第四纪研究  2019, Vol.39 Issue (3): 525-534   PDF    
北半球大冰期(约2.73 Ma)前后北太平洋风尘沉积突变
张文防1,2, 李高军2, 陈骏2     
(1 中国科学院南京地理与湖泊研究所, 湖泊与环境国家重点实验室, 江苏 南京 210008;
2 南京大学地球科学与工程学院, 表生地球化学教育部重点实验室, 江苏 南京 210023)
摘要:距今约2.73 Ma,北半球高纬地区冰盖急剧发展,北半球大冰期来临,成为最引人注目的事件。北半球大冰期成因已有诸多解释,其中之一是大陆干旱化加剧,输入到大洋的粉尘增多引起海洋铁肥效应增强和生物量增多,吸收了更多大气CO2,使得地球变冷和冰盖增加。作为全球第二大粉尘释放中心,亚洲内陆干旱区释放的粉尘是北太平洋沉积物中主要陆源组分之一。开展北半球大冰期前后西北太平洋沉积物记录的亚洲粉尘研究,有助于深入认识风尘铁肥效应对北半球大冰期形成的可能贡献。文章依据大洋钻探计划(Ocean Drilling Program,简称ODP)198航次西北太平洋1208钻孔(共钻取沉积物392.3 m;本研究深度121.3 m至130.1 m,时间段为2.62 Ma至2.85 Ma)北半球大冰期前后的高分辨率(约2500年)样品,提取了沉积物中的"风尘组分",计算了风尘通量,研究了风尘通量变化和海洋生产力之间的关联。研究结果显示,约2.73 Ma以来,1208钻孔风尘通量快速增加,已发表的该孔的海洋生产力也表现出快速增加,海水表面温度也快速降低,说明粉尘对海洋的铁肥效应可能是触发北半球大冰期形成的重要因素。文章还测试了"风尘组分"的Nd和Sr同位素,研究了粉尘物源变动。结果显示,塔克拉玛干沙漠是北半球大冰期前后1208钻孔粉尘的主要物源,其中2.73 Ma至2.85 Ma期间Nd和Sr同位素波动较大,推测与火山灰含量较多和戈壁粉尘沉积有关,位置偏北的西风可能是部分戈壁粉尘长距离运输至北太平洋的主要营力。2.73 Ma以来,北极冰盖大量发育,西风位置南移,主要运输塔克拉玛干沙漠粉尘至北太平洋,使得Nd和Sr同位素波动较小,但其中2.72 Ma至2.70 Ma期间出现的Nd同位素偏正、Sr同位素变小很可能是火山灰的突然大量沉积造成的。
关键词亚洲粉尘    北半球大冰期    西北太平洋    1208钻孔    
中图分类号     P722;P534.6;P532                     文献标识码    A

0 引言

距今约2.73Ma,北半球高纬地区冰川急剧扩张,大西洋和北太平洋高纬度地区沉积物中出现大量冰筏碎屑[1~2],地球大冰期来临,气候开始进入“4万年周期”时代[3],成为引人注目的事件。太阳辐射量变化[4]、巴拿马海峡关闭[1]以及印度尼西亚岛屿生长[5]等因素都已用来解释2.73Ma大冰期成因,但至今还没有一种因素能完美解释[6]。此外,粉尘也可能在北半球大冰期形成过程中扮演了重要角色。大陆干旱区的粉尘携带的铁等营养元素可促进海洋铁肥效应增强以及海洋浮游生物量增加,吸收更多大气CO2,使地球变冷,驱动冰盖形成[6]

亚洲内陆干旱区是全球第二大粉尘释放中心[7],粉尘影响范围可涵盖中国黄土高原和北太平洋[8]。北太平洋沉积物石英氧同位素及粘土矿物等证实亚洲粉尘是太平洋沉积物的主要成分[9~10]。约2.73Ma前后亚洲内陆古环境和大气环流发生了显著变化,表现为干旱化加剧和亚洲季风增强[11~12]。北太平洋ODP885钻孔(44.7°N,168.3°W)风尘输入通量的急剧增加也显示北半球大冰期时亚洲内陆干燥程度加剧[13]。另外,西北太平洋亚北极海域ODP882A钻孔(50°22′N,167°36′E)在2.73Ma前后亚洲粉尘输入量增加,促使样品磁性增强,也指示了北半球大冰期开始时亚洲内陆干旱化加剧[14]。然而,882A钻孔粉尘输入量在北半球大冰期开始时显著增加并未引起该海域海洋生产力显著增强[1]。研究发现,该孔所在海域北半球大冰期开始时出现海水分层,底层海水中营养物质无法传输到上部海水,导致海洋生产力显著下降[1]。然而,北太平洋亚热带海域在北半球大冰期前后粉尘输入量如何变化,与海洋生产力关系如何,还没有开展过详细研究。

北半球大冰期时亚洲内陆干旱化和大气环流的变化可能也会引起北太平洋接收的亚洲粉尘物质来源发生变化。塔克拉玛干沙漠和戈壁沙漠通常被认为是亚洲内陆干旱区两个重要的粉尘释放中心。塔克拉玛干沙漠粉尘主要在高空西风作用下长距离运输,可到达北太平洋及格林兰等地[8, 15~18];戈壁沙漠粉尘则主要依靠地面西北风或冬季风近距离运输,影响范围一般最远可到东亚大陆东部以及西北太平洋海岸地带[8, 18]。西北太平洋远洋沉积物是否有戈壁粉尘沉积仍然是一个尚未确定的问题,尤其是2.73Ma北半球大冰期前后东亚冬季风显著增强背景下,戈壁粉尘是否能够运输至北太平洋还有待进一步研究。

准确示踪北太平洋沉积物中亚洲粉尘的潜在物源存在很大困难。除亚洲粉尘外,火山灰也是北太平洋沉积物中的重要组分[17, 19~20]。尽管Rea和Janecek[21]、Olivarez等[22]很早就提出了化学分离北太平洋沉积物中风尘组分的方法,但此方法却无法去除火山灰以及海洋自生矿物等组分,提取的风尘组分真正意义上也只能是“准风尘”[20]。环西北太平洋边缘海离火山较近,沉积物中亚洲粉尘比例低,火山灰比例较高;而中北太平洋远离火山带,沉积物中粉尘比例明显增多[19, 23]。提取的“风尘组分”中火山灰的存在对亚洲粉尘物质来源准确示踪存在很大干扰。比如,运用“风尘组分” Nd和Sr同位素示踪太平洋沉积物风尘物源时,环太平洋沉积物中由于火山灰比例高,“风尘组分”的Nd和Sr同位素组成在εNd-87Sr/86Sr区分图中靠近火山灰端元,沉积物“风尘组分”物源可解释为火山灰与亚洲内陆任一潜在物源区粉尘的混合[19],很难有效区分来自亚洲内陆哪个干旱区。近年来,国内外学者研究菲律宾海沉积物中粉尘来源问题产生了分歧。有学者认为粉尘主要来自东亚东部沙漠,包括巴丹吉林沙漠、腾格里沙漠和鄂尔多斯干旱区等,这些沙漠释放的粉尘主要在东亚冬季风作用下运输至该海域[24~25];另一种观点则认为,菲律宾海沉积物中粉尘主要来自塔克拉玛干沙漠,粉尘则主要通过高空西风和东北信风传送[26~27]。菲律宾海靠近吕宋岛火山,沉积物中火山灰含量较高,Nd和Sr同位素组成靠近火山灰端元[24],对判断粉尘来自亚洲内陆干旱区哪些沙漠造成很大困难。另外,运用Nd和Sr同位素圈定北太平洋沉积物中“风尘组分”来源时,需要较为精确的火山灰和潜在物源区沙漠端元Nd和Sr同位素组成及Nd和Sr元素浓度以获得准确的同位素端元混合曲线。

本文对西北太平洋1208钻孔约2.73Ma北半球大冰期前后沉积物进行了高分辨率取样,提取了沉积物中的“风尘组分”,计算了风尘通量。通过与该孔发表的高分辨率长链烯酮沉积通量指示的生产力指标对比,探讨了风尘与海洋生产力的相互关系,检验了风尘铁肥效应在促进海洋生产力提高,全球气候变冷和大冰期形成假说中的作用[6]。此外,测试了提取的“风尘组分”Nd和Sr同位素组成,结合已发表的潜在物源区沙漠的Nd、Sr同位素组成及Nd、Sr元素浓度,探讨了北半球大冰期前后粉尘来源的变化,论述了北半球大冰期前后北太平洋风尘沉积突变可能与东亚季风强度和西风位置变动有重要关联。

1 材料与方法

1208钻孔(36°07.6′N,158°12.1′E)是大洋钻探计划(Ocean Drilling Program,简称ODP)198航次的第二个钻孔,位于西北太平洋Shatsky高地(Shatsky Rise)中间高地中心部位,水深3346m。该孔离大陆较远,可避开河流物质的影响(图 1)。1208钻孔共钻取沉积物392.3m,其中顶部至328.15m沉积物为新生代沉积,主要由含有丰富的钙质微化石软泥、硅藻和放射虫等组成[28]。沉积物碳酸钙平均含量为53wt %,样品取芯率为95 %。初步研究显示,该段沉积物中存在间歇的火山灰沉积[28]

图 1 西北太平洋研究钻孔ODP1208位置和亚洲内陆干旱区沙漠和黄土高原分布图 其他钻孔为本项目研究引用数据钻孔;绿色实点指示北太平洋钻孔,绿色圈点指示环太平洋钻孔;箭头指示戈壁粉尘和塔克拉玛干沙漠粉尘运输方向 Fig. 1 Map showing the locations of the ODP site 1208 and distributions of loess and deserts in Asian interior. Sites labeled with open green and green-filled circles are those with published Nd and Sr isotopic data in circum-Pacific and north central Pacific regions, respectively. The shaded areas in the Asian interior are the potential source regions of Asian dust. Yellow and green arrows indicate transportation of Gobi and Taklimakan dust by the East Asian winter monsoon and westerly wind, respectively

89个样品采自1208钻孔深度121.3m至130.1m,采样间距约10cm。该段样品年代框架已由底栖有孔虫氧同位素曲线调谐至全球深海有孔虫氧同位素曲线(LR04)获得[29~30](图 2a2b)。本研究采样时间段为2.62Ma至2.85Ma,分辨率约2500年。年代结果显示,该段沉积物沉积连续、沉积速率高且稳定,是开展粉尘研究的良好材料。

图 2 1208钻孔“风尘组分”含量(ODED %) (c)、风尘通量(d)和Nd同位素组成(g)和Sr同位素组成(h)演化及与其他指标对比图 (a)1208底栖有孔虫氧同位素[29];(b)LR04氧同位素[30];(e)长链烯酮沉积通量[31];(f)海水表面温度数据[32];(i)磁化率[28] Fig. 2 Time series of the ODED content (c), ODED flux (d), Nd (g) and Sr (h) isotopic compositions at site 1208 compared with other records. (a)Benthic oxygen isotope at site 1208[29]; (b)LR04 curve[30]; (e)Alkenone mass accumulation rates from site 1208[31]; (f)Alkenone-based sea surface temperature(SST)from site 1208[32]; (i)Magnetic susceptibility from site 1208[28]
1.1 沉积物“风尘组分”提取

北太平洋沉积物主要由亚洲粉尘、火山灰以及海洋自生矿物等物质组成[21]。风尘组分提取依据Rea和Janecek[21]提出的化学分离流程。简述如下:准确称量约4g烘干的样品放入锥形瓶,加入足量0.5mol/L的醋酸去掉碳酸钙。二次水清洗样品后,在水浴状态下,加二水合柠檬酸三钠和碳酸氢钠混合溶液以及保险粉(低亚硫酸钠)去掉样品中铁锰氧化物和氢氧化物。去离子水清洗样品后,加30 %双氧水去除有机质。二次水清洗样品,过500目(28μm)筛。小于500目样品在水浴状态下,加入无水碳酸钠去除残余蛋白石。剩余样品主要是硅酸盐成分,称为“风尘组分”(operationally-defined eolian dust,简称ODED)。

本研究选择28μm孔径筛子提取粉尘主要基于两个考虑:1)亚洲粉尘经过长距离运输,平均粒径大都小于8μm[33~35]。8μm左右的筛子孔径较小,不易操作,工作效率低,且可能会存在粉尘组分提取不完全导致较大误差。2)过500目筛可提取全部风尘组分,混入的大颗粒硅藻和放射虫等可在后续去蛋白石过程中溶解去除,减少实验操作带来的误差。

“风尘组分”(ODED)含量(fODED)可通过化学处理后称重获得。“风尘”通量(FODED,单位:mg/cm2/ka)计算公式为:

其中,fODED为提取的ODED组分占初始样品质量百分比;DBD为样品的干容重(Dry Bulk Density,单位:g/cm3);LSR为线性沉积速率(Linear Sedimentation Rate,单位:cm/ka)。其中,DBD数据根据航次获得的干容重数据[28]内插获得;LSR根据已获得的年代框架[29]插值获得。

1.2 Nd和Sr同位素测试

在超净实验室内称取约50mg提取的ODED样品放入溶样罐中,加入氢氟酸和硝酸在120℃加热板上消解约36 h。之后通过离子交换树脂分离出Sr和Nd[36]。同位素比值用高分辨率多接收电感耦合等离子体磁式质谱仪(LR-MC-ICP-MS)测试。整个实验流程在南京大学表生地球化学教育部重点实验室完成。为校正质量歧视效应,87Sr/86Sr比值标准化到86Sr/88Sr=0.1194,143Nd/144Nd比值标准化到146Nd/144Nd=0.7219。试验流程空白Sr小于1 ng,Nd小于60 pg。10次重复分析标准物质溶液的87Sr/86Sr比值为0.710264±13(SRM987),143Nd/144Nd比值为0.512121±7(Jndi-1)。为验证方法可靠性,重复测试多次国际标准物质玄武岩样品BCR-2,获得87Sr/86Sr比值为0.705015±18,143Nd/144Nd比值为0.512630±9,测试结果与国内外实验室一致。Nd同位素组成143Nd/144Nd比值以εNd值表达(εNd=(143Nd/144Ndsample/143Nd/144NdCHUR-1)×10000),CHUR指球粒陨石均一储库(Chondritic Uniform Reservoir),其中,(143Nd/144Nd)CHUR值为0.512638[37]

1.3 微量元素测试

称取50mg左右样品,加入Teflon溶样罐中,加氢氟酸、高氯酸和硝酸加热150℃消解96h以上。蒸至近干后的样品用稀盐酸溶解定容,用等离子体质谱仪(ICP-MS)进行分析。经过元素之间的光谱干扰矫正后,获得最后分析结果。实验在澳实分析检测(广州)有限公司测试完成。测试误差一般不超过5 %。

2 结果

本研究获得的“风尘组分”(ODED)含量百分比和沉积通量变化如图 2c2d所示。“风尘组分”含量、沉积通量和Nd、Sr同位素数据在课题组以往文章中已报道[17],但没有开展这些数据的详细研究。结果显示,1208钻孔ODED组分含量波动范围较大,在20 %至90 %之间波动,最明显特征是在2.73Ma时显著增加,从约30 %急剧增加至90 %,随后快速下降,至2.7Ma时,下降到约20 %。ODED组分在2.62Ma至2.7Ma及2.73Ma至2.85Ma期间均有小幅波动,最高波动幅度相当,均未超过70 % (图 2c)。计算的风尘通量变化趋势与ODED组分含量相似,在2.73Ma由70 mg/cm2/ka快速增加至360 mg/cm2/ka,最高值是增长前5倍之多,在2.7Ma时,下降至约60mg/cm2/ka(图 2d)。

1208钻孔提取的“风尘组分”εNd87Sr/86Sr比值在2.69Ma至2.85Ma期间变化幅度较大,在2.62Ma至2.69Ma期间则较为稳定,变化幅度不大。εNd在2.70Ma至2.72Ma期间,以及约2.79Ma和2.84Ma时明显偏正,87Sr/86Sr比值明显偏低(图 2g2h)。通过与不同地区的沉积物及火山灰的Nd和Sr同位素对比以及浓度数据分析[16~17, 19, 24, 26, 38~46],εNd87Sr/86Sr组成的二维图显示(图 3),1208钻孔大部分样品集中在塔克拉玛干沙漠端元与火山灰端元组成的混合线附近,少部分样品则分散在戈壁沙漠端元附近或在戈壁沙漠和与火山灰端元组成的混合线附近。

图 3 西北太平洋1208钻孔样品Nd和Sr同位素组成 数据来源:潜在物源区沙漠Nd和Sr同位素[15~16, 38];Nd和Sr元素浓度数据[39];火山灰Nd和Sr同位素[40~43];环太平洋和中北太平洋沉积物Nd和Sr同位素数据[17, 19, 24, 26, 44~46] Fig. 3 Sr-Nd isotopic composition of the ODED at site 1208 and other north Pacific sediments. Data sources:Nd and Sr isotopes of deserts[15~16, 38]; Nd and Sr elements concentrations[39]; Nd and Sr isotopes of volcanic ash[40~43]; Nd and Sr isotopes of circum-Pacific and north central Pacific sediments[17, 19, 24, 26, 44~46]

1208钻孔提取的“风尘组分”稀土元素(REE)标准化至澳大利亚后太古代黑色页岩(PAAS)[47]的配分模式与中国沙漠和黄土[39]样品小于5μm组分相似,但总REE含量相比沙漠和黄土样品[39]明显偏低。REE配分模式和海水[48]、火山灰[49]以及热液物质[50]REE配分模式相比差异较大(图 4)。

图 4 1208钻孔高分辨率样品稀土元素配分曲线图 数据来源:澳大利亚后太古代黑色页岩[47];中国沙漠和黄土 < 5μm硅酸盐组分[39];太平洋底部海水[48];西北太平洋火山灰[49];热液物质[50] Fig. 4 PAAS-normalized REE patterns at northwest Pacific site 1208. Data sources:PAAS[47]; < 5μm silicate fractions of Chinese deserts and loess[39]; North Pacific bottom water[48]; Volcanic ash in northwest Pacific oceans[49]; Hydrothermal materials[50]
3 讨论 3.1 北半球大冰期(2.73Ma)前后北太平洋风尘通量突变

北太平洋粉尘通量常用来指示亚洲内陆干旱化历史[35]。约2.73Ma时,1208钻孔粉尘通量急剧增加,反映了亚洲内陆干旱区干燥程度加剧,东亚季风增强[11~12]。粉尘通量的变化和用长链烯酮沉积通量反演的古生产力变化[31]趋势一致(图 2d2e)。约2.73Ma之前,风尘通量和长链烯酮沉积通量波动幅度较小;约2.73Ma以来,粉尘通量急剧增加,生产力也相应快速增加,这可能与粉尘带来的铁等营养元素刺激了浮游生物的大量生长有关。在北太平洋和南大洋,表层海水生产力常受到铁元素制约[51]。风尘物质带来的铁元素等营养元素则是表层海水铁元素的主要来源,风尘通量增加,带来的铁元素增多促进了浮游植物生长,吸收更多大气二氧化碳,使得全球气候变冷[51]。研究显示,大气二氧化碳浓度在晚上新世从400 ppm降至300 ppm[52]。晚上新世大气二氧化碳浓度降低对于北半球大冰期形成至关重要[53]。冰盖的增长会将更多的辐射能量反射回太空,使地表更冷,冰川生长更大,地球进入冰期气候,又会使得粉尘大量增加,形成一种正反馈机制。1208钻孔粉尘通量变化,与深海氧同位素[30]呈现出变化耦合,特别是2.73Ma以来表现为粉尘通量增大,氧同位素快速偏重,冰量增加(图 2a2b2d)。1208钻孔记录的海水表面温度在约2.73Ma也快速下降,降幅达到2~3℃[32](图 2f)。因此,本研究表明,粉尘引起的海洋铁肥效应增强可能是驱使北半球大冰盖形成的重要因素之一。然而,本文对粉尘增多和全球变冷,冰盖增加之间谁先谁后问题难以有效分辨,需进一步开展研究[6]

有趣的是,与北半球大冰期开始时1208钻孔记录的风尘通量和古生产力耦合不同,在北极亚极地太平洋海域的882A钻孔粉尘通量虽然显著增加[14],但海洋生产力显著降低。这是由于该海域形成的永久温跃层阻止了下部海水中营养物质运输至上部海水,导致了海洋生产力显著降低[1]。本研究1208钻孔2.73Ma以来,风尘通量和古生产力均快速增加,显示海水营养物质可与风尘带来的铁等营养元素共同促进海洋生物量增加,生产力提高[31]

3.2 北半球大冰期前后1208钻孔风尘物源变动

1208钻孔“风尘组分”稀土元素(REE)标准化至PAAS[47]的配分模式与中国沙漠和黄土样品小于5μm组分[39]相似,表明亚洲粉尘是“风尘组分”的主要组分。“风尘组分”稀土元素总含量相对偏低,与组分中含有一定量的火山灰有关(图 4)。在εNd-87Sr/86Sr二维图中,大部分样品集中在塔克拉玛干沙漠端元与火山灰端元同位素混合线附近且靠近塔克拉玛干沙漠端元,表明塔克拉玛干沙漠是北半球大冰期前后1208钻孔沉积物中“风尘组分”的主要物源(图 3)。这与以往北太平洋沉积物粉尘物源示踪研究所获得的认识相同[19, 26, 54]。塔克拉玛干沙漠粉尘主要是在高空西风作用下搬运至北太平洋[17~18, 20, 26, 54]

1208钻孔提取的“风尘组分”的εNd87Sr/86Sr比值在2.69Ma至2.85Ma期间波动和变化幅度较大(图 2g2h),一些样品在εNd-87Sr/86Sr二维图中明显偏向戈壁沙漠端元(图 3),这可能由几种因素造成。首先,这些样品Nd和Sr同位素组成可能是火山灰的突然增加造成的。火山灰地球化学特征接近玄武质岩石,表现为εNd偏正,87Sr/86Sr比值则偏小;亚洲粉尘则与上地壳接近,表现为εNd偏负,87Sr/86Sr比值则偏大[19, 55]。特别在2.70Ma至2.72Ma期间εNd偏正,87Sr/86Sr比值偏小,很可能与火山灰突然增加有关。在此期间,沉积物磁化率突然升高,出现峰值,一般也指示了火山灰的大量沉积[13, 56]。其次,戈壁粉尘沉积也可能是这些样品Nd和Sr同位素组成靠近戈壁沙漠端元的原因。在约2.758Ma、约2.79Ma和2.84Ma时期εNd同位素异常偏正并未有相应磁化率异常峰值出现[28](图 2g2h2i),可能与此期间戈壁粉尘加入有关。另外,2.70Ma至2.72Ma时期εNd同位素偏正,87Sr/86Sr比值偏小与1208钻孔记录的海水表面温度最低值[32]对应(图 2f2g2h),表明北半球大冰期形成以来全球温度第一次降至最低,冰盖大量增加会加剧西伯利亚高压,导致冬季风显著增强,可能携带戈壁粉尘到达西北太平洋。然而,考虑到2.64Ma时1208钻孔记录的海水表面温度出现极低值,却没有相应的εNd同位素偏正和87Sr/86Sr比值偏小(图 2f2g2h),因此,推测2.70Ma至2.72Ma时期Nd和Sr同位素异常很可能是火山灰突然大量沉积造成的。第三,冰筏碎屑(Ice-Rafted Detritus)的加入可能也是εNd87Sr/86Sr比值异常变化的因素。然而,已有研究结果显示,在1208钻孔附近海域沉积物中并未发现冰筏碎屑[57]。因此,冰筏碎屑可能不是影响2.69Ma至2.85Ma期间εNd87Sr/86Sr比值突变的主要因素。

2.62Ma至2.69Ma期间,“风尘组分”的εNd87Sr/86Sr比值变化较为稳定,磁化率较低,未出现极值(图 2g2h2i)。这主要是因为2.70Ma以来,“风尘组分”通量变大,火山灰含量相对变低,使得Nd、Sr同位素及磁化率值波动不大。值得一提的是,“风尘组分”通量在2.70Ma至2.72Ma期间北半球冰盖大量增加时,显著增加到最大值,但此时εNd异常偏正,87Sr/86Sr比值明显偏小,磁化率也出现峰值(图 2d2g2h2i),推测此阶段有一次明显的火山灰的大量沉积。有意思的是,距离本文研究位置1208钻孔不远的北极亚极地太平洋海域882A钻孔记录的北半球大冰期前后磁化率变化[1]与1208钻孔有较大差异:2.73Ma之前,882A钻孔磁化率较低;2.73Ma以来,磁化率明显增加,可能是冰筏碎屑增多引起的[1]。最近研究则显示,882A钻孔2.73Ma以来磁化率增加是粉尘输入量的急剧增加导致的[14]。此外,这两个钻孔记录的差异还体现在2.73Ma前后海洋生产力变化方面。尽管882A和1208这两个钻孔记录的粉尘通量2.73Ma以来均急剧增加,但两个钻孔记录的海洋生产力变化却相反,这与ODP882A钻孔所在海域出现海水分层,1208钻孔所在海域可能未出现海水分层有关(见3.1部分论述)。两个钻孔记录在北半球大冰期前后的差异原因需要今后进一步研究。

1208钻孔北半球大冰期冰盖形成前后风尘物源变动可能与风尘通量西风带位置变动有关。有研究发现北极冰盖3.6Ma开始就逐渐发育[58],但大规模形成通常认为是2.73Ma前后,表现为北大西洋和亚极地太平洋冰筏碎屑物突然增多[1~2]。北半球大冰盖的逐渐形成使得亚洲内陆干旱化逐渐加剧[59]和冬季风加强[11~12]。中国黄土高原黄土粒度3.6Ma以来逐渐变粗,也显示东亚冬季风逐渐增强[60]。然而,冬季风影响范围一般最远可到东亚大陆东部以及西北太平洋海岸地带,其携带的戈壁粉尘能不能运输至北太平洋1208钻孔位置,尚缺少有效证据。研究发现,少部分戈壁粉尘(约10 %)可在西风作用下长距离运输至北太平洋等地[8],西风带位置随北半球高纬地区和赤道之间经向热力差变化南北移动[61]。上新世时期,地球气候温暖,中纬度海水表面温度比现今平均高约3℃[62]。2.73Ma以前西风带位置相对靠北,部分戈壁粉尘可能在西风作用下长距离运输至1208钻孔。当然,本研究现有证据不能充分排除2.70Ma至2.85Ma期间火山灰对戈壁粉尘示踪研究的干扰,后续还需其他证据进一步辨别。2.73Ma以来,北半球冰盖急剧增加,可能加剧了亚洲内陆干旱化[59],西风带位置南移,主要运输塔克拉玛干沙漠粉尘至北太平洋。风尘通量的快速增加使得“风尘组分”中火山灰含量相对降低,风尘物源主要为塔克拉玛干沙漠粉尘,这些因素是2.7Ma至2.62Ma期间Nd和Sr同位素没有明显波动的原因(图 2d2g2h)。需要指出的是,2.72Ma至2.70Ma期间,“风尘”通量较大,但Nd同位素出现异常偏正和Sr同位素异常偏小(图 2g2h),推测很可能是火山灰突然大量沉积造成的。

4 结论

本文对西北太平洋1208钻孔北半球大冰期(约2.73Ma)前后沉积物进行了高分辨率采样,提取了沉积物中的“风尘组分”,研究了风尘变化对海洋生产力的影响,此外,测试了“风尘组分”的Nd和Sr同位素组成,开展了2.73Ma前后亚洲风尘物源变化研究。结果显示,2.73Ma以来风尘通量急剧增加,反映出源区干燥程度加剧,与此同时,海洋生产力也明显增加,与粉尘通量变化耦合,表明粉尘带来的铁等营养元素可能引起了海洋铁肥效应增强,生物量增加,吸收了更多大气二氧化碳,使得全球变冷,冰盖增大。粉尘可能是驱动北半球大冰盖形成的一个重要因素。Nd和Sr同位素结果显示,北半球大冰期前后1208钻孔粉尘主要来自塔克拉玛干沙漠。2.73Ma至2.85Ma期间Nd和Sr同位素波动明显,主要是由于风尘通量较低,火山灰含量相对较高引起的。此外,戈壁粉尘沉积可能也是引起Nd和Sr同位素波动的重要因素。此阶段,北半球冰盖规模小,西风带位置偏北,可能携带了部分戈壁粉尘长距离运输至北太平洋。2.73Ma以来,随着北半球冰盖急剧增加,西风带南移,主要运输塔克拉玛干沙漠粉尘至北太平洋,同时风尘通量急剧增加,火山灰含量相对降低,导致Nd和Sr同位素波动较小。需要说明的是,2.73Ma至2.70Ma期间,风尘通量较大,但Nd同位素偏正和Sr同位素偏小,推测很可能是火山灰突然大量沉积造成的。显然,本文开展的2.73Ma北半球大冰期形成前后北太平洋沉积物记录的亚洲粉尘突变研究,有助于进一步认识风尘和冰量,以及粉尘物源变动与物源区古环境变化和大气环流变迁之间的关联。

致谢: 感谢肖举乐研究员的约稿。非常感谢编辑部杨美芳老师和审稿专家在百忙之中对完善本文提出的建设性意见。本文研究样品由“国际大洋发现计划(IODP)”提供。

参考文献(References)
[1]
Haug G H, Sigman D M, Tiedemann R, et al. Onset of permanent stratification in the subarctic Pacific Ocean[J]. Nature, 1999, 401(6755): 779-782. DOI:10.1038/44550
[2]
Jansen E, Sjoholm J. Reconstruction of glaciation over the past 6 Myr from ice-borne deposits in the Norwegian Sea[J]. Nature, 1991, 349(6310): 600-603. DOI:10.1038/349600a0
[3]
Raymo M E, Nisancioglu K. The 41 kyr world:Milankovitch's other unsolved mystery[J]. Paleoceanography, 2003, 18(1): 1011.
[4]
Maslin M A, Li X S, Loutre M F, et al. The contribution of orbital forcing to the progressive intensification of Northern Hemisphere glaciation[J]. Quaternary Science Reviews, 1998, 17(4-5): 411-426. DOI:10.1016/S0277-3791(97)00047-4
[5]
Molnar P, Cronin T W. Growth of the Maritime Continent and its possible contribution to recurring ice ages[J]. Paleoceanography, 2015, 30(3): 196-225. DOI:10.1002/2014PA002752
[6]
鹿化煜, 王珧. 触发和驱动第四纪冰期的机制是什么?[J]. 科学通报, 2016, 61(11): 1164-1172.
Lu Huayu, Wang Yao. What causes the ice ages in the Late Pliocene and Pleistocene?[J]. Chinese Science Bulletin, 2016, 61(11): 1164-1172.
[7]
Engelbrecht J P, Derbyshire E. Airborne mineral dust[J]. Elements, 2010, 6(4): 241-246. DOI:10.2113/gselements.6.4.241
[8]
Sun J M, Zhang M Y, Liu T S. Spatial and temporal characteristics of dust storms in China and its surrounding regions, 1960-1999:Relations to source area and climate[J]. Journal of Geophysical Research:Atmospheres, 2001, 106(D10): 10325-10333. DOI:10.1029/2000JD900665
[9]
Blank M, Leinen M, Prospero J M. Major Asian aeolian inputs indicated by the mineralogy of aerosols and sediments in the western North Pacific[J]. Nature, 1985, 314(6006): 84-86. DOI:10.1038/314084a0
[10]
Rex R W, Syers J K, Jackson M L, et al. Eolian origin of quartz in soils of Hawaiian Islands and in Pacific pelagic sediments[J]. Science, 1969, 163(3864): 277-279. DOI:10.1126/science.163.3864.277
[11]
Guo Z T, Peng S Z, Hao Q Z, et al. Late Miocene-Pliocene development of Asian aridification as recorded in the red-earth formation in Northern China[J]. Global and Planetary Change, 2004, 41(3-4): 135-145. DOI:10.1016/j.gloplacha.2004.01.002
[12]
Lu H, Wang X, Li L. Aeolian sediment evidence that global cooling has driven Late Cenozoic stepwise aridification in Central Asia[J]. Geological Society, London, Special Publications, 2010, 342(1): 29-44. DOI:10.1144/SP342.4
[13]
孙有斌, 刘青松. 晚上新世-早更新世北太平洋和黄土高原的风尘沉积记录的初步对比[J]. 第四纪研究, 2007, 27(2): 263-269.
Sun Youbin, Liu Qingsong. Preliminary comparison of eolian depositions in the North Pacific and the Chinese Loess Plateau during the Late Pliocence-Early Pleistocene[J]. Quaternary Sciences, 2007, 27(2): 263-269. DOI:10.3321/j.issn:1001-7410.2007.02.011
[14]
姜兆霞, 刘青松. 上新世末期-更新世早期西北太平洋ODP 882A孔沉积物的磁学特征及其古气候意义[J]. 中国科学:地球科学, 2011, 41(9): 1242-1252.
Jiang Zhaoxia, Liu Qingsong. Magnetic characterization and paleoclimatic significances of Late Pliocene-Early Pleistocene sediments at site 882A, northwestern Pacific Ocean[J]. Science China:Earth Sciences, 2011, 41(9): 1242-1252.
[15]
Bory A J M, Biscaye P E, Grousset F E. Two distinct seasonal Asian source regions for mineral dust deposited in Greenland(North GRIP)[J]. Geophysical Research Letters, 2003, 30(4): 1167.
[16]
Chen J, Li G J, Yang J D, et al. Nd and Sr isotopic characteristics of Chinese deserts:Implications for the provenances of Asian dust[J]. Geochimica et Cosmochimica Acta, 2007, 71(15): 3904-3914. DOI:10.1016/j.gca.2007.04.033
[17]
Zhang W, Chen J, Ji J, et al. Evolving flux of Asian dust in the North Pacific Ocean since the Late Oligocene[J]. Aeolian Research, 2016, 23: 11-20. DOI:10.1016/j.aeolia.2016.09.004
[18]
Shao Y, Wyrwoll K-H, Chappell A, et al. Dust cycle:An emerging core theme in Earth system science[J]. Aeolian Research, 2011, 2(4): 181-204.
[19]
Nakai S, Halliday A N, Rea D K. Provenance of dust in the Pacific Ocean[J]. Earth and Planetary Science Letters, 1993, 119(1-2): 143-157. DOI:10.1016/0012-821X(93)90012-X
[20]
万世明, 徐兆凯. 西太平洋风尘沉积记录研究进展[J]. 海洋与湖沼, 2017, 48(6): 1208-1219.
Wan Shiming, Xu Zhaokai. Research progress on eolian dust records in the West Pacific[J]. Oceanologia et Limnologia Sinica, 2017, 48(6): 1208-1219.
[21]
Rea D K, Janecek T R. Mass-accumulation rates of the non-authigenic inorganic crystalline(eolian)component of deep-sea sediments from the western Mid-Pacific Mountains, Deep Sea Drilling Project Site 463[M]//Thiede J, Vallier T L, Adelseck C, et al. Initial Reports of the Deep Sea Drilling Project, Volume 62. Washington, DC: U. S. Government Printing Office, 1981: 653-659. doi: 10.2973/dsdp.proc.62.125.1981.
[22]
Olivarez A M, Owen R M, Rea D K. Geochemistry of eolian dust in Pacific pelagic sediments-Implications for paleoclimatic interpretations[J]. Geochimica et Cosmochimica Acta, 1991, 55(8): 2147-2158. DOI:10.1016/0016-7037(91)90093-K
[23]
Asahara Y, Tanaka T, Kamioka H, et al. Provenance of the North Pacific sediments and process of source material transport as derived from Rb-Sr isotopic systematics[J]. Chemical Geology, 1999, 158(3-4): 271-291. DOI:10.1016/S0009-2541(99)00056-X
[24]
Xu Z, Li T, Clift P D, et al. Quantitative estimates of Asian dust input to the western Philippine Sea in the mid-Late Quaternary and its potential significance for paleoenvironment[J]. Geochemistry, Geophysics, Geosystems, 2015, 16(9): 3182-3196. DOI:10.1002/2015GC005929
[25]
Xu Z, Li T, Clift P D, et al. Comment on "Sr-Nd isotope composition and clay mineral assemblages in Eolian dust from the central Philippine Sea over the last 600 kyr:Implications for the transport mechanism of Asian dust" by Seo et al[J]. Journal of Geophysical Research:Atmospheres, 2016, 121(23): 14137-14141. DOI:10.1002/2016JD024946
[26]
Seo I, Lee Y I, Yoo C M, et al. Sr-Nd isotope composition and clay mineral assemblages in eolian dust from the central Philippine Sea over the last 600 kyr:Implications for the transport mechanism of Asian dust[J]. Journal of Geophysical Research:Atmospheres, 2014, 119(19): 2014JD022025.
[27]
Seo I, Lee Y I, Yoo C M, et al. Reply to Comment by Xu et al. on "Sr-Nd isotope composition and clay mineral assemblages in eolian dust from the central Philippine Sea over the last 600 kyr:Implications for the transport mechanism of Asian dust" by Seo et a[J]. Journal of Geophysical Research:Atmospheres, 2016, 121(23): 14298-14303. DOI:10.1002/2016JD025444
[28]
Shipboard Scientific Party. Site 1208 in Bralower T J, Premoli S I, Malone M J et al. Initial Reports of the Ocean Drilling Program, Volume 198[M]. College Station, TX, 2002: 1-93. doi: 10.2973/odp.proc.ir.198.104.2002.
[29]
Venti N L, Billups K. Stable-isotope stratigraphy of the Pliocene-Pleistocene climate transition in the northwestern subtropical Pacific[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 326-328: 54-65.https://doi.org/10.1016/j.palaeo.2012.02.001.
[30]
Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records[J]. Paleoceanography, 2005, 20: PA1003. doi: 1010.1029/2004PA001071.
[31]
Venti N, Billups K, Herbert T. Paleoproductivity in the northwestern Pacific Ocean during the Pliocene-Pleistocene climate transition(3.0-1.8 Ma)[J]. Paleoceanography, 2017, 32(2): 92-103. DOI:10.1002/2016PA002955
[32]
Venti N L, Billups K, Herbert T D. Increased sensitivity of the Plio-Pleistocene northwest Pacific to obliquity forcing[J]. Earth and Planetary Science Letters, 2013, 384: 121-131. DOI:10.1016/j.epsl.2013.10.007
[33]
Hovan S A, Rea D K, Pisias N G. Late Pleistocene continental climate and oceanic variability recorded in northwest Pacific sediments[J]. Paleoceanography, 1991, 6(3): 349-370. DOI:10.1029/91PA00559
[34]
Janecek T R. Eolian sedimentation in the Northwest Pacific Ocean: A preliminary examination of the data from Deep Sea Drilling Project Sites 576 and 578[M]//Heath G R, Burckle L H, D'Agostino A E, et al. Initial Reports of the Deep Sea Drilling Project, Volume 86. Washington DC: U. S. Government Printing Office, 1985: 589-603. doi: 10.2973/dsdp.proc.86.126.1985.
[35]
Rea D K, Snoeckx H, Joseph L H. Late Cenozoic eolian deposition in the North Pacific:Asian drying, Tibetan uplift, and cooling of the Northern Hemisphere[J]. Paleoceanography, 1998, 13(3): 215-224. DOI:10.1029/98PA00123
[36]
Zhang W, Chen J, Li G. Shifting material source of Chinese loess since~2.7 Ma reflected by Sr isotopic composition[J]. Scientific Reports, 2015, 5: 10235. doi: 10.1038/srep10235.
[37]
Jacobsen S B, Wasserburg G J. Sm-Nd isotopic evolution of chondrites[J]. Earth and Planetary Science Letters, 1980, 50(1): 139-155. DOI:10.1016/0012-821X(80)90125-9
[38]
Zhao W, Sun Y, Balsam W, et al. Clay-sized Hf-Nd-Sr isotopic composition of Mongolian dust as a fingerprint for regional to hemispherical transport[J]. Geophysical Research Letters, 2015, 42(13): 5661-5669. DOI:10.1002/2015GL064357
[39]
Zhang W, Zhao J, Chen J, et al. Binary sources of Chinese loess as revealed by trace and REE element ratios[J]. Journal of Asian Earth Sciences, 2018, 166: 80-88. DOI:10.1016/j.jseaes.2018.07.017
[40]
Defant M J, Maury R, Joron J L, et al. The geochemistry and tectonic setting of the northern section of the Luzon arc(the Philippines and Taiwan)[J]. Tectonophysics, 1990, 183(1-4): 187-205. DOI:10.1016/0040-1951(90)90416-6
[41]
Kepezhinskas P, Mcdermott F, Defant M J, et al. Trace element and Sr-Nd-Pb isotopic constraints on a three-component model of Kamchatka Arc petrogenesis[J]. Geochimica et Cosmochimica Acta, 1997, 61(3): 577-600. DOI:10.1016/S0016-7037(96)00349-3
[42]
McCulloch M T, Perfit M R. 143Nd/144 Nd, 87 Sr/86 Sr and trace element constraints on the petrogenesis of Aleutian Island arc magmas[J]. Earth and Planetary Science Letters, 1981, 56: 167-179. DOI:10.1016/0012-821X(81)90124-2
[43]
Svensson A, Biscaye P E, Grousset F E. Characterization of late glacial continental dust in the Greenland Ice Core Project ice core[J]. Journal of Geophysical Research:Atmospheres, 2000, 105(D4): 4637-4656. DOI:10.1029/1999JD901093
[44]
Xu Z, Li T, Clift P D, et al. Bathyal records of enhanced silicate erosion and weathering on the exposed Luzon shelf during glacial lowstands and their significance for atmospheric CO2 sink[J]. Chemical Geology, 2018, 476: 302-315. DOI:10.1016/j.chemgeo.2017.11.027
[45]
Pettke T, Halliday A N, Hall C M, et al. Dust production and deposition in Asia and the North Pacific Ocean over the past 12 Myr[J]. Earth and Planetary Science Letters, 2000, 178(3-4): 397-413. DOI:10.1016/S0012-821X(00)00083-2
[46]
Xu Z, Li T, Colin C, et al. Seasonal variations in the siliciclastic fluxes to the western Philippine Sea and their impacts on seawater εNd values inferred from 1 year of in situ observations above Benham Rise[J]. Journal of Geophysical Research:Oceans, 2018, 123(9): 6688-6702. DOI:10.1029/2018JC014274
[47]
Taylor S R, McLennan S M. The Continental Crust:Its Composition and Evolution[M]. Malden, MA: Blackwell, 1985: 312.
[48]
Ziegler C L, Murray R W, Hovan S A, et al. Resolving eolian, volcanogenic, and authigenic components in pelagic sediment from the Pacific Ocean[J]. Earth and Planetary Science Letters, 2007, 254(3-4): 416-432. DOI:10.1016/j.epsl.2006.11.049
[49]
Bailey J C. Geochemical history of sediments in the northwestern Pacific Ocean[J]. Geochemical Journal, 1993, 27(2): 71-90. DOI:10.2343/geochemj.27.71
[50]
Severmann S, Mills R A, Palmer M R, et al. The origin of clay minerals in active and relict hydrothermal deposits[J]. Geochimica et Cosmochimica Acta, 2004, 68(1): 73-88. DOI:10.1016/S0016-7037(03)00235-7
[51]
Martin J H. Glacial-interglacial CO2 change:The iron hypothesis[J]. Paleoceanography, 1990, 5(1): 1-13. DOI:10.1029/PA005i001p00001
[52]
Bartoli G, Honisch B, Zeebe R E. Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations[J]. Paleoceanography, 2011, 26(4): PA4213.
[53]
Lunt D J, Foster G L, Haywood A M, et al. Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels[J]. Nature, 2008, 454(7208): 1102-1105. DOI:10.1038/nature07223
[54]
Jiang F, Zhou Y, Nan Q, et al. Contribution of Asian dust and volcanic material to the western Philippine Sea over the last 220 kyr as inferred from grain size and Sr-Nd isotopes[J]. Journal of Geophysical Research:Oceans, 2016, 121(9): 6911-6928. DOI:10.1002/2016JC012000
[55]
Grousset F E, Biscaye P E. Tracing dust sources and transport patterns using Sr, Nd and Pb isotopes[J]. Chemical Geology, 2005, 222(3-4): 149-167. DOI:10.1016/j.chemgeo.2005.05.006
[56]
陈国成, 郑洪波, 李建如, 等. 48万年来南海及周边地区火山喷发作用的沉积学记录[J]. 海洋地质与第四纪地质, 2007, 27(4): 69-76.
Chen Guocheng, Zheng Hongbo, Li Jianru, et al. Sedimentary records of volcanic activities in the South China Sea over the past 480 ka[J]. Marine Geology & Quaternary Geology, 2007, 27(4): 69-76.
[57]
Bigg G R, Clark C D, Hughes A L C. A last glacial ice sheet on the Pacific Russian coast and catastrophic change arising from coupled ice-volcanic interaction[J]. Earth and Planetary Science Letters, 2008, 265(3): 559-570.
[58]
Mudelsee M, Raymo M E. Slow dynamics of the Northern Hemisphere glaciation[J]. Paleoceanography, 2005, 20(4): PA4022.
[59]
张仲石, 燕青, 张冉, 等. 第四纪北半球冰盖发育与东亚气候的遥相关[J]. 第四纪研究, 2017, 37(5): 1009-1016.
Zhang Zhongshi, Yan Qing, Zhang Ran, et al. Teleconnection between Northern Hemisphere ice sheets and East Asian climate during Quaternary[J]. Quaternary Sciences, 2017, 37(5): 1009-1016.
[60]
An Z, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalayan Tibetan Plateau since Late Miocene times[J]. Nature, 2001, 411(6833): 62-66. DOI:10.1038/35075035
[61]
Nagashima K, Tada R, Matsui H, et al. Orbital-and millennial-scale variations in Asian dust transport path to the Japan Sea[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 247(1-2): 144-161. DOI:10.1016/j.palaeo.2006.11.027
[62]
Fedorov A V, Brierley C M, Lawrence K T, et al. Patterns and mechanisms of Early Pliocene warmth[J]. Nature, 2013, 496(7443): 43-52. DOI:10.1038/nature12003
The abrupt change of aeolian dust in North Pacific sediments during major Northern Hemisphere glaciations at ca. 2.73 Ma
Zhang Wenfang1,2, Li Gaojun2, Chen Jun2     
(1 State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, Jiangsu;
2 Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Earth and Planetary Sciences, Nanjing University, Nanjing 210023, Jiangsu)

Abstract

The Earth's climate underwent a striking change ca. 2.73 Ma(million years) ago, characterizing by the onset and intensification of the major Northern Hemisphere glaciations(iNHG). A few factors have been considered in the driving the iNHG, one of which is the marine biological pump as a result of the increase of eolian dust in the ocean, transferring atmospheric CO2 into the deep ocean during the onset of iNHG. The central Asian interior is the second largest center of dust emission all over the world. Once launched into the atmosphere, Asian dust is then transported to a distal accumulation center, e.g. the North Pacific Ocean via high-altitude westerly winds, becoming an important component in north Pacific sediments. The aeolian deposits in the North Pacific Ocean(NPO) serve as important archives for the paleoenvironmental change in the arid Asian interior, helping to better understand the possible role of the marine biological pump played in the onset of iNHG. This work extracts "operationally defined aeolian dust"(ODED) from the sediments recovered at Ocean Drilling Program(ODP) site 1208(36°07.6'N, 158°12.1'E) on the Shatsky Rise in NPO spanning the Pliocene-Pleistocene climate transition. Coring at site 1208 drilled a total of 392.3 m(meters below the sea floor), of which the section between 0.0 and 328.15 m is of Cenozoic age and is characterized by rhythmically alternating intervals of nannofossil ooze/chalk and nannofossil clay/claystone with diatoms and radiolarians that are punctuated by occasional volcanic ash layers. This work collected eight-nine samples continuously every ca. 10 cm from 121.3 m to 130.1 m. The chronologic framework of the high-resolution samples has been developed by correlating the benthic-foraminiferal δ18O at site 1208 to the global δ18O stack(LR04), allowing the samples in this study have a time interval of 2.62 Ma and 2.85 Ma with roughly one sample every 2500 years. The resulting ODED flux, shows a rapid increase since about 2.73 Ma, concurrent with the increase of the changes in productivity, cooling of the sea surface and the iNHG, implying that biological pump hypothesis is possibly a plausible mechanism for triggering the iNHG. This work also studied the source change of Asian dust archived in site 1208 sediments by measuring the Nd and Sr isotopes of ODED fraction. The results show that the Asian dust archived in site 1208 sediments is mainly derived from Taklimakan Desert throughout the studied time interval. The higher-amplitude fluctuations of Nd and Sr isotopes from 2.73 Ma to 2.85 Ma are attributable to the higher contributions of volcanic ash as a result of the relatively low dust flux and/or the deposition of Gobi dust. The westerly wind might be the main agent to transport the Gobi dust during this interval, as it possibly located in the relatively northern position during the late Pliocene. The position of westerly wind might have moved southward since 2.73 Ma associated with the development of iNHG, mainly transporting Taklimakan dust to the North Pacific Ocean, which resulted in the lower-amplitude fluctuations of Nd and Sr isotopes. It is worthy to note that the more radiogenic Nd isotope and less radiogenic Sr isotope between 2.72 Ma and 2.70 Ma, was probably caused by the abrupt increase of volcanic ash.
Key words: Asian dust    major Northern Hemisphere glaciations    northwest Pacific Oceans    ODP site 1208