逐渐下降至约13 m。随后晚全新世湖面整体下降,但在1.4~0.9 ka出现了略微升高(图 2f2g)[50]。Long等[35]使用石英OSL测年对区域湖泊和湖岸堤沉积测年结果表明90~80 ka和8~6 ka期间该地区发育了高水位湖泊,也支持我们重建的湖泊水位变化结果。

在雅布赖湖盆周围2个天然剖面与盆地钻孔岩芯的石英OSL测年结果表明雅布赖盐湖最高水位形成于约110 ka,当时水位较现代高出30~50 m,在约83~57 ka B.P.期间湖泊周围的冲积扇持续发育,末次冰期(56.5~18.6 ka)冲积扇沉积速率下降并出现沉积间断,表明湖面萎缩甚至干涸;早中全新世雅布赖盐湖再次发育高湖面[53]

整体而言,阿拉善高原不同区域的尾闾湖泊在MIS 5和全新世发育高湖面,但在MIS 5和中-晚全新世内部两区域湖面波动不一致性:MIS 5e~5c时期,黑河流域终端湖泊在水位总体上升,湖面扩张,并在MIS 5c~5a时期水位升至最高,湖面面积达最大。白碱湖地区恰好与之相反,最高湖面形成于MIS 5e~5c时期,MIS 5c~5a时期水位下降。两尾闾地区湖泊在最高湖面期仍为封闭型湖泊。末次冰期至全新世早期,阿拉善高原不同区域湖泊均很可能位于低水位或者干涸,未发现高湖面湖岸堤沉积证据;中-晚全新世时期,黑河流域尾闾地区湖泊逐渐扩张,水位在晚全新世升至全新世最高,白碱湖盆地与雅布赖盆地水位在早中全新世位于高水位时期,晚全新世则逐渐下降,乃至干涸。

在吉兰泰盆地和乌兰布和沙漠地区,通过乌兰布和沙漠不同区域获得的岩芯钻孔,开展沉积分析及钾长石Met-pIRIR测年建立的古湖岸堤年龄框架,吉兰泰-河套地区晚第四纪以来经历了复杂的沙漠-湖泊-沙漠演化过程[14, 38, 54~55]。乌兰布和沙漠在中更新世(约232 ka)已经形成,而在约155 ka之前在现代沙漠的南部开始形成古湖泊,在约120~90 ka(MIS 5e~5c)乌兰布和沙漠地区为吉兰泰-河套古大湖所覆盖,最高水位有可能达到吉兰泰周围最高古湖岸堤附近,高度约1080 m a.s.l.,高于现代湖面约57 m,这一湖泊主要由黄河水灌注形成[54]。经过多次湖面小幅波动之后,古湖最终萎缩消失,进入末次冰期至早全新世漫长的沙漠沉积环境。在中全新世(8~7 ka),在乌兰布和沙漠北部和吉兰泰盐湖高地发育的广阔浅水湿地,然而同一时期的乌兰布和沙漠南部高大沙山区仍然处于干旱的沙漠环境。北部浅湖于7~6 ka期间逐渐消失,仅在沙漠东部边缘地区残留至历史时期[56]。在约2 ka之后,巴丹吉林沙漠的风成砂沉积于乌兰布和沙漠西部形成了现代的沙丘带,东部湿地在汉代末期(约200 A.D.)被开垦为耕地,后逐渐演化为现代沙漠环境[54, 57]

2 阿拉善高原冰期-间冰期旋回尺度及间冰期内部湖面变化可能机制

阿拉善高原湖泊主要由流域降水补给,发源于祁连山的黑河和石羊河的尾闾湖泊补给,有一小部分来源于冰川融水[58~59]。位于中亚干旱区和东亚季风区的过渡地带,阿拉善高原降水受到东亚夏季风-西风气候系统的相互影响。冰期-间冰期旋回尺度额济纳盆地在MIS 9甚至更早,MIS 7、MIS 5、MIS 1形成了黑河补给的高湖面湖泊,表明季风边缘区湖泊的湖面波动受控于冰期-间冰期旋回气候变化导致的流域及尾闾湖盆降水变化,湖面波动存在10万年周期,可能受控于偏心率周期变化[49~50]。已有的基于天山黄土研究获得的轨道尺度气候记录末次间冰期及全新世内部中亚干旱区降水/湿度变化存在与东亚季风区反相位的“西风模态”[60~61],但在冰期-间冰期旋回尺度中亚干旱区与东亚季风区一致表现为冰期冷干、间冰期暖湿的气候模式。因此季风-西风降水在冰期-间冰期旋回尺度上的一致变化可能是导致间冰期阿拉善形成高湖面的主要原因。在末次间冰期及现代间冰期内部,阿拉善高原东部白碱湖的高湖面出现在MIS 5e~5c和中全新世,这与重建的季风强度变化具有一致性[62],而高原西部的湖泊(以额济纳盆地为例)高湖面出现在MIS 5c~5a和晚全新世,这与季风强度变化具有明显不同,而与中亚西风降水变化具有良好的一致性,表明西风-季风降水对阿拉善高原东西部尾闾湖泊水位变化的影响有很大不同。

此外,黄河补给的吉兰泰盆地古湖泊湖面变化,尽管整体上高湖面的出现受到气候变化引起的流域降水及黄河水量变化影响,但构造变动(如鄂尔多斯高原东北部的快速隆升)导致的黄河中下游堵塞对于湖泊水位变化具有重要影响[14, 31~32, 63]。此外,古湖岸堤形成以后构造作用引起古湖岸堤与盆地的准确相对位置变化,以及湖泊水量变化导致的湖盆地形变化对于湖泊水位变化重建的准确性及可靠性均会产生影响,尤其对于形成时间比较早的古湖岸堤,构造导致的古湖岸堤相对盆地位置的变化对于水位重建的影响增加[31~32]。阿拉善高原地区构造速率及湖泊湖盆形变的研究还比较薄弱,也是亟须进一步开展详细研究的重要科学问题。

3 结论

通过系统的古湖岸堤探槽及沉积盆地钻探,获得了阿拉善高原不同湖泊晚第四纪湖泊水位变化的沉积证据,通过石英OSL测年及钾长石pIRIR测年方法学研究发现,尽管部分钾长石pIRIR测年年龄存在由于晒退不充分导致的年龄高估问题,但通过详细的条件实验和钾长石释光测年信号特征分析,可以使用石英OSL测年和钾长石pIRIR测年建立60 ka以来及300 ka以来湖岸堤样品的可靠年龄标尺。不同区域古湖岸堤测年结果表明早在300 ka以前阿拉善高原就已经形成了高水位湖泊,黑河尾闾额济纳盆地在MIS 11或更早、MIS 9、MIS 7、MIS 5和MIS 1形成了高湖面湖泊,高湖面湖泊形成存在100 ka的周期,很可能受控于冰期-间冰期旋回尺度西风-季风气候系统相互作用。阿拉善高原不同区域湖泊在MIS 5与中-晚全新世时期均发育了高湖面湖泊,但在末次间冰期与全新世内部,阿拉善高原不同湖泊演化过程表现出空间差异性,湖泊水位的变化自西向东由西风降水-季风降水的贡献逐渐增加,季风-西风气候系统在阿拉善高原相互作用是使得湖泊水位变化存在空间差异性的主要原因。对于MIS 3气候环境特征及湖泊演化历史的认识有赖于更高分辨率冰期沉积记录的获取及分析,构造及湖盆形变引起的古湖岸堤与湖盆相对位置变化的研究对于准确的水位变化重建尤为重要,也是亟须解决的重要科学问题。

致谢: 感谢两位审稿人的宝贵意见!

参考文献(References)
[1]
Liu Tungsheng. Loess and the Environment[M]. Beijing: China Ocean Press, 1985: 1-251.
[2]
Sun J M. Provenance of loess material and formation of loess deposits on the Chinese Loess Plateau[J]. Earth and Planetary Science Letters, 2002, 203(3-4): 845-859. DOI:10.1016/S0012-821X(02)00921-4
[3]
Sun J M. Source regions and formation of the loess sediments on the high mountain regions of Northwestern China[J]. Quaternary Research, 2002, 58(3): 341-351. DOI:10.1006/qres.2002.2381
[4]
Sun J M, Liu T S, Lei Z F. Sources of heavy dust fall in Beijing, China on April 16, 1998[J]. Geographical Research Letters, 2000, 27(14): 2105-2108. DOI:10.1029/1999GL010814
[5]
Bory A J M, Biscaye P E, Svensson A, et al. Seasonal variability in the origin of recent atmospheric mineral dust at North GRIP, Greenland[J]. Earth and Planetary Science Letters, 2002, 196(3-4): 123-134. DOI:10.1016/S0012-821X(01)00609-4
[6]
Bishop J K B, Davis R E, Sherman J T, et al. Robotic observations of dust storm enhancement of carbon biomass in the North Pacific[J]. Science, 2002, 298(5594): 817-821. DOI:10.1126/science.1074961
[7]
Tsuda A, Takeda S, Saito H, et al. Amesoscale iron enrichment in the western Subarctic Pacific induces a large centric diatom bloom[J]. Science, 2003, 300(5621): 958-961. DOI:10.1126/science.1082000
[8]
de Baar H J W, de Jong J T M, Bakker D C E, et al. Importance of iron for plankton blooms and carbon dioxide drawdown in the Southern Ocean[J]. Nature, 1995, 373(6513): 412-415. DOI:10.1038/373412a0
[9]
Pye K, Zhou L P. Late Pleistocene and Holocene aeolian dust deposition in North China and the northwest Pacific-Ocean[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 1989, 73(1-2): 11-23. DOI:10.1016/0031-0182(89)90041-2
[10]
Rea D K. The paleoclimatic record provided by eolian deposition in the deep-sea-the geologic history of wind[J]. Reviews of Geophysics, 1994, 32(2): 159-195.
[11]
Natsagdorj L, Jugder D, Chung Y S, et al. Analysis of dust storms observed in Mongolia during 1937-1999[J]. Atmospheric Environment, 2003, 37(9-10): 1401-1411. DOI:10.1016/S1352-2310(02)01023-3
[12]
Xue Y K, Shukla J. The influence of land-surface properties on Sahel climate. Part 1:Desertification[J]. Journal of Climate, 1993, 6(12): 2232-2245. DOI:10.1175/1520-0442(1993)006<2232:TIOLSP>2.0.CO;2
[13]
Dirmeyer P A, Shukla J. The effect on regional and global climate of expansion of the world's deserts[J]. Quarterly Journal of the Royal Meteorological Society, 1996, 122(530): 451-482. DOI:10.1002/(ISSN)1477-870X
[14]
Chen F H, Li G Q, Zhao H, et al. Landscape evolution of the Ulan Buh Desert in Northern China during the Late Quaternary[J]. Quaternary Research, 2014, 81(3): 476-487. DOI:10.1016/j.yqres.2013.08.005
[15]
Stapor F W. Beach Ridges and Beach Ridge Coasts:Encyclopedia of Beaches and Coastal Environments[M]. Stroudsburg: Hutchinson Ross, 1982: 1-160.
[16]
李荣全, 郑良美, 朱国荣. 内蒙古高原湖泊与环境变迁[M]. 北京: 北京师范大学出版社, 1990: 1-219.
Li Rongquan, Zheng Liangmei, Zhu Guorong, et al. Inner Mongolia Plateau Lakes and Environmental Changes[M]. Beijing: Beijing Normal University Press, 1990: 1-219.
[17]
沈吉, 薛滨, 吴敬禄, 等. 湖泊沉积与环境演化[M]. 北京: 科学出版社, 2010: 1-473.
Shen Ji, Xue Bin, Wu Jinglu, et al. Lake Sedimentation and Environmental Evolution[M]. Beijing: Science Press, 2010: 1-473.
[18]
刘向军, 赖忠平, David B Madsen, 等. 晚第四纪青海湖高湖面研究[J]. 第四纪研究, 2018, 38(5): 1166-1178.
Liu Xiangjun, Lai Zhongping, David B Madsen, et al. Late Quaternary highstands of Qinghai Lake, Qinghai-Tibetan Plateau[J]. Quaternary Sciences, 2018, 38(5): 1166-1178.
[19]
陈锋, 冯金良, 胡海平, 等. 纳木错高湖面时期的溢流:基于萝卜螺壳体氧同位素及地貌证据[J]. 第四纪研究, 2017, 37(2): 271-280.
Chen Feng, Feng Jinliang, Hu Haiping, et al. Overflow of the Lake Nam Co during its high level period:Inferences from oxygen isotope of radix shells and geomorphological evidences[J]. Quaternary Sciences, 2017, 37(2): 271-280.
[20]
朱震达, 吴正, 刘恕, 等. 中国沙漠概论[M]. 北京: 科学出版社, 1980: 1-94.
Zhu Zhenda, Wu Zheng, Liu Shu, et al. Introduction to the Chinese Desert[M]. Beijing: Science Press, 1980: 1-94.
[21]
Chen F H, Wu W, Holmes J A, et al. A mid-Holocene drought interval as evidenced by lake desiccation in the Alashan Plateau, Inner Mongolia, China[J]. Chinese Science Bulletin, 2003, 48(14): 1401-1410. DOI:10.1360/03wd0245
[22]
Pachur H J, Wünnemann B, Zhang H. Lake evolution in the Tengger Desert, Northwestern China, during the last 40, 000 years[J]. Quaternary Research, 1995, 44(2): 171-180. DOI:10.1006/qres.1995.1061
[23]
Wünnemann B, Pachur H J, Li J, et al. The chronology of Pleistocene and Holocene lake level fluctuations at Gaxun Nur, Sogo Nur and Baijian Hu in Inner Mongolia, China[J]. Petermanns Geographische Mitteilungen, 1998, 142(3): 191-206.
[24]
Wünnemann B, Hartmann K. Morphodynamics and paleohydrography of the Gaxun Nur Basin, Inner Mongolia, China[J]. Zeitschrift fur Geomorphologie Supplement Band, 2002, 126(Suppl.): 147-168.
[25]
Wünnemann B, Hartmann K, Altmann N, et al. Interglacial and glacial fingerprints from lake deposits in the Gobi Desert, NW China[J]. Developments in Quaternary Sciences, 2007, 7(1): 323-347.
[26]
Wünnemann B, Hartmann K, Janssen M, et al. Responses of Chinese desert lakes to climate instability during the past 45, 000 years[J]. Developments in Quaternary Sciences, 2007, 9(7): 11-24.
[27]
Zhang H, Wünnemann B, Ma Y, et al. Lake level and climate changes between 42, 000 and 18, 000 14C yr B. P. in the Tengger Desert, Northwestern China[J]. Quaternary Research, 2002, 58(1): 62-72. DOI:10.1006/qres.2002.2357
[28]
Zhang H C, Peng J L, Ma Y Z, et al. Late Quaternary palaeolake levels in Tengger Desert, NW China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2004, 211(1): 45-58.
[29]
Wang X Y, Guo H D, Chang Y M, et al. On paleodrainage evolution in mid-late Epipleistocene based on radar remote sensing in northeastern Ejin Banner, Inner Mongolia[J]. Journal of Geographical Sciences, 2004, 14(2): 235-241. DOI:10.1007/BF02837539
[30]
颉耀文, 王君婷. 基于TM影像和DEM的白碱湖湖面变化模拟[J]. 遥感技术与应用, 2006, 21(4): 284-287.
Xie Yaowen, Wang Junting. A study on the changes of Baijian Lake Based on TM Image and DEM[J]. Remote Sensing Technology and Application, 2006, 21(4): 284-287. DOI:10.3969/j.issn.1004-0323.2006.04.003
[31]
陈发虎, 范育新, 春喜, 等. 晚第四纪"吉兰泰-河套"古大湖的初步研究[J]. 科学通报, 2008, 53(10): 1207-1219.
Chen Fahu, Fan Yuxin, Chun Xi, et al. Preliminary research on Megalake Jilantai-Hetao in the arid areas of China during the Late Quaternary[J]. Chinese Science Bulletin, 2008, 53(11): 1725-1739.
[32]
陈发虎, 范育新, Madsen D B, 等. 河套地区新生代湖泊演化与"吉兰泰-河套"古大湖形成机制的初步研究[J]. 第四纪研究, 2008, 28(5): 866-873.
Chen Fahu, Fan Yuxin, Madsen D B, et al. Preliminary study on the formation mechanism of the Jilantai-Hetao Megalake and the lake evolutionary history in Hetao region[J]. Quaternary Sciences, 2008, 28(5): 866-873. DOI:10.3321/j.issn:1001-7410.2008.05.009
[33]
隆浩, 张静然. 晚第四纪湖泊演化光释光测年[J]. 第四纪研究, 2016, 36(5): 1191-1203.
Long Hao, Zhang Jingran. Luminescence dating of Late Quaternary lake-levels in Northern China[J]. Quaternary Sciences, 2016, 36(5): 1191-1203.
[34]
王乃昂, 李卓仑, 程弘毅, 等. 阿拉善高原晚第四纪高湖面与大湖期的再探讨[J]. 科学通报, 2011, 56(17): 1367-1377.
Wang Nai'ang, Li Zhuolun, Cheng Hongyi, et al. High lake levels on Alashan Plateau during the Late Quaternary[J]. Chinese Science Bulletin, 2011, 56(17): 1367-1377.
[35]
Long H, Lai Z P, Fuchs M, et al. Timing of Late Quaternary palaeolake evolution in Tengger Desert of Northern China and its possible forcing mechanisms[J]. Global and Planetary Change, 2012, 92-93: 119-129. DOI:10.1016/j.gloplacha.2012.05.014
[36]
Li Z L, Wang N A, Zhang X H, et al. High precipitation and low evaporation resulted in high lake levels of the Juyanze paleolake, Northwest China, during 34-26 cal kyr BP[J]. Climate Research, 2016, 69(1-3): 193-207.
[37]
Song Y G, Lai Z P, Li Y, et al. Comparison between luminescence and radiocarbon dating of Late Quaternary loess from the Ili basin in Central Asia[J]. Quaternary Geochronology, 2015, 30(Part B): 405-410.
[38]
Li G Q, Jin M, Wen L J, et al. Quartz and K-feldspar optical dating chronology of eolian sand and lacustrine sequence from the southern Ulan Buh Desert, NW China:Implications for reconstructing Late Pleistocene environmental evolution[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2014, 393: 111-121. DOI:10.1016/j.palaeo.2013.11.003
[39]
Murray A S, Funder S. Optically stimulated luminescence dating of a Danish Eemian coastal marine deposit:A test of accuracy[J]. Quaternary Science Reviews, 2003, 22(10): 1177-1183.
[40]
Buylaert J P, Vandenberghe D, Murray A S, et al. Luminescence dating of old(> 70 ka)Chinese loess:A comparison of single-aliquot OSL and IRSL techniques[J]. Quaternary Geochronology, 2007, 2(1-4): 9-14. DOI:10.1016/j.quageo.2006.05.028
[41]
Thomsen K J, Murray A S, Jain M, et al. Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts[J]. Radiation Measurements, 2008, 43(9-10): 1474-1486. DOI:10.1016/j.radmeas.2008.06.002
[42]
Buylaert J P, Murray A S, Thomsen K J, et al. Testing the potential of an elevated temperature IRSL signal from K-feldspar[J]. Radiation Measurements, 2009, 44(5-6): 560-565. DOI:10.1016/j.radmeas.2009.02.007
[43]
颜燕燕, 张家富, 胡钢, 等. 晋陕峡谷基座阶地沉积物释光测年方法的比较研究[J]. 第四纪研究, 2018, 38(3): 594-610.
Yan Yanyan, Zhang Jiafu, Hu Gang, et al. Comparison of various luminescence dating procedures on sediments from one of the strath terraces of the Yellow River in the Jinshaan Canyon[J]. Quaternary Sciences, 2018, 38(3): 594-610.
[44]
Li B, Li S H. Luminescence dating of Chinese loess beyond 130 ka using the non-fading signal from K-feldspar[J]. Quaternary Geochronology, 2012, 10: 24-31. DOI:10.1016/j.quageo.2011.12.005
[45]
Thiel C, Buylaert J P, Murray A, et al. Luminescence dating of the Stratzing loess profile(Austria)-Testing the potential of an elevated temperature post-IR IRSL protocol[J]. Quaternary International, 2011, 234(1-2): 23-31. DOI:10.1016/j.quaint.2010.05.018
[46]
Buylaert J P, Jain M, Murray A S, et al. A robust feldspar luminescence dating method for Middle and Late Pleistocene sediments[J]. Boreas, 2012, 41: 435-451. DOI:10.1111/j.1502-3885.2012.00248.x
[47]
Li G Q, Jin M, Duan Y, et al. Quartz and K-feldspar luminescence dating of a Marine Isotope Stage 5 Megalake in the Juyanze Basin, central Gobi Desert, China[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2015, 440: 96-109. DOI:10.1016/j.palaeo.2015.08.033
[48]
Li G Q, Li F L, Jin M, et al. Late Quaternary lake evolution in the Gaxun Nur basin, central Gobi Desert, China, based on quartz OSL and K-feldspar pIRIR dating of paleoshorelines[J]. Journal of Quaternary Science, 2017, 32(3): 347-361. DOI:10.1002/jqs.v32.3
[49]
Li G Q, David B M, Jin M, et al. Orbital scale lake evolution in the Ejina Basin, central Gobi Desert, China revealed by K-feldspar luminescence dating of paleolake shoreline features[J]. Quaternary International, 2018, 482: 109-121. DOI:10.1016/j.quaint.2018.03.040
[50]
Li G Q, She L L, Jin M, et al. The spatial extent of the East Asian summer monsoon in arid NW China during the Holocene and last interglaciation[J]. Global and Planetary Change, 2018, 169: 48-65. DOI:10.1016/j.gloplacha.2018.07.008
[51]
Jin M, Li G Q, Li F L, et al. Holocene shorelines and lake evolution in Juyanze Basin, southern Mongolian Plateau, revealed by luminescence dating[J]. The Holocene, 2015, 25(12): 1898-1911. DOI:10.1177/0959683615591349
[52]
Chen F H, Yu Z C, Yang M L, et al. Holocene moisture evolution in arid Central Asia and its out-of-phase relation-ship with Asian monsoon history[J]. Quaternary Science Reviews, 2008, 27(3-4): 351-364. DOI:10.1016/j.quascirev.2007.10.017
[53]
Yu S Y, Du J H, Hou Z F, et al. Colman Late-Quaternary dynamics and palaeoclimatic implications of an alluvial fan-lake system on the southern Alxa Plateau, NW China[J]. Geomorphology, 2019, 327: 1-13. DOI:10.1016/j.geomorph.2018.10.012
[54]
Li G Q, Jin M, Chen X M, et al. Environmental changes in the Ulan Buh Desert, southern Inner Mongolia, China since the Middle Pleistocene based on sedimentology, chronology and proxy indexes[J]. Quaternary Science Reviews, 2015, 128: 69-80. DOI:10.1016/j.quascirev.2015.09.010
[55]
Zhang F, Fan Y X, Chen X L, et al. Optical dating of the high lake level events documented in the core drilled in the Dengkou subuplift within the huge Jilantai-Hetao Basin[J]. Sciencepaper, 2014.
[56]
Fan Y X, Chen F H, Wei G X, et al. Potential water sources for Late Quaternary Megalake Jilantai-Hetao, China, inferred from mollusk shell Sr-87/Sr-86 ratios[J]. Journal of Paleolimnology, 2010, 43(3): 577-587. DOI:10.1007/s10933-009-9353-4
[57]
贾铁飞, 银山, 何雨, 等. 乌兰布和沙漠东海子湖全新世湖相沉积结构分析及其环境意义[J]. 中国沙漠, 2003, 23(2): 165-170.
Jia Tiefei, Yin Shan, He Yu, et al. Holocene sediment texture and its environmental meaning of Donghaizi Lake in Ulan Buh Desert[J]. Journal of Desert Research, 2003, 23(2): 165-170. DOI:10.3321/j.issn:1000-694X.2003.02.013
[58]
Gao Q Z, Yang X Y. The features of interior rivers and feeding of glacial meltwater in the Hexi Region[C]. Memoirs of Lanzhou Institute of Glaciology and Geocryology, Chinese Academy of Sciences, 1985, 5: 131-141.
[59]
高鑫, 张世强, 叶柏生, 等. 河西内陆河流域冰川融水近期变化[J]. 水科学进展, 2011, 22(3): 344-350.
Gao Xin, Zhang Shiqiang, Ye Baisheng, et al. Recent changes of glacier runoff in the Hexi inland river basin[J]. Advances in Water Science, 2011, 22(3): 344-350.
[60]
Li G Q, Chen F H, Xia D S, et al. A Tianshan Mountains loess-paleosol sequence indicates anti-phase climatic variations in arid Central Asia and in East Asia[J]. Earth and Planetary Science Letters, 2018, 494: 153-163. DOI:10.1016/j.epsl.2018.04.052
[61]
Chen F H, Chen J H, Huang W, et al. Westerlies Asia and monsoonal Asia:Spatiotemporal differences in climate change and possible mechanisms on decadal to sub-orbital timescales[J]. Earth-Science Reviews, 2019, 192: 337-354. DOI:10.1016/j.earscirev.2019.03.005
[62]
Chen F H, Xu Q H, Chen J H, et al. East Asian summer monsoon precipitation variability since the last deglaciation[J]. Scientific Reports, 2015, 5: 1-11. DOI:10.1038/srep11186
[63]
Chun X, Chen F H, Fan Y X. Formation of Ulan Buh desert and its environmental changes during the Holocene[J]. Frontiers of Earth Science, 2008, 2(3): 327-332. DOI:10.1007/s11707-008-0039-4
Optically stimulated luminescence dating of paleoshorelines revealed Late Quaternary lake evolution in Alxa Plateau
Li Guoqiang1, Tao Shuxian1, She Linlin1, Jin Ming1, Wei Haitao1, Li Fangliang1, Huang Xin1, Wang Zhong1, Yang He1, Wang Xiaoyan1, Yang Liping3, Chen Fahu1,2     
(1 Key Laboratory of Western China's Environmental Systems(Ministry of Education), College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, Gansu;
2 CAS Center for Excellence in Tibetan Plateau Earth Sciences, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101;
3 School of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054, Shaanxi)

Abstract

The arid Alxa Plateau (37°~42°N, 99°107°E) is located at a major climatic transition zone between the East Asian Summer Monsoon (EASM) and the Westerlies. Endorheic rivers terminating in closed lake systems in this region are sensitive to changes in the EASM and westerlies. Well-preserved palaeoshorelines provide a record of lake-level change during the Late Quaternary. Quartz-OSL and post-IR IRSL (pIRIR) luminescence methods have been systematically applied to survey (using d-GPS) palaeoshorelines preserved in the terminal-lake systems of the Heihe River, Shiyang River, Jilantai Salt Lake and the Yabulai Basin to derive chronologies of lake evolution. The earliest shorelines are preserved in the Ejina Basin (> 300 ka). A systematic relation between glacial-interglacial cycles and lake highstands (MIS 9, 7, 5, 1) in Ejina Basin has been identified, attesting to the impact of orbital forcing on the EASM/Westerlies precipitation and lake level changes in Alxa Plateau. However, spatio-temporal variations in lake level changes are indicated in different regions of the Alxa Plateau:(1) Eastern part of the plateau sustained lake highstands during MIS 5e~5c and the mid-Holocene; whereas (2) the western part of the plateau sustained lake highstands during MIS 5c~5a and the Late Holocene. The complex interactions between the East Asian summer monsoon and the Westerlies on glacial-interglacial cycles and inside interglacial is likely responsible for spatial difference of lake level changes inside interglacial at Alxa Plateau.
Key words: Alxa Plateau    palaeolake shorelines    luminescence dating    lake evolution    last interglacial    the Holocene