[1] |
Diaz H F, Hoerling M P, Eischeid J K. ENSO variability, teleconnections and climate change[J]. International Journal of Climatology, 2001, 21(15): 1845-1862. DOI:10.1002/(ISSN)1097-0088 |
[2] |
Wang H J, Chavez F. El Niño and the related phenomenon Southern Oscillation(ENSO):The largest signal in interannual climate variation[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(20): 11071-11072. DOI:10.1073/pnas.96.20.11071 |
[3] |
Tsonis A A, Hunt A G, Elsner J B. On the relation between ENSO and global climate change[J]. Meteorology and Atmospheric Physics, 2003, 84(3-4): 229-242. DOI:10.1007/s00703-003-0001-7 |
[4] |
Conroy J L, Overpeck J T, Cole J E, et al. Holocene changes in eastern tropical Pacific climate inferred from a Galápagos lake sediment record[J]. Quaternary Science Reviews, 2008, 27(11-12): 1166-1180. DOI:10.1016/j.quascirev.2008.02.015 |
[5] |
Moy C M, Seltzer G O, Rodbell D T, et al. Variability of El Niño/Southern Oscillation activity at millennial timescales during the Holocene epoch[J]. Nature, 2002, 420(6912): 162-165. DOI:10.1038/nature01194 |
[6] |
Clement A C, Seager R, Cane M A. Suppression of El Niño during the mid-Holocene by changes in the Earth's orbit[J]. Paleoceanography, 2000, 15(6): 731-737. DOI:10.1029/1999PA000466 |
[7] | |
[8] | |
[9] |
Hu C, Henderson G M, Huang J, et al. Quantification of Holocene Asian monsoon rainfall from spatially separated cave records[J]. Earth and Planetary Science Letters, 2008, 266(3-4): 221-232. DOI:10.1016/j.epsl.2007.10.015 |
[10] |
Brijker J M, Jung S J A, Ganssen G M, et al. ENSO related decadal scale climate variability from the Indo-Pacific Warm Pool[J]. Earth and Planetary Science Letters, 2007, 253(1-2): 67-82. DOI:10.1016/j.epsl.2006.10.017 |
[11] |
Zhao K, Wang Y, Edwards R L, et al. Contribution of ENSO variability to the East Asian summer monsoon in the Late Holocene[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 449: 510-519. doi: 10.1016/j.palaeo.2016.02.044.
|
[12] |
Mcgowan H, Marx S, Moss P, et al. Evidence of ENSO mega-drought triggered collapse of prehistory Aboriginal society in Northwest Australia[J]. Geophysical Research Letters, 2012, 39(22): L22702. doi: 10.1029/2012GL053916.
|
[13] |
Thompson L G, Mosleythompson E, Davis M E, et al. Late glacial stage and Holocene tropical ice core records from Huascaran, Peru[J]. Science, 1995, 269(5220): 46-50. DOI:10.1126/science.269.5220.46 |
[14] |
Haug G H, Hughen K A, Sigman D M, et al. Southward migration of the Intertropical Convergence Zone through the Holocene[J]. Science, 2001, 293(5533): 1304-1308. DOI:10.1126/science.1059725 |
[15] |
Stocker T F, Wright D G, Broecker W S. The influence of high-latitude surface forcing on the global thermohaline circulation[J]. Paleoceanography, 1992, 7(5): 529-541. DOI:10.1029/92PA01695 |
[16] |
Broecker W S. Paleocean circulation during the Last Deglaciation:A bipolar seesaw?[J]. Paleoceanography, 1998, 13(2): 119-121. DOI:10.1029/97PA03707 |
[17] |
Stocker T F, Johnsen S J. A minimum thermodynamic model for the bipolar seesaw[J]. Paleoceanography, 2003, 18(4): 1087. |
[18] |
Fleitmann D, Burns S J, Mudelsee M, et al. Holocene forcing of the Indian monsoon recorded in a stalagmite from Southern Oman[J]. Science, 2003, 300(5626): 1737-1739. DOI:10.1126/science.1083130 |
[19] |
Wang Y, Cheng H, Edwards R L, et al. The Holocene Asian monsoon:Links to solar changes and North Atlantic climate[J]. Science, 2005, 308(5723): 854-857. DOI:10.1126/science.1106296 |
[20] |
Baker P A, Seltzer G O, Fritz S C, et al. The history of South American tropical precipitation for the past 25, 000 years[J]. Science, 2001, 291(5504): 640-643. DOI:10.1126/science.291.5504.640 |
[21] |
Strikis N M, Cruz F W, Cheng H, et al. Abrupt variations in South American monsoon rainfall during the Holocene based on a speleothem record from central-eastern Brazil[J]. Geology, 2011, 39(11): 1075-1078. DOI:10.1130/G32098.1 |
[22] |
Denniston R F, Wyrwoll K-H, Polyak V J, et al. A stalagmite record of Holocene Indonesian-Australian summer monsoon variability from the Australian tropics[J]. Quaternary Science Reviews, 2013, 78: 155-168. doi: 10.1016/j.quascirev.2013.08.004.
|
[23] |
Denniston R F, Ummenhofer C C, Wanamaker A D, et al. Expansion and contraction of the Indo-Pacific tropical rain belt over the last three millennia[J]. Scientific Reports, 2016, 6: 34485. doi: 10.1038/srep34485.
|
[24] |
Kanner L C, Burns S J, Cheng H, et al. High-resolution variability of the South American summer monsoon over the last seven millennia: Insights from a speleothem record from the central Peruvian Andes[J]. Quaternary Science Reviews, 2013, 75: 1-10. doi: 10.1016/j.quascirev.2013.05.008.
|
[25] |
Novello V F, Cruz F W, Karmann I, et al. Multidecadal climate variability in Brazil's Nordeste during the last 3000 years based on speleothem isotope records[J]. Geophysical Research Letters, 2012, 39(23): L23706. doi: 10.1029/2012GL053936.
|
[26] |
Wang B, Ding Q J. Changes in global monsoon precipitation over the past 56 years[J]. Geophysical Research Letters, 2006, 33(6): L06711. doi: 10.1029/2005GL025347.
|
[27] | |
[28] |
安芷生, 吴国雄, 李建平, 等. 全球季风动力学与气候变化[J]. 地球环境学报, 2015, 6(6): 341-381. An Zhisheng, Wu Guoxiong, Li Jianping, et al. Global monsoon dynamics and climate change[J]. Journal of Earth Environment, 2015, 6(6): 341-381. |
[29] | |
[30] |
丁一汇, 孙颖, 刘芸芸, 等. 亚洲夏季风的年际和年代际变化及其未来预测[J]. 大气科学, 2013, 37(2): 253-280. Ding Yihui, Sun Ying, Liu Yunyun, et al. Interdecadal and interannual variabilities of the Asian summer monsoon and its projection of future change[J]. Chinese Journal of Atmospheric Sciences, 2013, 37(2): 253-280. |
[31] |
张键, 李廷勇. "雨量效应"与"环流效应":近1 ka亚澳季风区石笋和大气降水 δ18O的气候意义[J]. 第四纪研究, 2018, 38(6): 1532-1544. Zhang Jian, Li Tingyong. "Amount effect" vs."Circulation effect":The climate significance of precipitation and stalagmite δ18O in the Asia Australia monsoon region over the past 1 ka[J]. Quaternary Sciences, 2018, 38(6): 1532-1544. |
[32] | |
[33] | |
[34] | |
[35] |
郝青振, 张人禾, 汪品先, 等. 全球季风的多尺度演化[J]. 地球科学进展, 2016, 31(7): 689-699. Hao Qingzhen, Zhang Renhe, Wang Pinxian, et al. Monsoons across multi-scales:Summary of fourth conference on Earth system science[J]. Advances in Earth Science, 2016, 31(7): 689-699. |
[36] |
Kathayat G, Cheng H, Sinha A, et al. The Indian monsoon variability and civilization changes in the Indian subcontinent[J]. Science Advances, 2017, 3(12), doi: 10.1126/sciadv.1701296.
|
[37] |
Tan L, Cai Y, Cheng H, et al. Centennial-to decadal-scale monsoon precipitation variations in the upper Hanjiang River region, China over the past 6650 years[J]. Earth and Planetary Science Letters, 2018, 482: 580-590. doi: 10.1016/j.epsl.2017.11.044.
|
[38] |
Cosford J, Qing H, Eglington B, et al. East Asian monsoon variability since the mid-Holocene recorded in a high-resolution, absolute-dated aragonite speleothem from Eastern China[J]. Earth and Planetary Science Letters, 2008, 275(3-4): 296-307. DOI:10.1016/j.epsl.2008.08.018 |
[39] |
Rasmussen J B T, Polyak V J, Asmerom Y. Evidence for Pacific-modulated precipitation variability during the Late Holocene from the Southwestern USA[J]. Geophysical Research Letters, 2006, 33(8): L08701. doi: 10.1029/2006gl025714.
|
[40] |
Bernal J P, Lachniet M, McCulloch M, et al. A speleothem record of Holocene climate variability from Southwestern Mexico[J]. Quaternary Research, 2011, 75(1): 104-113. DOI:10.1016/j.yqres.2010.09.002 |
[41] |
Jones M D, Metcalfe S E, Davies S J, et al. Late Holocene climate reorganisation and the North American monsoon[J]. Quaternary Science Reviews, 2015, 124: 290-295. doi: 10.1016/j.quascirev.2015.07.004.
|
[42] |
Asmerom Y, Polyak V, Burns S, et al. Solar forcing of Holocene climate:New insights from a speleothem record, Southwestern United States[J]. Geology, 2007, 35(1): 1-4. DOI:10.1130/G22865A.1 |
[43] |
Wang X, Edwards R L, Auler A S, et al. Hydroclimate changes across the Amazon lowlands over the past 45, 000 years[J]. Nature, 2017, 541(7636): 204-207. DOI:10.1038/nature20787 |
[44] |
Maher B A. Holocene variability of the East Asian summer monsoon from Chinese cave records:A re-assessment[J]. The Holocene, 2008, 18(6): 861-866. DOI:10.1177/0959683608095569 |
[45] |
Dayem K E, Molnar P, Battisti D S, et al. Lessons learned from oxygen isotopes in modern precipitation applied to interpretation of speleothem records of paleoclimate from Eastern Asia[J]. Earth and Planetary Science Letters, 2010, 295(1-2): 219-230. DOI:10.1016/j.epsl.2010.04.003 |
[46] | |
[47] | |
[48] |
王权, 汪永进, 刘殿兵, 等. DO 3事件的湖北神农架高分辨率年纹层石笋记录[J]. 第四纪研究, 2017, 37(1): 108-117. Wang Quan, Wang Yongjin, Liu Dianbing, et al. The DO 3 event in Asian monsoon climates evidenced by an annually laminated stalagmite from Qingtian Cave, Mt. Shennongjia[J]. Quaternary Sciences, 2017, 37(1): 108-117. |
[49] |
Pausata F S R, Battisti D S, Nisancioglu K H, et al. Chinese stalagmite δ18O controlled by changes in the Indian monsoon during a simulated Heinrich event[J]. Nature Geoscience, 2011, 4(7): 474-480. DOI:10.1038/ngeo1169 |
[50] |
Caley T, Roche D M, Renssen H. Orbital Asian summer monsoon dynamics revealed using an isotope-enabled global climate model[J]. Nature Communications, 2014, 5: 5371. doi: 10.1038/ncomms6371.
|
[51] |
Lekshmy P R, Midhun M, Ramesh R, et al. 18O depletion in monsoon rain relates to large scale organized convection rather than the amount of rainfall[J]. Scientific Reports, 2014, 4: 5661. doi: 10.1038/srep05661.
|
[52] |
蒋文静, 赵侃, 陈仕涛, 等. 小冰期十年际尺度亚洲季风变化的四川黑竹沟洞石笋记录[J]. 第四纪研究, 2017, 37(1): 118-129. Jiang Wenjing, Zhao Kan, Chen Shitao, et al. Decadal climate oscillations during the Little Ice Age of stalagmite record from Heizhugou Cave, Sichuan[J]. Quaternary Sciences, 2017, 37(1): 118-129. |
[53] |
孙喜利, 杨勋林, 史志超, 等. 石笋记录的西南地区MIS 4阶段夏季风的演化[J]. 第四纪研究, 2017, 37(6): 1370-1380. Sun Xili, Yang Xunlin, Shi Zhichao, et al. The evolution of summer monsoon in Southwest China during MIS 4 as revealed by stalagmite δ18O record[J]. Quaternary Sciences, 2017, 37(6): 1370-1380. |
[54] |
Breitenbach S F M, Adkins J F, Meyer H, et al. Strong influence of water vapor source dynamics on stable isotopes in precipitation observed in southern Meghalaya, NE India[J]. Earth and Planetary Science Letters, 2010, 292(1-2): 212-220. DOI:10.1016/j.epsl.2010.01.038 |
[55] |
Liu Z, Wen X, Brady E C, et al. Chinese cave records and the East Asia Summer Monsoon[J]. Quaternary Science Reviews, 2014, 83(1): 115-128. doi: 10.1016/j.quascirev.2013.10.021.
|
[56] |
Tan M. Circulation effect:Response of precipitation δ18O to the ENSO cycle in monsoon regions of China[J]. Climate Dynamics, 2014, 42(3-4): 1067-1077. DOI:10.1007/s00382-013-1732-x |
[57] |
胡超涌, 汪颖钊, 刘浴辉, 等. 9.6-6.0 ka B. P.阿曼降水重建及其与中国南方降水的对比[J]. 第四纪研究, 2016, 36(3): 581-586. Hu Chaoyong, Wang Yingzhao, Liu Yuhui, et al. Rainfall reconstruction from Oman during 9.6-6.0 ka B. P. and its comparison with that from Southwest China[J]. Quaternary Sciences, 2016, 36(3): 581-586. |
[58] |
胡尊语, 覃荣蓓, 樊仁为, 等. 湖北清江和尚洞石笋色度对温度的响应[J]. 第四纪研究, 2018, 38(6): 1487-1493. Hu Zunyu, Qin Rongbei, Fan Renwei, et al. The paleo-temperature significance of color of annual laminae stalagmite from Heshang Cave, Central China[J]. Quaternary Sciences, 2018, 38(6): 1487-1493. |
[59] |
董进国, 赵侃, 沈川洲, 等. 黄土高原石笋记录的DO 25季风增强事件[J]. 第四纪研究, 2016, 36(6): 1502-1509. Dong Jinguo, Zhao Kan, Shen Chuan-Chou, et al. Strong East Asian summer monsoon during the DO 25 event recorded by an absolute-dated stalagmite from Dragon Cave, Northern China[J]. Quaternary Sciences, 2016, 36(6): 1502-1509. |
[60] |
崔梦月, 洪晖, 孙晓双, 等. 福建仙云洞石笋记录的新仙女木突变事件结束时的缓变特征[J]. 第四纪研究, 2018, 38(3): 711-719. Cui Mengyue, Hong Hui, Sun Xiaoshuang, et al. The gradual change characteristics at the end of the Younger Dryas event inferred from a speleothem record from Xianyun Cave, Fujian Province[J]. Quaternary Sciences, 2018, 38(3): 711-719. |
[61] | |
[62] |
Tan L C, Cai Y J, Cheng H, et al. High resolution monsoon precipitation changes on southeastern Tibetan Plateau over the past 2300 years[J]. Quaternary Science Reviews, 2018, 195: 122-132. doi: 10.1016/j.quascirev.2018.07.021.
|
[63] |
Lachniet M S, Patterson W P. Use of correlation and stepwise regression to evaluate physical controls on the stable isotope values of Panamanian rain and surface waters[J]. Journal of Hydrology, 2006, 324(1-4): 115-140. DOI:10.1016/j.jhydrol.2005.09.018 |
[64] |
Lachniet M S, Asmerom Y, Polyak V, et al. Two millennia of Mesoamerican monsoon variability driven by Pacific and Atlantic synergistic forcing[J]. Quaternary Science Reviews, 2017, 155: 100-113. doi: 10.1016/j.quascirev.2018.07.021.
|
[65] |
Vuille M, Werner M. Stable isotopes in precipitation recording South American summer monsoon and ENSO variability:Observations and model results[J]. Climate Dynamics, 2005, 25(4): 401-413. DOI:10.1007/s00382-005-0049-9 |
[66] |
Wang X, Auler A S, Edwards R L, et al. Millennial-scale precipitation changes in Southern Brazil over the past 90, 000 years[J]. Geophysical Research Letters, 2007, 34(23): L23701. doi: 10.1029/2007GL031149.
|
[67] |
Bernal J P, Cruz F W, Strikis N M, et al. High-resolution Holocene South American monsoon history recorded by a speleothem from Botuvera Cave, Brazil[J]. Earth and Planetary Science Letters, 2016, 450: 186-196. doi: 10.1016/j.epsl.2016.06.008.
|
[68] |
Griffiths M L, Drysdale R N, Gagan M K, et al. Evidence for Holocene changes in Australian-Indonesian monsoon rainfall from stalagmite trace element and stable isotope ratios[J]. Earth and Planetary Science Letters, 2010, 292(1-2): 27-38. DOI:10.1016/j.epsl.2010.01.002 |
[69] |
丁一汇, 司东, 柳艳菊, 等. 论东亚夏季风的特征、驱动力与年代际变化[J]. 大气科学, 2018, 42(3): 533-558. Ding Yihui, Si Dong, Liu Yanju, et al. On the characteristics, driving forces and inter-decadal variability of the East Asian summer monsoon[J]. Chinese Journal of Atmospheric Sciences, 2018, 42(3): 533-558. |
[70] |
Hong Y T, Hong B, Lin Q H, et al. Inverse phase oscillations between the East Asian and Indian Ocean summer monsoons during the last 12, 000 years and paleo-El Niño[J]. Earth and Planetary Science Letters, 2005, 231(3-4): 337-346. DOI:10.1016/j.epsl.2004.12.025 |
[71] |
Dykoski C A, Edwards R L, Cheng H, et al. A high-resolution, absolute-dated Holocene and deglacial Asian monsoon record from Dongge Cave, China[J]. Earth and Planetary Science Letters, 2005, 233(1-2): 71-86. DOI:10.1016/j.epsl.2005.01.036 |
[72] |
Wahl D, Byrne R, Anderson L. An 8700 year paleoclimate reconstruction from the southern Maya lowlands[J]. Quaternary Science Reviews, 2014, 103: 19-25. doi: 10.1016/j.quascirev.2014.08.004.
|
[73] |
Rosenmeier M F, Brenner M, Hodell D A, et al. A model of the 4000-year paleohydrology( δ18O)record from Lake Salpetén, Guatemala[J]. Global and Planetary Change, 2016, 138: 43-55. doi: 10.1016/j.gloplacha.2015.07.006.
|
[74] |
Hodell D A, Curtis J H, Jones G A, et al. Reconstruction of Caribbean climate change over the past 10, 500 years[J]. Nature, 1991, 352(6338): 790-793. DOI:10.1038/352790a0 |
[75] |
Chen S, Hoffmann S S, Lund D C, et al. A high-resolution speleothem record of western equatorial Pacific rainfall: Implications for Holocene ENSO evolution[J]. Earth and Planetary Science Letters, 2016, 442: 61-71. doi: 10.1016/j.epsl.2016.02.050.
|
[76] |
Haberle S G, Ledru M-P. Correlations among charcoal records of Fires from the past 16, 000 years in Indonesia, Papua New Guinea, and Central and South America[J]. Quaternary Research, 2001, 55(1): 97-104. DOI:10.1006/qres.2000.2188 |
[77] |
Berger A L. Long-term variations of caloric insolation resulting from the Earth's orbital elements[J]. Quaternary Research, 1978, 9(2): 139-167. DOI:10.1016/0033-5894(78)90064-9 |
[78] |
Rodbell D T, Seltzer G O, Anderson D M, et al. An similar 15, 000-year record of El Niño-driven alluviation in southwestern Ecuador[J]. Science, 1999, 283(5401): 516-520. DOI:10.1126/science.283.5401.516 |
[79] |
Koutavas A, Joanides S. El Niño-Southern Oscillation extrema in the Holocene and Last Glacial Maximum[J]. Paleoceanography, 2012, 27: PA4208. doi: 10.1029/2012PA002378.
|
[80] |
Toth L T, Aronson R B, Vollmer S V, et al. ENSO drove 2500-year collapse of eastern Pacific coral reefs[J]. Science, 2012, 337(6090): 81-84. DOI:10.1126/science.1221168 |
[81] |
Cobb K M, Westphal N, Sayani H R, et al. Highly variable El Niño-Southern Oscillation throughout the Holocene[J]. Science, 2013, 339(6115): 67-70. DOI:10.1126/science.1228246 |
[82] |
Zhang Z, Leduc G, Sachs J P. El Niño evolution during the Holocene revealed by a biomarker rain gauge in the Galápagos Islands[J]. Earth and Planetary Science Letters, 2014, 404: 420-434. doi: 10.1016/j.epsl.2014.07.013.
|
[83] |
Wang B, Xiang B, Lee J-Y. Subtropical high predictability establishes a promising way for monsoon and tropical storm predictions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(8): 2718-2722. DOI:10.1073/pnas.1214626110 |
[84] |
Zhou T, Yu R, Zhang J, et al. Why the Western Pacific Subtropical High has extended westward since the late 1970s[J]. Journal of Climate, 2009, 22(8): 2199-2215. DOI:10.1175/2008JCLI2527.1 |
[85] |
Wang H J, Chen H P. Climate control for Southeastern China moisture and precipitation: Indian or East Asian monsoon?[J]. Journal of Geophysical Research, 2012, 117: D12109. doi: 10.1029/2012JD017734.
|
[86] | |
[87] | |
[88] |
谭明, 南素兰, 段武辉. 中国季风区大气降水同位素的季节尺度环流效应[J]. 第四纪研究, 2016, 36(3): 575-580. Tan Ming, Nan Sulan, Duan Wuhui. Seasonal scale circulation effect of stable isotope in atmospheric precipitation in the monsoon regions of China[J]. Quaternary Sciences, 2016, 36(3): 575-580. |
[89] |
Kumar K K, Rajagopalan B, Cane M A. On the weakening relationship between the Indian monsoon and ENSO[J]. Science, 1999, 284(5423): 2156-2159. DOI:10.1126/science.284.5423.2156 |
[90] |
Power S, Haylock M, Colman R, et al. The predictability of interdecadal changes in ENSO activity and ENSO teleconnections[J]. Journal of Climate, 2006, 19(19): 4755-4771. DOI:10.1175/JCLI3868.1 |
[91] | |
[92] |
Garreaud R, Vuille M, Clement A C. The climate of the Altiplano:Observed current conditions and mechanisms of past changes[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003, 194(1-3): 5-22. DOI:10.1016/S0031-0182(03)00269-4 |
[93] |
Vuille M. Modeling δ18O in precipitation over the tropical Americas: 2. Simulation of the stable isotope signal in Andean ice cores[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D6), doi: 10.1029/2001JD002039.
|
[94] |
Lau K M, Zhou J. Anomalies of the South American summer monsoon associated with the 1997-99 El Niño-Southern Oscillation[J]. International Journal of Climatology, 2003, 23(5): 529-539. DOI:10.1002/joc.v23:5 |
[95] |
Garreaud R D, Vuille M, Compagnucci R, et al. Present-day South American climate[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 281(3-4): 180-195. DOI:10.1016/j.palaeo.2007.10.032 |
[96] |
Stott L, Cannariato K, Thunell R, et al. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch[J]. Nature, 2004, 431(7004): 56-59. DOI:10.1038/nature02903 |
[97] |
Rein B, Lückge A, Reinhardt L, et al. El Niño variability off Peru during the last 20, 000 years[J]. Paleoceanography, 2005, 20(4): PA4003. doi: 10.1029/2004PA00109.
|
[98] |
Amador J A, Alfaro E J, Lizano O G, et al. Atmospheric forcing of the eastern tropical Pacific:A review[J]. Progress in Oceanography, 2006, 69(2-4): 101-142. DOI:10.1016/j.pocean.2006.03.007 |
[99] | |