第四纪研究  2018, Vol.38 Issue (3): 695-704   PDF    
滑坡相关方解石MC-ICPMS230Th/238U年代学初探:以三峡库区黄土坡滑坡为例
彭红霞1,2, 吴昆1, 邓清禄3, 卫玉杰1, 彭珂1     
(1 中国地质大学(武汉)公共管理学院, 湖北 武汉 430074;
2 中国地质大学(武汉)地质过程与矿产资源国家重点实验室, 湖北 武汉 430074;
3 中国地质大学(武汉)工程学院, 湖北 武汉 430074)
摘要:开展地质历史时期滑坡的年代学研究,是正确认识重大滑坡灾害历史发育过程、现状与未来发展趋势的重要基础之一。论文以三峡库区巴东县黄土坡滑坡为研究对象,在资料收集和野外调查基础上,在黄土坡滑坡临江Ⅰ号滑坡体3#支洞滑坡带上采集4个方解石晶体样品,并开展了MC-ICPMS 230Th年代学分析。黄土坡滑坡3#支洞次生方解石的U含量变化在30.9×10-9~45.6×10-9g/g之间,234U/238U比值波动在1.362~2.673范围,基本能满足高精度U-Th测年的要求。4个样品碎屑Th校正230Th年龄分别为155.2±18.6 ka B.P.、134.6±5.6 ka B.P.、70.9±8.5 ka B.P.和103.3±18.2 ka B.P.。年代结果表明,三峡黄土坡Ⅰ号临江滑坡体的滑动时代在155.2~70.9 ka之间。这些年龄数据虽然具有较大的误差,但年龄存在明显差异,可能反映了不同滑坡期次,印证了黄土坡滑坡滑坡体的多期次性,是一个发生频率高、多个崩滑堆积体和滑坡组成的特大型复合滑坡。定年结果与野外调查以及前人的研究结果一致,表明挑选滑坡体滑带纯净的次生方解石进行U-Th测年是研究大型滑坡年代学的一种有效手段。最后,将黄土坡滑坡年代期次与长江三峡及邻区新构造运动、地貌过程、气候变化和其他滑坡活动期进行对比分析,发现三峡库区黄土坡滑坡在新构造快速抬升时期广泛发育,并与暖湿多雨期相对应,表明黄土坡滑坡的发育演化受到新构造运动和气候变化耦合作用的控制。
主题词U-Th年龄     MC-lCPMS     黄土坡滑坡     三峡库区     滑坡演化    
中图分类号     P597                     文献标识码    A

随着人类社会、经济活动的扩展,滑坡,尤其是大型滑坡已成为频度最高、危害最大的地质灾害类型[1~4]。因此,对滑坡灾害的预测、预警与风险评估受到高度重视[5~7]。由于大多数的现代滑坡都发生在古滑坡体上[8],准确重建第四纪时期滑坡活动的时间序列是认识当今重大滑坡地质灾害发育的历史过程、发生机理和影响因素的重要基础,从而有助于预测滑坡体的未来发展趋势。

第四纪滑坡灾害研究中所采用的测年方法和技术与第四纪地质研究所应用的基本相同[9~11]。20世纪70年代末至80年代中期,第四纪地质和考古事件测年方法和技术研究取得了长足进展,产生了加速器质谱仪(AMS)14C测年方法[12]、热电离质谱仪(TIMS)不平衡铀系测年法[13]和光释光(OSL)测年法[14]等。20世纪80年代后期以来,这些方法逐渐普遍应用于中、晚第四纪新构造活动及气候等方面的研究[10, 15~17]。近年来,国内外学者针对大型滑坡灾害开展了14C测年技术[18~21]、光释光[22~24]、电子自旋共振(ESR)[25~26]、宇宙核素测年[27]、树轮[28]及地衣[29]等多种测年方法。

U-Th不平衡测年法是利用新老地质建造中普遍存在的238U放射性系列中较短半衰期核素234U(T1/2=245565 a)和230Th(T1/2=75568 a)测定地质年龄的一种手段。U-Th不平衡测年方法在重建第四纪时间标尺中发挥了重要作用[30~35]。近年来,多接收电感耦合等离子体质谱仪(MC-ICPMS)U-Th高精度定年技术迅速发展[36~41]。与传统方法(α计数法)相比,MC-ICPMS U-Th定年技术减小了样品消耗量一个数量级(数十毫克),而数据精度提高一个数量级,从而将测定年代的上限扩展到600 ka,下限小至数十年,误差在1 %以内,已成为最可靠的第四纪地质年代学方法[42~44]。但是,高精度U-Th定年方法应用于滑坡测年还比较少见。

我国是世界上滑坡地质灾害最严重的国家之一。三峡地区滑坡灾害更为突出,该区最危险的滑坡体当属四大滑坡之首的黄土坡滑坡。该滑坡体持续变形,并有2万居民居住其上。虽然国家于2009年确定了黄土坡滑坡整体搬迁计划,但在整体搬迁完成之前,滑坡体一旦发生,后果仍不堪设想。黄土坡滑坡是结构组成复杂的大型复合古滑坡体。虽然众多科学家从各方面进行了研究,但其特征、成因机制、演化规律和稳定现状还尚未明晰[45~46]。本文运用MC-lCPMS 230Th测量法对三峡库区黄土滑坡滑带方解石晶体进行定年,探讨黄土坡滑坡年代及期次,希望为黄土坡滑坡治理与活动预测提供年代学方面的依据。

1 野外概况与样品采集

黄土坡滑坡位于长江南岸巴东县东城区黄土坡小区(滑坡点中心位置经纬度:31°06′01″N,110°18′03″E),处于扬子地台川东坳陷褶皱束东端官渡口复向斜的东端南翼,为构造侵蚀中低山峡谷区。黄土坡滑坡坡面形态呈现上陡-中缓-下陡的折线型,包括临江Ⅰ号崩滑体、临江Ⅱ号崩滑体、园艺场滑坡和变电站滑坡,面积为135×104m2,体积为6934×104m3(图 1)。前部滑体物质组成复杂,不同时期的滑坡与崩滑体迭置堆积,平均厚度为65.4 m;后部滑体主要组成为碎裂岩和块裂岩,平均厚度40.5 m。

图 1 黄土坡滑坡系统平面示意图[46] Fig. 1 Layout of the investigation tunnel in slump mass in Huangtupo landslide system[46]

野外调查发现,黄土坡滑坡基岩岩性以灰岩、泥灰岩为主;黄土坡滑坡地下试验隧洞揭露发现,黄土坡滑坡各处滑带及剪切错动带附近岩石裂隙普遍发育,且多被方解石充填。岩块样品镜下薄片观察发现,靠近滑带、剪切错动带,薄片中方解石脉体数量显著增加(图 2),这与黄土坡滑坡同在三峡库区、距黄土坡滑坡东南约32 km、位于秭归县沙镇溪镇的千将坪滑坡(中心经纬度:30°58′06″N,110°36′21″E)也存在类似的现象[47]。研究认为,千将坪滑坡层间剪切带受到层间剪切作用,而影响带裂隙开启,在强烈的地下水循环交替的作用下,影响带裂隙中生长了方解石,这些方解石并非成岩时形成,而属于后生形成,是由富含HCO3--Ca2+的地下水析出CaCO3而成,与滑坡作用直接相关,故可将滑坡裂隙方解石脉体作为滑带、剪切错动带的识别方法,并通过方解石年龄来推断滑坡形成年代[47]。一般情况下,裂隙多发生于滑坡运动之后,通过测试滑带附近裂隙中脉体形成年龄,即可推测滑坡形成的时间。从测年范围、载体岩性及形成过程,U-Th方法可以对黄土坡滑坡方解石进行精确测年,并通过方解石年龄推断滑坡形成年代。

图 2 黄土坡滑坡滑带及剪切错动带岩性薄片图 Fig. 2 Lithologic scanning chart of from an independent interlayer sliding zone in Huangtupo landslide

因黄土坡滑坡的典型性和重要性,“长江三峡库区地质灾害研究优势学科创新平台”在此建立了巴东野外大型综合试验场。试验场由地下隧洞群与地表监测系统组成,地下洞室群布置在黄土坡滑坡临江Ⅰ号崩滑体中后部,隧洞主洞全长908 m,断面尺寸为5.0 m×3.5 m;共设5处支洞(1#、2#、3#、4#和5#)(图 3),支洞长度分别为5 m、10 m、145 m、5 m和37 m。本文用于测年的方解石晶体是在地下隧洞开挖时,采自黄土坡滑坡临江Ⅰ号崩滑体3#支洞的4个不同的裂隙,4个样品的编号分别为HTP-Br3-1、HTP-Br3-2、HTP-Br3-3和HTP-Br3-4(图 3表 1)。

图 3 黄土坡滑坡临江Ⅰ号崩滑体地下洞室群布置平面示意图及采样点 Fig. 3 Layout of the investigation tunnel of Riverside slump Ⅰ#of Huangtupo landslide and samples locations

表 1 三峡库区黄土坡滑坡样品采集地点 Table 1 Samples characteristic and sites of Huangtupo landslides in the Three Gorges Reservoir area
2 实验方法 2.1 滑坡方解石230Th年龄估算

铀系定年方法是基于放射性238U与其衰变子体234U、230Th之间的不平衡关系测定地质年龄的有效手段。当碳酸盐发生沉积时,238U进入方解石矿物晶格。由于U和Th化学性质的差异,在这些初始形成的新生矿物中仅含有微量的U,而Th的含量可以忽略,即t=0,230Th=0,其后238U衰变产生中间子体234U(T1/2=245565 a)[42]230Th(T1/2=75568 a)[42]随着时间推移子体与母体达到久期平衡,新生方解石的年龄视230Th和238U与234U和238U之间的不平衡程度来确定。

Edwards等[13]认为如果体系满足下列两个基本条件:1)不含初始230Th/238U比值;2)相对U-Th同位素保持系统封闭,则样品的230Th年龄可通过公式(1)来计算。

(1)

公式(1)中,‘act’表示放射性比值,T为年龄,λ230=9.1705×10-6和λ234=2.8221×10-6分别为230Th和234U的衰变常数[42]238U的衰变常数为λ238=1.55125×10-10[48]δ234Um为测试时的234U/238U比值,其代表样品234U/238U的不平衡程度,定义如下:

(2)

公式(2)中(234U/238U)eq代表放射性平衡时的同位素比值,其值为5.472×10-5。为了获得样品形成时的U同位素比值,用另一个参数δ234Uini表示,即δ234Uini=δ234Umeλ234T。对符合研究基本条件且不受污染的样品,精确测定其234U/238U比值以及230Th和238U含量则可计算出其年龄值。

2.2 样品前处理

滑坡带上产生的方解石均附着在滑坡滑动时产生的拖曳带上,晶体量极少且含有杂质。为挑选纯净的方解石样品,本研究将野外采集的大块样本清除表面污物后,用微钻或刻刀仔细剥离出新鲜的方解石颗粒样品,并在显微镜下进一步挑纯,排除混入的碎屑杂质。挑选出的样品研磨至小于100目,备分析。样品的放射化学处理及质谱仪测量均在中国科学院地质与地球物理研究所铀系年代学实验室完成。

2.3 U-Th分离与纯化

样品溶解和U-Th纯化分离在三级空气过滤的净化室内进行,王立胜等[43~44]详细报道了化学分离流程。该流程与Edwards等[49]的程序相似,主要包括:准确称取30~70 mg样品置于30 ml Teflon溶样罐中,用HNO3(硝酸)溶解样品;加入229Th-233U-236U稀释剂静置过夜,之后加入1~2滴HClO4(高氯酸),置于电热板上蒸干;用2 M HCl(盐酸)溶解蒸干的样品,并加入适量FeCl3溶液,用氨水调节pH=7~8至出现棕色絮状沉淀物;离心分离出Fe(OH)3沉淀物,将其溶于7 M HNO3,倾入AG1-X8阴离子树脂交换柱(体积2 ml,树脂体积0.4 ml);用8 M HCl(盐酸)收集Th,0.1 M HNO3收集U;收集的U、Th分别蒸干再用2 % HNO3-0.01 % HF混合溶液提取U、Th,以待质谱仪测量。经U、Th标准溶液的示踪检验,在严格的操作条件下,U的化学回收率可达到80 %以上,Th的回收率可控制在90 %以上。

2.4 MC-ICPMS测量

样品测量在Neptune Plus型多接收电感耦合等离子体质谱仪(Multiple Collector Inductively Coupled Plasma Mass Spectrometry-MC-ICPMS)上完成。该仪器有9个法拉第杯(Faraday cup)接收器,并配有RPQ和离子计数系统(SEM),丰度灵敏度达 < 5×10-7。U、Th同位素测定均采用电子倍增器(Secondary electron multiplier,简称SEM)动态模式。低丰度的230Th和229Th用电子倍增器测量。235U与232Th用Faraday cup测定。238U依据238U/235U的天然比值(137.83)获得。同位素仪器分馏用236U-233U双稀释剂校正,强峰拖尾用指数函数和经验值进行校正[42]。样品测量前后用NBS-CRM 112aU标样对仪器增益、产率、丰度灵敏度和再现性等进行监测。整个测试系统238U、230Th和232Th的本底值分别为0.6 pg、0.05 fg和0.2 pg[43]。CRM 112aU标样测试表明,234U/238U原子比值为(52.85±0.03)×10-6,其对应的δ234U值为-38.5±0.5 ‰ (n=12)[50],在2σ不确定范围内与国际同类实验室一致。NBS Th标样结果显示,0.6 pg 230Th的测试精度优于3 ‰ [43]

3 结果与讨论

三峡库区黄土坡滑坡不同滑带中4个碳酸盐样品的测定结果见表 2表 2中所有数据的分析不确定度为± 2σ标准偏差。为了检验实验程序的可靠性,评估测定地质年龄的技术水平和年龄数据的准确度,表 2最后2行还列出了同时测定的国内和国际标准样品的U、Th同位素比值及年龄值。两个样品均为白色纯净的洞穴CaCO3,其中样品GBW04412为国家技术监督局发布的铀系年龄一级标准物质[51],样品76001为U系国际对比计划第Ⅱ阶段(Uranium-Series Intercomparison Project Ⅱ-USIP-Ⅱ)[52]所用样品。两个样品所得234U/238U比值和年龄值与参考值在误差范围内一致。

表 2 三峡库区黄土坡滑坡滑带碳酸盐样品的U-Th年龄* Table 2 230Th dating results of samples from Huangtupo landslides in the Three Gorges Resorvoir area

论文中所测4个滑带碳酸盐样品的U含量变化在30.9×10-9~ 45.6×10-9g/g之间;δ234U值波动较大,于361.6 ‰ ~ 460.6 ‰之间(表 2),换算成对应的234U/238U放射性活度比值变化为1.362~1.461。样品HTP-Br3-3的δ234U值达到1673.2±15.3 ‰,其234U/238U活度比值为2.673±0.035,表明黄土坡滑坡地区地下水体的来源较为复杂,沉积环境相对不稳定。长江流域及欧洲和亚洲主要河流水中的U同位素比值为1.10~1.58[53],地下水的其值在1~10范围内,最高可达29[54]。如果考虑到3#支洞测年材料由外向内的234U/238U比值随时间变化这一事实(234U随时间衰变而减少),可以认为在研究时段内除样品HTP-Br3-3外,234U/238U比值均落在地表水的其值范围内。样品HTP-Br3-3的U同位素活度比值达到2.673±0.035,推测可能受地下水影响所致,有待进一步工作查明。

所测4个样品中的232Th含量值在16681×10-12~ 56802×10-12g/g之间变化,230Th/232Th放射性活度比值为1.390~4.004之间(表 2),表明样品受到了碎屑232Th的污染。一般来讲,样品的230Th/232Th放射性活度比值越小,校正初始230Th的影响就越大,由此产生的样品真实年龄的测定误差也越大。近些年来,国际上应用高精度质谱技术测定钙华[55]、硅酸盐-碳酸盐[56]微结构的230Th年龄,其中不少数据的230Th/232Th < 10,通过校正232Th污染获得了可信的年龄数据。

研究表明,上地壳的Th/U质量比平均分布在3.4~3.8之间,火成岩的Th/U平均值为3~5[57]。假定230Th与238U处于平衡状态,则上地壳中230Th/232Th的放射性活度比平均值为0.80~0.89,火成岩中的平均值为0.43~1.12[58]。在页岩中Th/U比值一般落在2.7~7.0之间,其值对应230Th/232Th放射性活度比值为0.61~1.01[59]。黄土坡地区碳酸盐中碎屑物的来源与矿物组分未见详细研究,但如果排除有异常岩类混入的可能性,那么它们的初始230Th/232Th放射性比值期望落在上地壳、火成岩和页岩等几种地质材料估算的范围内,也就是在0.43~1.12之间。因此,本工作选用上地壳值的初始Th/U比值(3.8)校正230Th年龄,对应的初始230Th/232Th原子比值为4.4×10-6

论文中所测4个样品碎屑Th校正的230Th年龄分别为155.2±18.6 ka B.P.、134.6±5.6 ka B.P.、70.9±8.5 ka B.P.和103.3±18.2 ka B.P. (表 2),表明黄土坡3#支洞滑坡体发生在中更新世晚期-晚更新世早期的155.2~70.9 ka。这些年龄数据虽然具有较大的误差,但存在明显年龄差异,可能反映了不同滑坡期次,进一步印证了黄土坡滑坡滑坡体的多期次性,是一个发生频率高、多个崩滑堆积体和滑坡组成的特大型复合滑坡。

大量研究表明,滑坡高发期往往与构造活动期、地文期的侵蚀期、气候暖湿期等相关[60~62]。对比各种与滑坡发育的相关因素发现,黄土坡滑坡发育期具有多因素耦合特点(图 4)。黄土坡滑坡体的滑动与三峡地区滑坡中的8×104~24×104a的活跃期时间吻合[63~66];在距今约150 ka以来,长江三峡地区经历了新构造期以来抬升速率最快的一次构造幕,形成了T3、T2、T1三级阶地[64],夷平面上升了约100 m,河流强烈下切,岸坡的卸荷效应明显加强;同时,三峡地区的气候与其他季风区一样,间冰期降水丰富,从而导致滑坡的大规模发生。三峡库区黄土坡滑坡在新构造快速抬升时期广泛发育,并与暖湿多雨期相对应,说明滑坡的发育演化受到新构造运动和气候变化耦合作用的控制[64~70]

图 4 长江三峡及邻区新构造运动、地貌过程、气候变化与滑坡事件的相关性分析[66] Fig. 4 The correlation analysis between landslide and neotectonic, geomorphologic process, climate change in the Three-Gorges and adjacent areas[66]
4 结论

本研究第一次将质谱U-Th测年技术用于滑坡过程产生的方解石晶体。以三峡库区巴东县黄土坡滑坡为研究对象,在资料收集和野外调查基础上,在黄土坡Ⅰ号临江滑坡体3#支洞滑坡带上采集4个方解石晶体样品,并开展了MC-ICPMS 230Th年代学分析。定年结果与野外调查以及前人的研究结果一致,表明挑选滑坡体滑带纯净的次生方解石进行U-Th测年是研究大型滑坡年代学的一种有效手段。

黄土坡滑坡3#支洞次生方解石的U含量变化在30.9×10-9~ 45.6×10-9g/g之间,234U/238U比值波动在1.362~2.673范围,基本能满足高精度U-Th测年的要求。然而,所有分析数据中较高的碎屑232Th污染导致230Th/232Th放射性活度比值仅为1.390~4.004。因此,利用现代选矿技术精选230Th/232Th放射性比值高的样品把初始230Th影响对年龄的校正降到最低程度,将是提升大型滑坡体碳酸盐230Th/238U定年精度的重要前提。同时,在进一步工作中开展该区各类型水体中U、Th同位素的化学特征研究,探讨次生碳酸盐初始Th的来源是非常必要的。

测定了4个滑坡体次生碳酸盐的230Th/238U年龄,分别为155.2±18.6 ka B.P.、134.6±5.6 ka B.P.、70.9±8.5 ka B.P.和103.3±18.2 ka B.P.,结果表明黄土坡滑坡是一个多期次的古滑坡,其滑动时间主要发生在中更新世晚期到晚更新世早期的155.2~70.9 ka。黄土坡滑坡滑动期与构造活动、地文期的侵蚀、气候暖湿多雨期相对应,是构造、地貌、气候多因素耦合作用的结果。

致谢: 非常感谢云南师范大学的张虎才教授对论文的修改;感谢审稿专家和编辑部杨美芳老师建设性的修改意见。

参考文献(References)
[1]
Kirschbaum D, Thomas S, Zhou Y P et al. Spatial and temporal analysis of a global landslide catalog. Geomorphology, 2015, 249(3): 4-15.
[2]
Petley D. Global patterns of loss of life from landslides. Geology, 2012, 40(10): 927-930. DOI:10.1130/G33217.1
[3]
殷志强, 许强, 赵无忌等. 黄河上游夏藏滩巨型滑坡演化过程及形成机制. 第四纪研究, 2016, 36(2): 474-483.
Yin Zhiqiang, Xu Qiang, Zhao Wuji et al. Study on the developmental characteristic, evolution processes and forming mechanism of Xiazangtan super large scale landslide of the upper reaches of Yellow River. Quaternary Sciences, 2016, 36(2): 474-483.
[4]
史培军, 吕丽莉, 汪明等. 灾害系统:灾害群、灾害链、灾害遭遇. 自然灾害学报, 2014, 23(6): 1-12.
Shi Peijun, Lü Lili, Wang Ming et al. Disaster system:Disaster group, disaster chain, disaster encounter. Journal of Natural Disasters, 2014, 23(6): 1-12.
[5]
宿星, 孟兴民, 王思源等. 陇中黄土高原典型地区滑坡特征参数统计及发育演化机制研究——以天水市为例. 第四纪研究, 2017, 37(2): 319-330.
Su Xing, Meng Xingmin, Wang Siyuan et al. Statistics of characteristic parameters and evolutionary mechanism of landslides in typical area of Longzhong Loess Plateau:A case study of Tianshui City. Quaternary Sciences, 2017, 37(2): 319-330.
[6]
邱海军, 胡胜, 崔鹏等. 黄土滑坡灾害空间格局及其空间尺度依赖性研究. 第四纪研究, 2017, 37(2): 307-318.
Qiu Haijun, Hu Sheng, Cui Peng et al. Pattern analysis of loess landslides and their scale dependency. Quaternary Sciences, 2017, 37(2): 307-318.
[7]
胡胜, 曹明明, 李婷等. 基于AHP和GIS的陕西省地震次生地质灾害危险性评价. 第四纪研究, 2014, 34(2): 336-345.
Hu Sheng, Cao Mingming, Li Ting et al. Danger assessment of earthquake-induced geological disasters in Shaanxi Province based on AHP and GIS. Quaternary Sciences, 2014, 34(2): 336-345.
[8]
李长安, 邵磊, 袁胜元等. 地文期-构造节律-气候旋回耦合与三峡地质灾害关系的探讨. 地质科技情报, 2012, 31(5): 65-68.
Li Chang'an, Shao Lei, Yuan Shengyuan et al. Discussion on the relationship between geographical period, tectonic rhythm, climatic coupling of climate and the Three Gorges geological disasters. Geological Science and Technology Information, 2012, 31(5): 65-68.
[9]
杨银科, 彭建兵, 刘聪. 滑坡年代学研究进展. 灾害学, 2015, 30(2): 133-137.
Yang Yinke, Peng Jianbing, Liu Cong. Progress of landslide chronology. Journal of Catastrophology, 2015, 30(2): 133-137.
[10]
田婷婷, 吴中海, 张克旗等. 第四纪主要定年方法及其在新构造与活动构造研究中的应用综述. 地质力学学报, 2013, 19(3): 243-266.
Tian Tingting, Wu Zhonghai, Zhang Keqi et al. Quaternary dating methods and their application in the study of tectonism and tectonics. Journal of Geomechanics, 2013, 19(3): 243-266.
[11]
卢演俦. 活动构造测年方法和年代学研究新进展. 地震地质译丛, 1994, 16(4): 1-7.
Lu Yanchou. New dating methods and geochronology of activity tectonics. Seismology and Geology Translation Series, 1994, 16(4): 1-7.
[12]
Stephenson E J, Mast T S, Muller R A. Radiocarbon dating with a cyclotron. Science, 1979, 158(79): 571-577.
[13]
Edwards R L, Chen J H, Wasserburg G J et al. 238U-234U-230Th-232Th systematics and the precise measurement of time over the past 500, 000 years. Earth and Planetary Science Letters, 1986, 87(2): 175-192.
[14]
Huntley D J. Optical dating of sediments. Nature, 1985, 313(5998): 105-107. DOI:10.1038/313105a0
[15]
姚远, 陈建波, 李帅等. 新疆天山北轮台断裂阿克艾肯段晚第四纪活动特征. 第四纪研究, 2017, 37(3): 645-653.
Yao Yuan, Chen Jianbo, Li Shuai et al. Late-Quaternary activity characteristics of Akeaiken segment of Beiluntai fault belt at south of Tianshan, in Xinjiang. Quaternary Sciences, 2017, 37(3): 645-653.
[16]
姜大伟, 张世民, 丁锐等. 龙门山南段前陆区古冲积扇分析及河流地貌面序列的建立——基于地貌面的测年数据、野外地貌分析与调查. 第四纪研究, 2016, 36(5): 1263-1279.
Jiang Dawei, Zhang Shimin, Ding Rui et al. A fluvial morphologic surface sequence based on the research of alluvial fans in the foreland region of southern Longmen Shan-According to the dating methods, field survey, and geomorphological analysis. Quaternary Sciences, 2016, 36(5): 1263-1279.
[17]
夏倩倩, 张峰. 塔克拉玛干沙漠腹地克里雅河尾闾圆沙三角洲AMS 14C年代学测定及相关历史地理问题刍议. 第四纪研究, 2016, 36(5): 1280-1292.
Xia Qianqian, Zhang Feng. AMS 14C dating and related historical geography question proposal at the Yuansha delta in the central Taklamakan Desert. Quaternary Sciences, 2016, 36(5): 1280-1292.
[18]
Giovanni B, Nicola C, Leonardo E et al. Radiocarbon data on late glacial and Holocene landslides in the Northern Apennines. Natural Hazards, 2004, 31(3): 645-662. DOI:10.1023/B:NHAZ.0000024896.34933.63
[19]
Geertsema M, Clague J J. 1, 000-year record of landslide dams at Halden Greek, northeastern British Columbia. Landslides, 2006, 3(3): 217-227. DOI:10.1007/s10346-006-0039-y
[20]
杨丽娟, 李华亮, 易顺华. 陕西五曲湾滑坡发育特征和14C测龄. 灾害学, 2010, 25(3): 49-52.
Yang Lijuan, Li Hualiang, Yi Shunhua. Characteristics of landslides and age of 14C study in Wuqiawan, Shanxi Province. Journal of Catastrophology, 2010, 25(3): 49-52.
[21]
蒋瑶, 吴中海, 刘艳辉等. 青海玉树活动断裂带的多期古地震滑坡及其年龄. 地质通报, 2014, 33(4): 503-516.
Jiang Yao, Wu Zhonghai, Liu Yanhui et al. Multi-period paleo-earthquake landslides and the age at the active fault zone in Yushu, Qinghai Province. Geological Bulletin of China, 2014, 33(4): 503-516.
[22]
Balescu S, Ritz J F, Lamothe M et al. Luminescence dating of a gigantic palaeolandslide in the Gobi-Altay Mountains, Mongolia. Quaternary Geochronology, 2007, 2(1): 290-295.
[23]
Guo X H, Lai Z P, Sun Z et al. Luminescence dating of Suozi landslide in the upper Yellow River of the Qinghai-Tibetan Plateau, China. Quaternary International, 2014, 349(3): 159-166.
[24]
赵瑞欣, 周保, 李滨. 黄河上游龙羊峡至积石峡段巨型滑坡OSL测年. 地质通报, 2013, 32(12): 1943-1951.
Zhao Ruixin, Zhou Bao, Li Bin. OSL dating of giant landslide from Longyang Gorge to Jishi Gorge reach in the upper Yellow River. Geological Bulletin of China, 2013, 32(12): 1943-1951.
[25]
刘春茹, 尹功明, 高璐等. 第四纪沉积物ESR年代学研究进展. 地震地质, 2011, 33(2): 133-138.
Liu Chunru, Yin Gongming, Gao Lu et al. Progress in ESR chronology of Quaternary sediments. Seismology and Geology, 2011, 33(2): 133-138.
[26]
Liu C R, Yin G M, Gao L et al. ESR dating of Pleistocene archaeological localities of the Nihewan Basin, North China-Preliminary results. Quaternary Geochronology, 2010, 5(2): 385-390.
[27]
Bianchi G, Fasani D E, Espsito C et al. Quaternary catastrophic rock avalanches in the Central Apennines(Italy):Relationship with inherit tectonic features, gravitu-drivers deformations and the geodynamic frame. Geomorphology, 2014, 211(8): 22-42.
[28]
Paul E C, Micheal O N. Tree-ring dated landslide movements and their relationship to seismic events in southwestern Montana, USA. Quaternary Research, 2003, 59(1): 25-35. DOI:10.1016/S0033-5894(02)00010-8
[29]
Miet V D E, Muys B, Van K L et al. Evidence for repeated re-activation of old landslides under forest. Earth Surface Processes and Landforms, 2009, 34(3): 352-365. DOI:10.1002/esp.v34:3
[30]
彭子成, 张兆峰, 蔡演军等. 贵州七星洞晚更新世晚期石笋的古气候环境记录. 第四纪研究, 2002, 22(3): 273-282.
Peng Zicheng, Zhang Zhaofeng, Cai Yanjun et al. The paleoclimatic records from the Late Pleistocene stalagmite in Guizhou Qixing cave. Quaternary Sciences, 2002, 22(3): 273-282.
[31]
Peng H X, Ma Z B, Huang W B et al. 230Th/U chronology of a paleolithic site at Xinglong Cave in the Three-Gorge region of South China. Quaternary Geochronology, 2014, 24(24): 1-9.
[32]
郑德文, 武颖, 庞建章等. U-Th/He热年代学原理、测试及应用. 第四纪研究, 2016, 36(5): 1027-1036.
Zheng Dewen, Wu Ying, Pang Jianzhang et al. Fundamentals, dating and application of U-Th/He thermochronology. Quaternary Sciences, 2016, 36(5): 1027-1036.
[33]
高钰涯, 李秋立, 刘宇等. 离子探针第四纪锆石U-Pb和U-Th定年方法及应用. 第四纪研究, 2016, 36(5): 1015-1026.
Gao Yuya, Li Qiuli, Liu Yu et al. SIMS U-Pb and U-Th zircon age determination for Quaternary rocks. Quaternary Sciences, 2016, 36(5): 1015-1026.
[34]
邵庆丰, 韩非, Jean-Jacques Bahain. 华南早更新世巨猿动物群的ESR/U-系年代. 第四纪研究, 2016, 36(5): 1224-1235.
Shao Qingfeng, Han Fei, Jean-Jacques Bahain. Coupled ESR/U-series age estimates for Early Pleistocene Gigantopithecus faunas in Southern China. Quaternary Sciences, 2016, 36(5): 1224-1235.
[35]
肖萍, 刘静, 王伟等. 青藏高原东南缘芒康地区河流地貌演化的磷灰石U-Th/He记录. 第四纪研究, 2015, 35(2): 433-444.
Xiao Ping, Liu Jing, Wang Wei et al. The evoluiton of fluvial geomorphology of Mangkang area(southeastern Tibetan Plateau) recorded by apatite U-Th/He thermochronology. Quaternary Sciences, 2015, 35(2): 433-444. DOI:10.11928/j.issn.1001-7410.2015.02.18
[36]
Ma Z B, Cheng H, Tan M et al. Timing and structure of the Younger Dryas event in Northern China. Quaternary Science Reviews, 2012, 41(2): 83-93.
[37]
Sambridge M, Grün R, Eggins S. U-series dating of bone in an open system:The diffusion-adsorption-decay model. Quaternary Geochronology, 2012, 9(6): 42-53.
[38]
Zhao J X, Hu K, Collerson K D. Thermal ionization mass spectrometry U-series dating of a hominid site near Nanjing, China. Geology, 2001, 29(1): 27-30. DOI:10.1130/0091-7613(2001)029<0027:TIMSUS>2.0.CO;2
[39]
彭子成, 马志邦, 陈文寄等. 高精度热电离质谱(TIMS)铀系法对第四纪标样年龄测定的研究. 科学通报, 1997, 42(19): 2090-2093.
Peng Zicheng, Ma Zhibang, Chen Wenji et al. Study on age determination of Quaternary samples by high-precision thermal ionization mass spectrometry(TIMS) uranium system. Chinese Science Bulletin, 1997, 42(19): 2090-2093. DOI:10.3321/j.issn:0023-074X.1997.19.018
[40]
Cheng H, Edwards R L, Broecker W S et al. Ice age terminations. Science, 2009, 326(5950): 248-252. DOI:10.1126/science.1177840
[41]
Cheng H, Fleitmann D, Edwards R. Timing and structure of the 8.2 kyr B.P. event inferred from δ18O records of stalagmites from China, Oman, and Brazil. Geology, 2009, 37(11): 1007-1010. DOI:10.1130/G30126A.1
[42]
Cheng H, Edwards R L, Shen C C et al. Improvements in 230Th dating, 230Th and234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth and Planetary Science Letters, 2013, 371(9): 82-91.
[43]
王立胜, 马志邦, 程海等. MC-ICPMS测定铀系定年标样的230Th年龄. 质谱学报, 2016, 37(3): 262-272.
Wang Lisheng, Ma Zhibang, Cheng Hai et al. Determination of 230Th age of uranium series dating by MC-ICPMS. Journal of Chinese Mass Spectrometry Society, 2016, 37(3): 262-272. DOI:10.7538/zpxb.youxian.2016.0009
[44]
王立胜, 马志邦, 肖举乐. MC-ICPMS测定晚第四纪碳酸盐U-Th年龄. 地质学报, 2015, 89(增刊): 35-37.
Wang Lisheng, Ma Zhibang, Xiao Jule. Determination of Late Quaternary carbonate U-Th age by MC-ICPMS. Acta Geologica Sinica, 2015, 89(Suppl.): 35-37.
[45]
简文星, 杨金. 三峡库区黄土坡Ⅰ号崩滑体成因. 地球科学——中国地质大学学报, 2013, 38(3): 625-631.
Jian Wenxing, Yang Jin. Genesis of landslides on the loess slope Ⅰ in the Three Gorges Reservoir area. Earth Science-Journal of China University of Geosciences, 2013, 38(3): 625-631.
[46]
Wang J E, Su A, Xiang W et al. New data and interpretations of the shallow and deep deformation of Huangtupo No.1 riverside sliding mass during seasonal rainfall and water level fluctuation. Landslides, 2016, 13(4): 795-804. DOI:10.1007/s10346-016-0712-8
[47]
李守定, 李晓, 刘艳辉等. 千将坪滑坡滑带地质演化过程研究. 水文地质工程地质, 2008, 35(2): 18-23.
Li Shouding, Li Xiao, Liu Yanhui et al. Geological evolution of the sliding zone of the Qianjiangping landslide. Hydrogeology and Engineering Geology, 2008, 35(2): 18-23.
[48]
Jaffey A H, Flynn K F, Glendenin L E et al. Precision measurement of half-lives and specific activities of 235U and 238U. Physical Reviews, 1971, 4(5): 1889-1906.
[49]
Edwards R L, Chen J H, Ku T L et al. Precise timing of the last interglacial period from mass spectrometric analysis of 230Th in corals. Science, 1987, 236(4808): 1537-1553.
[50]
Wang L S, Ma Z B, Sun Z L et al. U concentration and234U/238U of seawater from the Okinawa Trough and Indian Ocean using MC-ICPMS with SEM protocols. Marine Chemistry, 2017, 196(8): 71-80.
[51]
韩永志. 中华人民共和国标准物质目录. 北京: 中国计量出版社, 2000: 55.
Han Yongzhi. The People's Republic of China Reference Materials Catalog. Beijing: China Metrology Press, 2000: 55.
[52]
Ku T L. Progress and perspectives[M]//Ivanovich M, Harmon R S. Uranium Series Disequilibrium: Applications to Environmental Problems. Oxford: Clarendon Press, 1982: 497-506.
[53]
刘韶, 张惠玲. 铀系年代学[M]//刘韶主编. 南沙群岛及其邻近海域铀钍沉积特征和年代研究. 北京: 海洋出版社, 1996: 2-32.
Liu Shao, Zhang Huiling. Uranium chronology[M]//Liu Shao. Characteristics and Dating of Uranium-thorium Deposits in the Nansha Islands and Adjacent Area. Beijing: China Ocean Press, 1996: 2-32.
[54]
Osmond J K, Cowart J B. Ground water[M]//Ivanovich M, Harmon R S. Uranium-Series Dissequilibrium: Application to Earth, Marine, and Environmental Sciences. Oxford: Clarendon Press, 1992: 290-333.
[55]
Mallick R, Frank N. A new technique for precise uranium-series dating of travertine micro-samples. Geochimica et Cosmochimica Acta, 2002, 66(24): 4261-4272. DOI:10.1016/S0016-7037(02)00999-7
[56]
Ludwig K R, Paces J B. Uranium-series dating of pedogenic silica and carbonate, Crater Flat, Nevada. Geochimica et Cosmochimica Acta, 2002, 66(3): 487-506. DOI:10.1016/S0016-7037(01)00786-4
[57]
Harmon R S, Rosholt J N. Igneous rocks[M]//Ivanovich M, Harmon R S. Uranium Series Disequilibrium: Application to Environmental Problems. Oxford: Clarendon Press, 1982: 145-164.
[58]
Lin J C, Broecker W S, Anderson R F et al. New 230Th/U and 14C ages from Lake Lahontan carbonates, Nevada, USA, and a discussion of the origin of initial thorium. Geochimica et Cosmochimica Acta, 1996, 60(15): 2817-2832. DOI:10.1016/0016-7037(96)00136-6
[59]
Gascoyne M. Geochemistry of the actinides and their daughters[M]//Ivanovich M, Harmon R S. Uranium Series Disequilibrium: Application to Environmental Problems. Oxford: Clarendon Press, 1982: 34-61.
[60]
王思敬. 地球内外动力耦合作用与重大地质灾害的成因初探. 工程地质学报, 2002, 10(2): 115-117.
Wang Sijing. Preliminary study on the coupling effect between internal and external power of the earth and the genesis of major geological disasters. Journal of Engineering Geology, 2002, 10(2): 115-117.
[61]
Tang H M, Li C D, Hu X L et al. Evolution characteristics of the Huangtupo landslide based on in situ tunneling and monitoring. Landslides, 2015, 12(3): 511-521. DOI:10.1007/s10346-014-0500-2
[62]
倪卫达, 唐辉明, 胡新丽等. 黄土坡临江Ⅰ号崩滑体变形及稳定性演化规律研究. 岩土力学, 2013, 34(10): 2961-2971.
Ni Weida, Tang Huiming, Hu Xinli et al. Study on the deformation and stability evolution of the collapse and slippery body of Linjiang No.1 in the loess slope. Rock and Soil Mechanics, 2013, 34(10): 2961-2971.
[63]
陈松, 程国金, 徐光黎. 黄土坡滑坡形成与变形的地质过程机制. 地球科学——中国地质大学学报, 2008, 33(3): 411-415.
Chen Song, Cheng Guojin, Xu Guangli. Geological process mechanism of loess slope landslide formation and deformation. Earth Science-Journal of China University of Geosciences, 2008, 33(3): 411-415.
[64]
陈剑, 李晓, 杨志法. 三峡库区滑坡的时空分布特征与成因探讨. 工程地质学报, 2005, 13(3): 305-309.
Chen Jian, Li Xiao, Yang Zhifa. Spatial and temporal distribution characteristics and genesis of landslides in the Three Gorges Reservoir area of the Yangtze River. Journal of Engineering Geology, 2005, 13(3): 305-309.
[65]
李长安. 三峡地区滑坡与构造运动、气候变化的关系. 地质科技情报, 1997, 16(3): 87-91.
Li Chang'an. Relationship between landslides and tectonic movements and climate change in the Three Gorges area. Geological Science and Technology Information, 1997, 16(3): 87-91.
[66]
陈国金, 李长安, 陈松等. 长江三峡库区滑坡发育与河道演化的地质过程分析. 地球科学——中国地质大学学报, 2013, 38(2): 411-416.
Chen Guojin, Li Chang'an, Chen Song et al. Geological process analysis of landslide development and channel evolution in the Three Gorges Reservoir area of the Yangtze River. Earth Science-Journal of China University of Geosciences, 2013, 38(2): 411-416.
[67]
邓清禄, 王学平. 长江三峡库区滑坡与构造活动的关系. 工程地质学报, 2000, 8(2): 136-141.
Deng Qinglu, Wang Xueping. The relationship between the landslides and tectonic activities in the Three Gorges Reservoir area of the Yangtze River. Journal of Engineering Geology, 2000, 8(2): 136-141.
[68]
殷志强, 程国明, 李小林等. 中更新世早中期以来黄河上游与三峡库区滑坡形成机理与气候变化关系研究. 第四纪研究, 2010, 30(1): 37-45.
Yin Zhiqiang, Cheng Guoming, Li Xiaolin et al. Study on the relationship between the formation mechanism of landslides and climate change in the upper Yellow River and the Three Gorges Reservoir area since the Middle and Early Pleistocene. Quaternary Sciences, 2010, 30(1): 37-45.
[69]
刘传正, 刘艳辉, 连建发. 长江三峡巴东复杂斜坡系统成因研究. 地质评论, 2006, 52(4): 510-520.
Liu Chuanzheng, Liu Yanhui, Lian Jianfa. Genetic research on the complex slope system of Badong in the Three Gorges of the Yangtze River. Geological Review, 2006, 52(4): 510-520.
[70]
刘芸芸. 国外滑坡活动与气候变化关系研究进展综述. 气象科技进展, 2013, 3(增刊): 30-33.
Liu Yunyun. Review of the research progress on the relationship between landslide activities and climate change in foreign countries. Progress in Meteorological Science and Technology, 2013, 3(Suppl.): 30-33.
230Th/238U chronology of Huangtupo landslide in Three-Gorges Reservoir area by MC-ICPMS
Peng Hongxia1,2, Wu Kun1, Deng Qinglu3, Wei Yujie1, Peng Ke1     
(1 Faculty of Public Administration, China University of Geosciences(Wuhan), Wuhan 430074, Hubei;
2 State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences(Wuhan), Wuhan 430074, Hubei;
3 Faculty of Engineering, China University of Geosciences(Wuhan), Wuhan 430074, Hubei)

Abstract

Landslide has become one of the highest frequency and largest loss of various types of geological disasters. Dating their ages and reproducing their sequences in Quaternary period is the foundation of confirming the history and relationships and forecasting the development trend in the future. U-Th dating is a radiometric technique commonly used to determine the age of calcium carbonate materials. U-Th disequilibrium dating of secondary calcite can provide information on the timing of the Huangtupo landslide(31°06'01″N, 110°18'03″E) Badong County in the Three-Gorge Reservoir area. 4 calcite samples were collected from Branch 3 of Slump Ⅰ of the Huangtupo tunnel during excavation and investigated by MC-lCPMS. Results showed that the U content ranges in 30.9×10-9~45.6×10-9g/g with ratio of 234U/238U fluctuating in 1.362~2.673 and can meet the requirement of high precision U-Th chronology. We obtained four ages of 155.2±18.6 ka B.P., 134.6±5.6 ka B.P., 70.9±8.5 ka B.P. and 103.3±18.2 ka B.P. These apparent ages indicated Huangtupo landslide evolution occurred between 155.2~70.9 ka of the late Middle Pleistocene to early Late Pleistocene and involved multiple active sliding events. Huangtupo landslide ages of U-series are in good agreement with field investigation and previous research. This shows that U-Th approach by dating pure secondary calcite from the giant landslide is a kind of effective method to studying on the chronology of giant landslide. Correlation analysis between Huangtupo landslide and neotectonic, geomorphological process, climate change in the Three-Gorges and adjacent area show that Hangtupo extentive developed in the neotectonic period of rapid uplift and warm and wet climate. All results showed the Huangtupo landslide is a complex and multiple active sliding paleolandslide system and is response to joint governing processes of neotectonic movement and climate change.
Key words: U-Th dating     MC-lCPMS     Huangtupo landslide     Three-Gorges Reservoir area     landslide evolution