第四纪研究  2018, Vol.38 Issue (3): 573-586   PDF    
光释光技术在我国海岸晚第四纪沉积测年中的应用
年小美, 张卫国     
( 华东师范大学河口海岸学国家重点实验室, 上海 200062)
摘要:位于陆地与海洋交界的海岸系统,对环境变化反应敏感,海岸沉积是记录区域及全球环境变化的重要载体。但海岸沉积动力环境复杂,多存在沉积物的侵蚀、搬运与再沉积现象,或缺乏14C测年所需的有机质材料,因此年代问题是海岸第四纪地层研究的难点。光释光测年技术(OSL)主要通过石英或长石矿物的释光信号,确定沉积物的埋藏年龄,测年范围从近百年到几十万年。OSL的快速发展为海岸第四纪地层年代确定提供了有利条件,特别是单片再生剂量法的提出,提高了光释光测年结果的准确度和精度。OSL测年需要根据样品的年龄与性质,进行测年矿物、测量程序条件及粒级的选择。文章基于近年来石英和长石光释光测年技术的发展,结合我国海岸第四纪地层断代中已发表的500多个光释光年代数据,探讨光释光测年技术在海岸第四纪沉积物定年中遇到的常见问题及应对策略,包括测年矿物的选择(石英vs.长石)、样品的晒退、剂量率、石英信号的组分、长石包裹体等。对这些问题的认识有助于对光释光测年结果准确度的评估,可以更好地服务于海岸晚第四纪沉积研究。
主题词光释光测年     不完全晒退     剂量率     石英     长石     石英信号组分     长石包裹体    
中图分类号     P597+.3                     文献标识码    A

1 前言

光释光测年技术(OSL)于1985年由Huntley等[1]首次提出,它是测量样品最后一次完全曝光至埋藏以来的年龄,近年来得到了快速的发展,无论是测年准确度还是精度都有了很大的提高[2]。光释光的微观机制比较复杂,现普遍采用能带理论对其进行解释,其物理原理可参见Aitken[3]的早期专著。光释光测年的一般原理是:沉积物的矿物颗粒在搬运过程中经过光的晒退,使其以前积累的光信号归零,在后期埋藏过程中,沉积物中放射性核素(U、Th、K等)衰变发射出具有一定能量的αβγ射线,宇宙射线对其也有少量贡献,这些射线与矿物颗粒相互作用,将能量从周围环境中转移到矿物颗粒中进行储存,而其储存信号的多少正比于矿物颗粒最后一次见光以来的时间[3]。光释光样品在实验室的测量包括等效剂量(De)和剂量率(dose rate)两部分[3]。样品最后一次曝光以来所吸收的总辐射剂量为古剂量(palaeodose),在实验室中用等效剂量的值代替古剂量的值,等效剂量为实验室中产生的与自然剂量光释光信号强度相同的辐射剂量,样品每年所吸收的辐射剂量为剂量率,样品的年龄由古剂量/等效剂量除以剂量率得到[3]

近年来,光释光技术在海岸沉积物定年中得到了广泛的应用,并取得了丰硕的成果[4~8]。如Jacobs[4]发表于2008年的文章,当时光释光技术在我国海岸沉积物定年中应用较少,因而涉及我国海岸沉积物年代研究案例较少;尽管Lamothe[7]的文章发表于2016年,但其综述主要侧重释光技术在较老沉积物(末次间冰期- 1 Ma)中的应用,也很少涉及我国的研究。本文主要回顾近年来光释光技术在我国海岸晚第四纪地层年代测定中的应用,并探讨存在的问题及其应对策略,以便使光释光技术更好地服务于我国海岸第四纪地层的年代研究。

2 光释光技术在我国海岸晚第四纪地层年代研究中的应用及面临的问题与挑战 2.1 光释光测年技术在我国海岸晚第四纪地层年代研究中的应用现状

对过去环境变化过程的研究,需要高分辨率地层年代学的支撑。海岸带处于陆地与海洋环境的过渡地带,沉积相变化复杂,往往相距几百米的地层岩性便无法直接对比,且可能经历过多次的侵蚀、搬运与再沉积,因此准确而大量的测年数据,是建立海岸地区高分辨率地层年代学的基础[9]。海岸晚第四纪碎屑沉积物年代的确定,目前主要手段包括放射性14C、210Pb、137Cs、239+240Pu等测年技术。14C测年技术主要利用沉积物中的有机质、植物残体、生物壳体的碳酸盐等进行测年(测年极限<5万年)。但是,一些沉积物中往往缺乏适合测年所需含碳材料(如河口沙坝),从而导致无法进行14C定年[10~14];此外,由于海岸地区沉积物来源的多样性及沉积环境的复杂性,如沉积物的改造与再沉积、碳库效应等,多出现上、下层位年龄的倒转或与海岸演化历史框架无法匹配的年代[13~22]210Pb、137Cs和239+240Pu目前主要用于测量近百年的沉积物[23~25]。对于较老的沉积物,古地磁也有应用[26~28],但是它是一种相对测年技术,需要与其他测年方法配合,才能更为可靠地确定层位所处的绝对年代。

光释光技术在海岸沉积年代确定中的应用,主要涉及海岸沙丘[29~33]以及三角洲演变等领域[34~38]。近年来,光释光技术在我国海岸第四纪地层年代分析中也逐渐得到应用,从图 1表 1总结的数据可以看出,光释光测年技术应用区域集中在我国大河三角洲及毗邻陆架以及台湾海峡的沙质海岸,测年范围主要集中在全新世和晚更新世晚期,少数几个较老沉积物的年龄(>70~80 ka)主要是采用传统的石英光释光信号或未经异常衰退校正的长石红外释光信号进行测定,这可能导致年龄的低估,这个问题将在本文的2.2.1节进行讨论。本文统计的我国海岸沉积光释光年代测年的40余篇文章中,约有一半的文章主要是利用光释光技术提供年代数据,未重点介绍测年的细节。光释光测年技术需要根据样品的性质选择合适的测试方法、测试矿物与粒级以及数据处理方法等,这对保证年代数据的准确性具有重要意义。综合分析近年来国内外海岸第四纪地层光释光测年技术的进展文章,可以发现测年矿物的选择、样品的晒退、剂量率、石英信号的组分、矿物中存在的长石包裹体等,是光释光测年需要主要关注的问题。下面就以上几个问题进行讨论。

图 1 光释光技术在我国海岸晚第四纪地层年代分析中应用的主要地点 图中钻孔/剖面的数字编号与表 1中的数字编号(第二列)一一对应 Fig. 1 Late Quaternary coastal deposits dated using optically stimulated luminescence(OSL)technique in China. The sites of dated cores/sections(solid circles)are detailed in Table 1, with the numbers corresponding to the second column in Table 1

表 1 光释光技术在我国海岸晚第四纪地层年代分析中的应用 Table 1 Application of optically stimulated luminescence dating(OSL)to Late Quaternary coastal deposits in China
2.2 面临的问题与挑战 2.2.1 光释光测年矿物的选择:石英vs.长石

光释光测年技术主要利用石英和长石两种矿物,它们在自然界中分布十分广泛,因此光释光测年技术可用于多种第四纪沉积物的年代测定[2, 85~91]。在光释光定年中,石英的光释光信号较易晒退,信号比较稳定,方法发展相对比较成熟,特别是石英单片再生剂量法(SAR)的提出,大大提高了光释光测年结果的准确性和精度[74]。但是,一些样品的石英光释光信号较弱,且饱和剂量较低,往往出现70~80 ka附近的“极限年龄”[92~94],如采自于明显老于70~80 ka地层的沉积物样品,石英光释光测年测量结果仍然为70~80 ka,限制了石英矿物对老样品的测量。Wang等[95~96]发展了回授光释光(TT-OSL)测年方法,扩大了石英光释光的测年范围,最老可以测量近百万年的样品[97]。但是,石英TT-OSL信号并不适合所有样品[98],特别是对于一些年轻的样品,往往存在不可忽视的光释光信号晒退问题[99~100]

长石矿物的释光信号强度比石英强,且饱和剂量较高,具有测量较老样品的巨大潜力。但是,长石信号由于其陷阱电荷的量子力学隧道效应[101],即陷阱电子不需要晶格振动获得能量,就可以直接贯穿势垒与发光中心结合,这会导致长石信号的异常衰退[102~105],异常衰退会引起长石样品光释光年龄的低估,限制了长石矿物在光释光测年中的应用。目前针对长石的异常衰退已提出了多种校正方法,但是每种校正方法都有其局限性,大部分校正方法适合于线性增长区的生长曲线,即较年轻的样品[106~110];此外,长石异常衰退的校正需要多次的反复测量,比较耗时耗力。近年来为了拓展光释光的测年范围,研究者们不断努力寻找减少甚至消除红外释光信号异常衰退的方法,从而获得更加稳定的信号,目前在这方面已取得了很多进展,如钾长石的等时线年龄法[111]、单片钾长石红外激发后高温红外激发释光方法[81~82](pIRIR)、钾长石多步升温的单片红外激发后高温红外激发释光方法[112~1113](MET-pIRIR)、单颗粒钾长石红外激发后高温红外激发释光方法[114]等,但这些方法都有自身的前提条件或者局限性,如钾长石的等时线年龄法要求一个样品具有多个粒级,并且都要晒退完全;在应用钾长石pIRIR方法时,发现了长石的热转移信号,这个热转移信号可能影响等效剂量的测定[114~118],而大的检测剂量可以减少甚至消除这个热转移信号的干扰[114, 116, 118~121];在利用MET-pIRIR测量程序时,样品要经历多次较高温度条件下的激发,要求样品具有很强的光释光信号和良好的晒退性。目前,长石pIRIR方法在长江三角洲和渤海湾已有应用[43, 48~49],但是主要是针对全新世沉积物,对于更老的样品研究还很少,本文2.2.2节将对该方法的晒退问题进行讨论。

综上,根据样品的年龄与释光性质,选择合适的矿物及测量程序对沉积物年代的准确测定至关重要。石英的光释光信号较长石信号更容易晒退,因此对于较年轻样品,如果可以提取出纯净的石英,且石英信号足够强,通常选择信号较易晒退、技术发展相对比较成熟的石英矿物。对于较老样品(如黄土沉积,>70~80 ka)[92~94],传统石英光释光信号得到的年龄为最小年龄。因此要确定“较老样品”沉积物的年代要选择其他信号进行测量,如石英的热转移信号或者长石信号。

2.2.2 晒退问题

在利用光释光技术测量沉积物的年龄时,通常假设样品在埋藏之前曝光完全[3]。但是,对于很多沉积物很难达到这个理想条件,往往存在晒退问题(特别对于年轻样品不可忽视),且不同颗粒晒退程度不同,在测量样品的等效剂量时,要对样品的晒退性进行评定,特别是对于水成沉积物[122]

通过对长江三角洲深切古河谷内的双甸(SD)、泰州(TZ)、双甸(NT)3个钻孔的中粒和粗粒石英矿物研究发现,多数粗粒石英样品存在显著的晒退问题(高估可达80 %),中粒石英整体上比粗粒石英晒退要好,但是少数中粒石英样品也存在晒退问题[13~14]。长江三角洲南部平原的WJ和QP88钻孔细颗粒石英[26]及东海内陆架ECS-DZ1钻孔粗粒石英[42]测年结果也显示了部分样品存在晒退问题。但是,南黄海西岸YZ07钻孔的细颗粒与粗颗粒石英[40~41]和长江水下三角洲YD13-G3、YD12-H1[43]钻孔的细粒石英却表现出了良好的晒退性。恒河三角洲不同粒级石英表现出了不同的性质,细颗粒石英光释光信号较强且晒退完全,适合光释光测年,而粗颗粒石英光释光信号弱且存在晒退问题,不适合用于光释光测年[38]。而密西西比河三角洲的细颗粒和粗颗粒石英(近百年尺度的沉积物存在约100 a的残余年龄)[35~36]、湄公河三角洲的粗颗粒石英[34]、洛东江三角洲细颗粒和粗颗粒石英[37]都表现出了较好的晒退性。这可能与沉积物不同的物质来源及经历的不同搬运历史相关。

对于较老的样品,晒退情况对样品的测年结果影响较小或者可以忽略,但是对于较年轻的样品,晒退影响却不可忽视。如Sugisaki等[43]对长江口现代悬浮颗粒石英SAR测年结果约0.18 Gy,长石pIRIR的测年结果约7.36 Gy,如果剂量率按照3 Gy/ka计算,那么石英和长石的年龄分别为60 a和250 a;Wang等[25]对长江水下三角洲A6-6钻孔近百年沉积进行了OSL、210Pb、137Cs、239+240Pu和微塑料等测年方法的比较研究,发现细颗粒石英的OSL年龄存在约60 a的高估;Li等[48~49]对渤海湾沉积物长石pIRIR的研究发现,pIRIR存在一定的残余年龄,特别是对于小于1 ka的较年轻样品,长石高估更明显。通常情况下,<100 a的“残余年龄”被认为是晒退比较“理想”的样品,对于较老的样品,考虑到测年误差基本可以忽略不计,但是这样的“残余年龄”对于近百年或近千年的样品影响还是很大。

对于判断、解决由于样品晒退问题造成的高估,目前主要有如下方法:1)单颗粒或者小片技术[123~124];2)多粒级多矿物多种光释光测年方法的比较[13~14, 49, 98];3)与其他测年技术、地层或者环境信息进行对比综合分析[13~14, 40];4)通过统计模型分析,选择合适的统计分析模型[125~126];5)De (t)图,即等效剂量随不同激发时间段的变化[127~128],但是在应用De(t)图时应考虑到中组分的热不稳定性的影响[129];6)石英或者长石信号不同的晒退速率[130]。前2种方法是针对样品的测量,后4种方法是关于数据的处理和分析(不受测试结果影响,根据样品性质决定采用哪种分析方法),这里主要对前两种样品的测量进行讨论。

多颗粒单片技术是对若干颗粒进行同时测量,得到的测量结果是所有颗粒的平均值,如果样品包含晒退不完全的颗粒,那么所得到的等效剂量由于受到不完全晒退颗粒残余剂量的影响会偏高,即年龄的高估。为解决样品的晒退问题,单颗粒测量技术是近些年来发展的一个重要方法,它对每一个颗粒分别测量,可以判断样品的晒退情况,根据测量结果挑选出晒退较好的颗粒[123, 131~133],再通过统计模型分析,可以显著改善或者避免由于晒退不完全导致的高估。通过石英单颗粒的光释光测年发现,不同颗粒间的发光性质有很大的变化,通常情况下只有约5 % ~10 %的颗粒发出的光释光信号可以用于年代的测定[133~134],我们对长江三角洲深切古河谷全新世沉积物的研究发现,只有0.5 % ~0.8 %的石英颗粒能用于年代的测定[14],因此小片技术往往也可以达到单颗粒的效果,用于判断样品的晒退情况。

样品粒级的选择对年代的确定也至关重要,同一样品不同粒级的矿物晒退情况可能不同,因此采用多粒级多矿物的对比分析可以提高数据的准确性。多粒级多矿物对比分析目前已逐渐应用到我国海岸晚第四纪地层光释光年代测定中,提高了数据的可信度[13~14, 40, 48~49]。例如,对长江三角洲全新世沉积物光释光测年研究中发现,不同粒级的石英矿物具有不同的晒退性[13~14]

2.2.3 剂量率

剂量率作为释光测年的两个重要参数(等效剂量和剂量率)之一,对最终测年结果准确性的影响显而易见[3]。用于剂量率计算的放射性元素主要为U、Th、K,宇宙射线也有少量贡献。放射性元素的含量可以通过中子活化法(NAA)、γ能谱仪、原子吸收光谱法(AAS)或电感耦合等离子体质谱(ICP- MS)等方法进行测定。在计算钾长石的剂量率时,涉及到钾长石的内部剂量率,可以通过扫描电镜(SEM)或电子探针显微分析(EPMA)等方法进行测量。

在沉积物中,放射性核素衰变产生的能量主要由沉积物颗粒及周围的水吸收,因此水含量的多少会直接影响沉积物颗粒吸收能量的多少,即含水率影响沉积物剂量率的大小[3]。剂量率计算时通常假设沉积物为均一的,且在埋藏历史时期放射性核素的活度及含水率没有发生改变,因此可以通过测量沉积物现有放射性元素及含水率确定样品的剂量率。但是,这种理想的环境很难实现,特别是对于海岸比较复杂的沉积环境,可能存在含水率的变化及U系不平衡等问题。例如,Zhang等[63]在对福建晋江“老红砂”的释光年代研究中发现,沉积物在发生化学风化作用后导致U和Th的富集,得到的剂量率偏大,即年龄的低估。γ能谱法可以检测沉积物的U系不平衡状态,对于剂量率可能存在问题的沉积物,可以通过数学建模方法,模拟自然沉积过程,确定样品的剂量率,提高测年结果的准确度[31, 135]

2.2.4 石英信号的组分

石英信号具有不同的组分,通常被分解成3个组分,分别被定义为“快组分”(fast component)、“中组分”(medium component)和“慢组分”(slow component)[136],它们具有不同的晒退性和生长特性,石英的快组分最容易被晒退,用它得到的年代最可靠[137],光释光信号组分的不同可以导致等效剂量的变化。关于石英信号的组分,不同的研究者提出了不同的组分数目[138~140]

可以通过测量程序直接得到石英的快组分信号[141~143],但是这样的程序一般消耗机时较多。此外,在测量之后,也可以判断石英信号的组成及从中提取需要的信号组分,方法主要有:1)曲线拟合分解[144~145];2)fast ratio[146](只限于判断是否以快组分为主);3)分析数据时初始信号减前背景积分信号,从而计算时尽可能多的利用快组分信号[147]。我们对比了由石英前背景和后背景得到的长江三角洲深切古河谷钻孔的光释光年代,发现通过前后背景得到的年代在误差范围内一致(未发表数据),表明样品光释光信号可能以快组分为主。但是对密西西比河沉积物研究发现,沉积物的年代受到前后背景值选择的影响[35]。因此,要通过地质地貌背景来判断沉积物中石英信号的特征,从而选择合适的测试和分析方法,从而确保计算年代的信号为快组分。

2.2.5 长石包裹体

通过化学提纯的石英矿物可能存在长石包裹体(OSL IR depletion ratio<0.9[148]),因此在后期测量中光释光信号是由石英和长石共同发出的,长石信号由于异常晒退会导致最终年龄的低估。如Gao等[40]对南黄海西海岸沉积物的研究发现粗颗粒石英样品的年龄低估可能是由于长石包裹体所致。如果一个样品中只有个别石英矿物颗粒中包含无法去除的长石信号,在测量时可以对每一个石英测片或矿物进行长石信号检测[148],从而剔除混有长石的个别测片。对于石英矿物中普遍存在长石包裹体而无法去除的样品,可以通过测量方法剔除长石信号影响,提取出源于石英的释光信号,提高测年结果的准确性,如红外激发后蓝光释光(post-IR blue OSL)[75~78]和脉冲释光技术(pulsed OSL)[79~80]

3 结论与展望

光释光技术的快速发展,为海岸带晚第四纪地层年代的确定提供了新机遇。通过对已发表的500多个光释光年代数据分析,可见目前我国海岸沉积的年代确定主要是集中在晚更新世晚期以来的样品,石英是主要的测量矿物。样品的晒退程序、剂量率、石英纯度、粒级和测量程序的选择,都会影响光释光测年结果的准确性。因此,应该根据沉积物的性质,选择合适的粒级、矿物、测量程序进行测量,在分析数据时应考虑可能存在的晒退问题、剂量率及释光信号组分特征等,从而得到样品的准确年代。目前对于我国较老的(>70~80 ka)海岸沉积光释光定年的研究还非常有限(现有少数几个较老年龄是采用传统的石英光释光信号和未经异常衰退的长石红外释光信号进行测定,可能导致年龄的低估)。对于较老沉积物年龄的测定,长石矿物应为优先选择。由于海岸带晚第四纪地层的复杂性,对于中晚更新世沉积物缺少合适的断代技术,而长石光释光年代学研究在海岸沉积定年中具有巨大的潜力。鉴于以上情况,各种测年技术手段的对比研究(包括不同粒级、矿物、测量程序的光释光技术内部对比),并结合地层层序、地质地貌特征的综合分析,可以提高测年结果的可靠性。

致谢: 感谢邱凤钺在文章制图过程中的帮助及有益的讨论;感谢匿名审稿专家和编辑部杨美芳老师提出的宝贵修改意见。

参考文献(References)
[1]
Huntley D J, Godfrey-Smith D I, Thewalt M L M. Optical dating of sediments. Nature, 1985, 313: 105-107. DOI:10.1038/313105a0
[2]
Wintle A G, Adamiec G. Optically stimulated luminescence signals from quartz:A review. Radiation Measurements, 2017, 98: 10-33. DOI:10.1016/j.radmeas.2017.02.003
[3]
Aitken M J. An Introduction to Optical Dating. London: Oxford University Press, 1998: 1-267.
[4]
Jacobs Z. Luminescence chronologies for coastal and marine sediments. Boreas, 2008, 37(4): 508-535. DOI:10.1111/bor.2008.37.issue-4
[5]
Madsen A T, Murray A S. Optically stimulated luminescence dating of young sediments:A review. Geomorphology, 2009, 109(1-2): 3-16. DOI:10.1016/j.geomorph.2008.08.020
[6]
Bateman M D. The application of luminescence dating in sea-level studies[M]//Shennan I, Long A J, Horton B P. Handbook of Sea-Level Research. New York: John Wiley & Sons, Ltd, 2015: 404-417.
[7]
Lamothe M. Luminescence dating of interglacial coastal depositional systems:Recent developments and future avenues of research. Quaternary Science Reviews, 2016, 146: 1-27. DOI:10.1016/j.quascirev.2016.05.005
[8]
谢丽, 张振克. 光释光测年在海岸风沙地貌研究中的新进展. 海洋地质与第四纪地质, 2011, 31(1): 93-100.
Xie Li, Zhang Zhengke. Progress in optical stimulated luminescence dating for coastal aeolian geomorphology research:A review. Marine Geology & Quaternary Geology, 2011, 31(1): 93-100.
[9]
李从先, 汪品先. 长江晚第四纪河口地层学研究. 北京: 科学出版社, 1998: 1-222.
Li Congxian, Wang Pinxian. Research of the Late Quaternary Stratigraphy of the Changjiang Estuary. Beijing: Science Press, 1998: 1-222.
[10]
Hori K, Saito Y, Zhao Q H et al. Sedimentary facies and Holocene progradation rates of the Changjiang(Yangtze) delta, China. Geomorphology, 2001, 41(2-3): 233-248. DOI:10.1016/S0169-555X(01)00119-2
[11]
Hori K, Saito Y, Zhao Q H et al. Evolution of the coastal depositional systems of the Changjiang(Yangtze) River in response to Late Pleistocene-Holocene sea-level changes. Journal of Sedimentary Research, 2002, 72(6): 884-897. DOI:10.1306/052002720884
[12]
Song B, Li Z, Saito Y et al. Initiation of the Changjiang(Yangtze) delta and its response to the mid-Holocene sea level change. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 388: 81-97. DOI:10.1016/j.palaeo.2013.07.026
[13]
Nian X M, Zhang W G, Wang Z H et al. Optical dating of Holocene sediments from the Yangtze River(Changjiang) delta, China. Quaternary International, 2018, 467: 251-263. DOI:10.1016/j.quaint.2018.01.011
[14]
Nian X M, Zhang W G, Wang Z H et al. The chronology of a sediment core from incised valley of the Yangtze River delta:Comparative OSL and AMS 14C dating. Marine Geology, 2018, 395: 320-330. DOI:10.1016/j.margeo.2017.11.008
[15]
Flessa K W, Cutler A H, Meldahl K H. Time and taphonomy:Quantitative estimates of time-averaging and stratigraphic disorder in a shallow marine habitat. Paleobiology, 1993, 19(2): 266-286. DOI:10.1017/S0094837300015918
[16]
Wehmiller J F, York L L, Bart M L. Amino acid racemization geochronology of reworked Quaternary mollusks on U. S. Atlantic coast beaches:Implications for chronostratigraphy, taphonomy, and coastal sediment transport. Marine Geology, 1995, 124(1-4): 303-337. DOI:10.1016/0025-3227(95)00047-3
[17]
Wang H, Strydonck M V. Chronology of Holocene cheniers and oyster reefs on the coast of Bohai Bay, China. Quaternary Research, 1997, 47(2): 192-205. DOI:10.1006/qres.1996.1865
[18]
Stanley D J, Chen Z Y. Radiocarbon dates in China's Holocene Yangtze Delta:Record of sediment storage and reworking, not timing of deposition. Journal of Coastal Research, 2000, 16(4): 1126-1132.
[19]
Carroll M, Kowalewski M, Simoes M G et al. Quantitative estimates of time-averaging in terebratulid brachiopod shell accumulations from a modern tropical shelf. Paleobiology, 2003, 29(3): 381-402. DOI:10.1666/0094-8373(2003)029<0381:QEOTIT>2.0.CO;2
[20]
Wang X C, Li A C. Preservation of black carbon in the shelf sediments of the East China Sea. Chinese Science Bulletin, 2007, 52(22): 3155-3161. DOI:10.1007/s11434-007-0452-1
[21]
Li X X, Bianchi T S, Allison M A. Composition, abundance and age of total organic carbon in surface sediments from the inner shelf of the East China Sea. Marine Chemistry, 2012, 145-147: 37-52. DOI:10.1016/j.marchem.2012.10.001
[22]
Gao S, Collins M B. Holocene sedimentary systems on continental shelves. Marine Geology, 2014, 352: 268-294. DOI:10.1016/j.margeo.2014.03.021
[23]
Demaster D J, McKee B A, Nittrouer C A et al. Rates of sediment accumulation and particle reworking based on radiochemical measurements from continental shelf deposits in the East China Sea. Continental Shelf Research, 1985, 4(1-2): 143-158. DOI:10.1016/0278-4343(85)90026-3
[24]
Huh C A, Su C C. Sedimentation dynamics in the East China Sea elucidated from 210Pb, 137Cs and 239, 240Pu. Marine Geology, 1999, 160(1-2): 183-196. DOI:10.1016/S0025-3227(99)00020-1
[25]
Wang F, Nian X M, Wang J L, et al. Multiple dating approaches applied to the recent sediments in the Yangtze River(Changjiang) subaqueous delta[J]. The Holocene, 2018, in press, https://doi.org/10.1177/0959683617752847.
[26]
Wang Z H, Jones B G, Chen T et al. A raised OIS 3 sea level recorded in coastal sediments, southern Changjiang delta plain, China. Quaternary Research, 2013, 79(3): 424-438. DOI:10.1016/j.yqres.2013.03.002
[27]
Yi L, Ye X Y, Chen J B et al. Magnetostratigraphy and luminescence dating on a sedimentary sequence from northern East China Sea:Constraints on evolutionary history of eastern marginal seas of China since the Early Pleistocene. Quaternary International, 2014, 349: 316-326. DOI:10.1016/j.quaint.2014.07.038
[28]
Liu J, Wang H, Wang F F et al. Sedimentary evolution during the last~1.9 Ma near the western margin of the modern Bohai Sea. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 451: 84-96. DOI:10.1016/j.palaeo.2016.03.012
[29]
Ballarini M, Wallinga J, Murray A S et al. Optical dating of young coastal dunes on a decadal time scale. Quaternary Science Reviews, 2003, 22(10-13): 1011-1017. DOI:10.1016/S0277-3791(03)00043-X
[30]
Aagaard T, Orford J, Murray A S. Environmental controls on coastal dune formation; Skallingen Spit, Denmark. Geomorphology, 2007, 83(1-2): 29-47. DOI:10.1016/j.geomorph.2006.06.007
[31]
Cunningham A C, Bakker M A J, Heteren S V et al. Extracting storm-surge data from coastal dunes for improved assessment of flood risk. Geology, 2011, 39(11): 1063-1066. DOI:10.1130/G32244.1
[32]
Brooke B P, Olley J M, Pietsch T et al. Chronology of Quaternary coastal aeolianite deposition and the drowned shorelines of southwestern-Western Australia:A reappraisal. Quaternary Science Reviews, 2014, 93: 106-124. DOI:10.1016/j.quascirev.2014.04.007
[33]
Walker J, Lees B, Olley J et al. Dating the Cooloola coastal dunes of South-Eastern Queensland, Australia. Marine Geology, 2018, 398: 73-85. DOI:10.1016/j.margeo.2017.12.010
[34]
Tamura T, Saito Y, Nguyen V L et al. Origin and evolution of interdistributary delta plains; insights from Mekong River delta. Geology, 2012, 40(4): 303-306. DOI:10.1130/G32717.1
[35]
Shen Z X, Mauz B. Optical dating of young deltaic deposits on a decadal time scale. Quaternary Geochronology, 2012, 10: 110-116. DOI:10.1016/j.quageo.2012.01.014
[36]
Shen Z X, Törnqvist T E, Mauz B et al. Episodic overbank deposition as a dominant mechanism of floodplain and delta-plain aggradation. Geology, 2015, 43(10): 875-878. DOI:10.1130/G36847.1
[37]
Kim J C, Cheong D, Shin S et al. OSL chronology and accumulation rate of the Nakdong deltaic sediments, southeastern Korean Peninsula. Quaternary Geochronology, 2015, 30: 245-250. DOI:10.1016/j.quageo.2015.01.006
[38]
Chamberlain E L, Wallinga J, Reimann T et al. Luminescence dating of delta sediments:Novel approaches explored for the Ganges-Brahmaputra-Meghna delta. Quaternary Geochronology, 2017, 41: 97-111. DOI:10.1016/j.quageo.2017.06.006
[39]
Zhao B C, Yan X X, Wang Z H et al. Sedimentary evolution of the Yangtze River mouth(East China Sea) over the past 19, 000 years, with emphasis on the Holocene variations in coastal currents. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 490: 431-449. DOI:10.1016/j.palaeo.2017.11.023
[40]
Gao L, Hong H, Shen J et al. Optical dating of Holocene tidal deposits from the southwestern coast of the South Yellow Sea using different grain-size quartz fractions. Journal of Asian Earth Sciences, 2017, 135: 155-165. DOI:10.1016/j.jseaes.2016.12.036
[41]
Gao L, Long H, Shen J et al. High-resolution OSL dating of a coastal sediment sequence from the South Yellow Sea. Geochronometria, 2016, 43(1): 143-154.
[42]
Wang Y, Long H, Yi L et al. OSL chronology of a sedimentary sequence from the inner-shelf of the East China Sea and its implication on post-glacial deposition history. Quaternary Geochronology, 2015, 30: 282-287. DOI:10.1016/j.quageo.2015.06.005
[43]
Sugisaki S, Buylaert J P, Murray A et al. OSL dating of fine-grained quartz from Holocene Yangtze delta sediments. Quaternary Geochronology, 2015, 30: 226-232. DOI:10.1016/j.quageo.2015.02.021
[44]
李清, 殷勇. 南黄海辐射沙脊群里磕脚11DT02孔沉积相分析及环境演化. 地理研究, 2013, 32(10): 1843-1855.
Li Qing, Yin Yong. Sedimentary facies and evolution of the Likejiao sandy ridge, in the South Yellow Sea offshore area, Eastern China. Geographical research, 2013, 32(10): 1843-1855.
[45]
Liu J, Saito Y, Kong X H et al. Delta development and channel incision during marine isotope stages 3 and 2 in the western South Yellow Sea. Marine Geology, 2010, 278(1-4): 54-76. DOI:10.1016/j.margeo.2010.09.003
[46]
Zhao B, Wang Z, Chen J et al. Marine sediment records and relative sea level change during Late Pleistocene in the Changjiang delta area and adjacent continental shelf. Quaternary International, 2008, 186(1): 164-172. DOI:10.1016/j.quaint.2007.08.006
[47]
王张华, 赵宝成, 陈静等. 长江三角洲地区晚第四纪年代地层框架及两次海侵问题的初步探讨. 古地理学报, 2008, 10(1): 100-109.
Wang Zhanghua, Zhao Baocheng, Chen Jing et al. Chronostratigraphy and two transgressions during the Late Quaternary in Changjiang delta area. Journal of Palaeogeography, 2008, 10(1): 100-109.
[48]
Li Y, Shang Z W, Tsukamoto S et al. Quartz and K-feldspar luminescence dating of sedimentation in the North Bohai coastal area(NE China) since the Late Pleistocene. Journal of Asian Earth Sciences, 2018, 152: 103-115. DOI:10.1016/j.jseaes.2017.10.036
[49]
Li Y, Tsukamoto S, Hu K et al. Quartz OSL and K-feldspar post-IR IRSL dating of sand accumulation in the lower Liao Plain(Liaoning, NE China). Geochronometria, 2017, 44: 1-15.
[50]
Du S H, Li B S, Chen M H et al. Paleotempestology evidence recorded by eolian deposition in the Bohai Sea coastal zone during the last interglacial period. Marine Geology, 2016, 379: 78-83. DOI:10.1016/j.margeo.2016.05.013
[51]
陈永胜, 王福, 姜兴钰等. 渤海湾西岸QX02孔Ⅱ海的识别及OSL年龄. 地质通报, 2016, 35(10): 1600-1606.
Chen Yongsheng, Wang Fu, Jiang Xingyu et al. Identification and OSL ages of the second marine bed in borehole QX02 along the western coast of Bohai Bay. Geological Bulletin of China, 2016, 35(10): 1600-1606. DOI:10.3969/j.issn.1671-2552.2016.10.006
[52]
张欣, 刘健, 王飞飞等. 黄河三角洲地区YRD-1402孔沉积物光释光年代学与沉积环境. 海洋地质与第四纪地质, 2016, 36(3): 11-22.
Zhang Xin, Liu Jian, Wang Feifei et al. Study of optically stimulated luminescence(OSL) chronology and sedimentary environments of the Yellow River delta area with core YRD-1402. Marine Geology & Quaternary Geology, 2016, 36(3): 11-22.
[53]
Qiu J, Jian L, Yoshiki S et al. Sedimentary evolution of the Holocene subaqueous Clinoform off the Southern Shandong Peninsula in the Western South Yellow Sea. Journal of Ocean University of China, 2014, 13(5): 747-760. DOI:10.1007/s11802-014-2227-z
[54]
Yi L, Lai Z P, Yu H J et al. Chronologies of sedimentary changes in the south Bohai Sea, China:Constraints from luminescence and radiocarbon dating. Boreas, 2013, 42(2): 267-284. DOI:10.1111/bor.2013.42.issue-2
[55]
Yi L, Yu H, Ortiz J D et al. Late Quaternary linkage of sedimentary records to three astronomical rhythms and the Asian monsoon, inferred from a coastal borehole in the south Bohai Sea, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 329-330(3): 101-117.
[56]
陈永胜, 王宏, 裴艳东等. 渤海湾西岸晚第四纪海相地层划分及地质意义. 吉林大学学报(地球科学版), 2012, 42(3): 747-759.
Chen Yongsheng, Wang Hong, Pei Yandong et al. Division and its geological significance of the Late Quaternary marine sedimentary beds in the west coast of Bohai Bay, China. Journal of Jilin University(Earth Science Edition), 2012, 42(3): 747-759.
[57]
Zhang J F, Fan C F, Wang H et al. Chronology of an oyster reef on the coast of Bohai Bay, China:Constraints from optical dating using different luminescence signals from fine quartz and polymineral fine grains of coastal sediments. Quaternary Geochronology, 2007, 2(1-4): 71-76. DOI:10.1016/j.quageo.2006.05.027
[58]
赵华, 卢演俦, 张金起等. 天津大直沽晚第四纪沉积物红外释光测年及环境变迁年代学. 地质科学, 2002, 37(2): 174-183.
Zhao Hua, Lu Yanchou, Zhang Jinqi et al. IRSL dating of Late Quaternary sediments and chronology of environmental changes at Dazhigu area, Tianjin. Chinese Journal of Geology, 2002, 37(2): 174-183.
[59]
陈聪, 万秋池, 郑卓等. 福建平潭岛晚第四纪沉积序列及MIS 5海侵旋回特征. 热带地理, 2016, 36(3): 406-416.
Chen Cong, Wan Qiuchi, Zheng Zhuo et al. Late Quaternary sediment stratigraphy and marine cycles in the Pingtan Island, Fujian Province. Tropical Geography, 2016, 36(3): 406-416.
[60]
靳建辉, 李志忠, 胡凡根等. 全新世中晚期福建海岸沙丘记录的海岸环境与人类活动. 地理学报, 2015, 70(5): 751-765.
Jin Jianhui, Li Zhizhong, Hu Fangen et al. Mid-Holocene coastal environment and human activities recorded by a coastal dune in Fujian Province, China. Acta Geographica Sinica, 2015, 70(5): 751-765.
[61]
胡凡根, 李志忠, 靳建辉等. 基于释光测年的福建晋江海岸沙丘粒度记录的风沙活动. 地理学报, 2013, 68(3): 343-356.
Hu Fangen, Li Zhizhong, Jin Jianhui et al. Coastal environment evolution record from Anshan coastal aeolian sand of Jinjiang, Fujian Province, based on the OSL dating. Acta Geographica Sinica, 2013, 68(3): 343-356. DOI:10.11821/xb201303005
[62]
胡凡根, 李志忠, 靳建辉等. 福建晋江海岸带老红砂多期发育模式初步研究. 第四纪研究, 2012, 32(6): 1207-1220.
Hu Fangen, Li Zhizhong, Jin Jianhui et al. A primary research on multiphase development pattern of "Old Red Sand" in Jingjiang coast of southeast Fujian. Quaternary Sciences, 2012, 32(6): 1027-1220.
[63]
Zhang Jiafu, Yuan Baoyin, Zhou Liping. Luminescence chronology of "Old Red Sand" in Jinjiang and its implications for optical dating of sediments in South China. Chinese Science Bulletin, 2008, 53(4): 591-601. DOI:10.1007/s11434-008-0001-6
[64]
陈双喜, 赵信文, 黄长生等. 珠江三角洲晚第四纪环境演化的沉积响应. 地质通报, 2016, 35(10): 1734-1744.
Chen Shuangxi, Zhao Xinwen, Huang Changsheng et al. Sedimentary response to the Late Quaternary environmental evolution in Pearl River delta. Geological Bulletin of China, 2016, 35(10): 1734-1744. DOI:10.3969/j.issn.1671-2552.2016.10.021
[65]
万一兴, 郑卓, 萧一亭等. 珠江口岛屿全新世沙堤的年代与沉积环境. 热带地理, 2016, 36(3): 388-398.
Wan Yixing, Zheng Zhuo, Xiao Yiting et al. Dating and sedimentary environment reconstruction of Holocene beach profile in the Pearl River estuary islands. Tropical Geography, 2016, 36(3): 388-398.
[66]
Peng Z L, Chen G N, Grapes R et al. Optically stimulated luminescence dating of sediments from the Pearl River delta, Southeast China. Journal of Earth Science and Engineering, 2014, 4: 378-384.
[67]
陈双喜, 赵信文, 黄长生等. 现代珠江三角洲地区QZK4孔第四纪沉积年代. 地质通报, 2014, 33(10): 1629-1634.
Chen Shuangxi, Zhao Xinwen, Huang Changsheng et al. Chronology of Quaternary sediments from drill hole QZK4 in modern Pearl River delta region. Geological Bulletin of China, 2014, 33(10): 1629-1634. DOI:10.3969/j.issn.1671-2552.2014.10.022
[68]
Wang X S, Jiao J J, Wang Y et al. Accumulation and transport of ammonium in aquitards in the Pearl River delta(China) in the last 10, 000 years:Conceptual and numerical models. Hydrogeology Journal, 2013, 21(5): 961-976. DOI:10.1007/s10040-013-0976-1
[69]
Tang Y K, Chen G N, Peng Z L et al. Late Quaternary tectonics of the Pearl River delta, SE China:Evidence from Xilingang. Geodinamica Acta, 2011, 24(3-4): 133-139.
[70]
胡文烨. 珠江三角洲中北部地区晚更新世以来沉积物光释光测年及沉积旋回划分[D]. 广州: 中山大学硕士学位论文, 2010: 1-90.
Hu Wenye. Sediment Dating and Division of the Depositional Cycle in North Central Region of Pearl River Delta since the Late Pleistocene[D]. Guangzhou: The Master's Dissertation of Sun Yat-Sen University, Guangzhou, 2010: 1-90. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=Y1691368
[71]
Yim W S, Hilgers A, Huang G et al. Stratigraphy and optically stimulated luminescence dating of subaerially exposed Quaternary deposits from two shallow bays in Hong Kong, China. Quaternary International, 2008, 183(1): 23-39. DOI:10.1016/j.quaint.2007.07.004
[72]
Wang M, Zheng Z, Huang K et al. U37k' temperature estimates from Eemian marine sediments in the southern coast of Hainan Island, tropical China. Journal of Asian Earth Sciences, 2016, 127: 91-99. DOI:10.1016/j.jseaes.2016.06.021
[73]
Chen Y W, Chen Y G, Murray A S et al. Luminescence dating of neotectonic activity on the southwestern coastal plain, Taiwan. Quaternary Science Reviews, 2003, 22(10-13): 1223-1229. DOI:10.1016/S0277-3791(03)00051-9
[74]
Murray A S, Wintle A G. Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements, 2000, 32(1): 57-73. DOI:10.1016/S1350-4487(99)00253-X
[75]
Banerjee D, Murray A S, Bøtter-Jensen L et al. Equivalent dose estimation using a single aliquot of polymineral fine grains. Radiation Measurements, 2001, 33(1): 73-93. DOI:10.1016/S1350-4487(00)00101-3
[76]
Roberts H, Wintle A. Luminescence sensitivity changes of polymineral fine grains during IRSL and[post-IR]OSL measurements[J]. Radiation Measurements, 2003, 37(6): 661-671. https://core.ac.uk/display/30721492
[77]
Zhang J F, Zhou L P. Optimization of the 'double SAR' procedure for polymineral fine grains. Radiation Measurements, 2007, 42(9): 1475-1482. DOI:10.1016/j.radmeas.2007.06.007
[78]
Lai Z P, Brückner H. Effects of feldspar contamination on equivalent dose and the shape of growth curve for OSL of silt-sized quartz extracted from Chinese loess. Geochronometria, 2008, 30: 49-53.
[79]
Thomsen K J, Jain M, Murray A S et al. Minimizing feldspar OSL contamination in quartz UV-OSL using pulsed blue stimulation. Radiation Measurements, 2008, 43(2-6): 752-757. DOI:10.1016/j.radmeas.2008.01.020
[80]
Tsukamoto S, Rades E F. Performance of pulsed OSL stimulation for minimising the feldspar signal contamination in quartz samples. Radiation Measurements, 2016, 84: 26-33. DOI:10.1016/j.radmeas.2015.11.007
[81]
Buylaert J P, Murray A S, Thomson K J et al. Testing the potential of an elevated temperature IRSL signal from K-feldspar. Radiation Measurements, 2009, 44(5-6): 560-565. DOI:10.1016/j.radmeas.2009.02.007
[82]
Thiel C, Buylaert J P, Murray A S et al. Luminescence dating of the Stratzing loess profile(Austria) -Testing the potential of an elevated temperature post-IR IRSL protocol. Quaternary International, 2011, 234(1-2): 23-31. DOI:10.1016/j.quaint.2010.05.018
[83]
Zhou L P, Shackleton N J. Photon-stimulated luminescence of quartz from loess and effects of sensitivity change on palaeodose determination. Quaternary Science Reviews, 2001, 20(5-9): 853-857. DOI:10.1016/S0277-3791(00)00024-X
[84]
Lu Y C, Wang X L, Wintle A G. A new OSL chronology for dust accumulation in the last 130, 000 yr for the Chinese Loess Plateau. Quaternary Research, 2007, 67(1): 152-160. DOI:10.1016/j.yqres.2006.08.003
[85]
隆浩, 张静然. 晚第四纪湖泊演化光释光测年. 第四纪研究, 2016, 36(5): 1191-1203.
Long Hao, Zhang Jingran. Luminescence dating of Late Quaternary lake-levels in Northern China. Quaternary Sciences, 2016, 36(5): 1191-1203.
[86]
张威, 刘亮, 柴乐等. 基于年代学证据的螺髻山第四纪冰川作用研究. 第四纪研究, 2017, 37(2): 281-292.
Zhang Wei, Liu Liang, Chai Le et al. Characteristics of Quaternary glaciations using ESR dating method in the Luoji Mountain, Sichuan Province. Quaternary Sciences, 2017, 37(2): 281-292.
[87]
Rhodes E J. Optically stimulated luminescence dating of sediments over the past 200, 000 years. Annual Review of Earth & Planetary Sciences, 2011, 39: 461-488.
[88]
耿建伟, 赵晖, 王兴繁等. 历史时期额济纳盆地水系与绿洲演变过程及其机制研究. 第四纪研究, 2016, 36(5): 1204-1215.
Geng Jianwei, Zhao Hui, Wang Xingfan et al. Oasis and drainage network evolution processes and mechanisms of Ejina Basin during historical period. Quaternary Sciences, 2016, 36(5): 1204-1215.
[89]
邱思静, 陈一凡, 王振等. 天山北麓乌鲁木齐河阶地晚更新世黄土磁学特征及古气候意义. 第四纪研究, 2016, 36(5): 1319-1330.
Qiu Sijing, Chen Yifan, Wang Zhen et al. Rock magnetic properties and paleoclimatic implications of Late Pleistocene loess in the range front of the Vrümqi River, Xinjiang, NW China. Quaternary Sciences, 2016, 36(5): 1319-1330.
[90]
贾广菊, 徐树建, 孔凡彪等. 山东大黑山岛北庄黄土沉积特征及其环境演变. 第四纪研究, 2017, 37(3): 522-534.
Jia Guangju, Xu Shujian, Kong Fanbiao et al. The sedimentary characteristics and environmental evolution of the Beizhuang loess in the Daheishan Island, Shandong Province. Quaternary Sciences, 2017, 37(3): 522-534.
[91]
毛沛妮, 庞奖励, 黄春长等. 汉江上游黄土记录的MIS 3晚期气候变化特征. 第四纪研究, 2017, 37(3): 535-547.
Mao Peini, Pang Jiangli, Huang Chunchang et al. Climate change during the late stages of MIS 3 period inferred from the loess record in the upper Hanjiang River valley. Quaternary Sciences, 2017, 37(3): 535-547.
[92]
Wintle A G, Murray A S. A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols. Radiation Measurements, 2006, 41(4): 369-391. DOI:10.1016/j.radmeas.2005.11.001
[93]
Qin J T, Zhou L P. Stepped-irradiation SAR:A viable approach to circumvent OSL equivalent dose underestimation in last glacial loess of Northwestern China. Radiation Measurements, 2009, 44(5-6): 417-422. DOI:10.1016/j.radmeas.2009.06.008
[94]
Lai Z P. Chronology and the upper dating limit for loess samples from Luochuan section in the Chinese Loess Plateau using quartz OSL SAR protocol. Journal of Asian Earth Sciences, 2010, 37(2): 176-185. DOI:10.1016/j.jseaes.2009.08.003
[95]
Wang X L, Lu Y C, Wintle A G. Recuperated OSL dating of fine-grained quartz in Chinese loess. Quaternary Geochronology, 2006, 1(2): 89-100. DOI:10.1016/j.quageo.2006.05.020
[96]
Wang X L, Wintle A G, Lu Y C. Testing a single-aliquot protocol for recuperated OSL dating. Radiation Measurements, 2007, 42(3): 380-391. DOI:10.1016/j.radmeas.2006.12.015
[97]
Pickering R, Jacobs Z, Herries A I R et al. Paleoanthropologically significant South African sea caves dated to 1.1-1.0 million years using a combination of U-Pb, TT-OSL and palaeomagnetism. Quaternary Science Reviews, 2013, 65: 39-52. DOI:10.1016/j.quascirev.2012.12.016
[98]
Nian X M, Zhou L P, Qin J T. Comparisons of equivalent dose values obtained with different protocols using a lacustrine sediment sample from Xuchang, China. Radiation Measurements, 2009, 44(5-6): 512-516. DOI:10.1016/j.radmeas.2009.06.002
[99]
Hu G, Zhang J F, Qiu W L et al. Residual OSL signals in modern fluvial sediments from the Yellow River(Huanghe) and the implications for dating young sediments. Quaternary Geochronology, 2010, 5(2-3): 187-193. DOI:10.1016/j.quageo.2009.05.003
[100]
Duller G A T, Wintle A G. A review of the thermally transferred optically stimulated luminescence signal from quartz for dating sediments. Quaternary Geochronology, 2012, 7: 6-20. DOI:10.1016/j.quageo.2011.09.003
[101]
Visocekas R. Tunelling radiative recombination in laboradorite:Its association with anomalous fading of thermoluminescence. Nuclear Tracks and Radiation Measurement, 1985, 10(4-6): 521-529. DOI:10.1016/0735-245X(85)90053-5
[102]
Wintle A G. Anomalous fading of thermoluminescence in mineral samples. Nature, 1973, 245: 143-144. DOI:10.1038/245143a0
[103]
Wintle A G. Detailed study of a thermoluminescent mineral exhibiting anomalous fading. Journal of Luminescence, 1977, 15(4): 385-393. DOI:10.1016/0022-2313(77)90037-0
[104]
Spooner N A. Optical dating:Preliminary results on the anomalous fading of luminescence from feldspars. Quaternary Science Reviews, 1992, 11(1-2): 139-145. DOI:10.1016/0277-3791(92)90055-D
[105]
Spooner N A. The anomalous fading of infrared-stimulated luminescence from feldspars. Radiation Measurements, 1994, 23(2-3): 625-632. DOI:10.1016/1350-4487(94)90111-2
[106]
Lamothe M, Auclair M. A solution to anomalous fading and age shortfalls in optical dating of feldspar minerals. Earth and Planetary Science Letters, 1999, 171(3): 319-323. DOI:10.1016/S0012-821X(99)00180-6
[107]
Huntley D J, Lamothe M. Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating. Canadian Journal of Earth Science, 2001, 38(7): 1093-1106. DOI:10.1139/e01-013
[108]
Lamothe M, Auclair M, Hamzaoui C et al. Towards a prediction of long-term anomalous fading of feldspar IRSL. Radiation Measurements, 2003, 37(4-5): 493-498. DOI:10.1016/S1350-4487(03)00016-7
[109]
Auclair M, Lamothe M, Huot S. Measurement of anomalous fading for feldspar IRSL using SAR. Radiation Measurements, 2003, 37(4-5): 487-492. DOI:10.1016/S1350-4487(03)00018-0
[110]
Kars R H, Wallinga J, Cohen K M. A new approach towards anomalous fading correction for feldspar IRSL dating-tests on samples in field saturation. Radiation Measurements, 2008, 43(2-6): 786-790. DOI:10.1016/j.radmeas.2008.01.021
[111]
Li B, Li S H, Wintle A G et al. Isochron measurements of naturally irradiated K-feldspar grains. Radiation Measurements, 2007, 42(8): 1315-1327. DOI:10.1016/j.radmeas.2007.09.008
[112]
Li B, Li S H. Luminescence dating of K-feldspar from sediments:A protocol without anomalous fading correction. Quaternary Geochronology, 2011, 6(5): 468-479. DOI:10.1016/j.quageo.2011.05.001
[113]
Fu X, Li S H. A modified multi-elevated-temperature post-IR IRSL protocol for dating Holocene sediments using K-feldspar. Quaternary Geochronology, 2013, 17: 44-54. DOI:10.1016/j.quageo.2013.02.004
[114]
Nian X M, Bailey R M, Zhou L P. Investigations of the post-IR IRSL protocol applied to single K-feldspar grains from fluvial sediment samples. Radiation Measurements, 2012, 47(9): 703-709. DOI:10.1016/j.radmeas.2012.03.024
[115]
Nian X M, Zhou L P, Qin J T. Investigation of the post-IR IRSL signal of K-feldspar using a sediment sample below the Brunhes/Matuyama Boundary[C]//Second Asia Pacific Conference on Luminescence and Electron Spin Resonance Dating. Ahmedabad, 2009: 87.
[116]
Qin J T, Zhou L P. Effects of thermally transferred signals in the post-IR IRSL SAR protocol. Radiation Measurements, 2012, 47(9): 710-715. DOI:10.1016/j.radmeas.2011.12.011
[117]
Qin J T, Chen J, Salisbury J M. Photon transferred TL signals from potassium feldspars and their effects on post-IR IRSL measurements. Journal of Luminescence, 2015, 160: 1-8. DOI:10.1016/j.jlumin.2014.11.022
[118]
Nian X M, Li F, Chen F Y et al. Optically stimulated luminescence ages for human occupation during the penultimate glaciation in the western Loess Plateau of China. Journal of Quaternary Sciences, 2016, 31(8): 928-935.
[119]
Yi S W, Buylaert J P, Murray A S et al. A detailed post-IR IRSL dating study of the Niuyangzigou loess site in Northeastern China. Boreas, 2016, 45(4): 644-657. DOI:10.1111/bor.2016.45.issue-4
[120]
Qin J T, Zhou L P. Luminescence dating of the Zeketai loess section in the Ili Basin, Northwestern China:Methodological considerations. Journal of Asian Earth Sciences, 2018, 155: 146-153. DOI:10.1016/j.jseaes.2017.11.018
[121]
Colarossi D, Duller G A T, Roberts H M. Exploring the behaviour of luminescence signals from feldspars:Implications for the single aliquot regenerative dose protocol. Radiation Measurements, 2018, 109: 35-44. DOI:10.1016/j.radmeas.2017.07.005
[122]
Wallinga J. Optically stimulated luminescence dating of fluvial deposits:A review. Boreas, 2002, 31(4): 303-322. DOI:10.1080/030094802320942536
[123]
Murray A S, Roberts R G. Determining the burial time of single grains of quartz using optically stimulated luminescence. Earth and Planetary Science Letters, 1997, 152(1-4): 163-180. DOI:10.1016/S0012-821X(97)00150-7
[124]
Olley J M, Caitcheon G G, Murray A S. The distribution of apparent dose as determined by optically stimulated luminescence in small aliquots of fluvial quartz:Implications for dating young sediments. Quaternary Geochronology, 1998, 17(11): 1033-1040.
[125]
Galbraith R F, Roberts R G, Laslett G M et al. Optical dating of single and multiple grains of quartz from Jinmium rock shelter, Northern Australia:Part 1, Experimental details and statistical models. Archaeometry, 1999, 41(2): 339-364. DOI:10.1111/arch.1999.41.issue-2
[126]
Arnold L J, Bailey R M, Tucker G E. Statistical treatment of fluvial dose distributions from southern Colorado arroyo deposits. Quaternary Geochronology, 2007, 2(1-4): 162-167. DOI:10.1016/j.quageo.2006.05.003
[127]
Bailey R M, Singarayer J S, Ward S et al. Identification of partial resetting using De as a function of illumination time. Radiation Measurements, 2003, 37(4-5): 511-518. DOI:10.1016/S1350-4487(03)00063-5
[128]
Bailey R M. Paper Ⅰ:The use of measurement-time dependent single-aliquot equivalent-dose estimates from quartz in the identification of incomplete signal resetting. Radiation Measurements, 2003, 37(6): 673-683. DOI:10.1016/S1350-4487(03)00078-7
[129]
Li B, Li S H. Comparison of De estimates using the fast component and the medium component of quartz OSL. Radiation Measurements, 2006, 41(2): 125-136. DOI:10.1016/j.radmeas.2005.06.037
[130]
Murray A S, Thomsen K J, Masuda N et al. Identifying well-bleached quartz using the different bleaching rates of quartz and feldspar luminescence signals. Radiation Measurements, 2012, 47(9): 688-695. DOI:10.1016/j.radmeas.2012.05.006
[131]
Olley J M, Caitcheon G G, Roberts R G. The origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence. Radiation Measurements, 1999, 30(2): 207-217. DOI:10.1016/S1350-4487(99)00040-2
[132]
Duller G A T, Bøtter-Jensen L, Murray A S. Combining infrared-and green-laser stimulation sources in single-grain luminescence measurements of feldspar and quartz. Radiation Measurements, 2003, 37(4-5): 543-550. DOI:10.1016/S1350-4487(03)00050-7
[133]
Duller G A T. Single-grain optical dating of Quaternary sediments:Why aliquot size matters in luminescence dating. Boreas, 2008, 37(4): 589-612. DOI:10.1111/bor.2008.37.issue-4
[134]
Duller G A T, Murray A S. Luminescence dating of sediments using individual mineral grains. Geologos, 2000, 5: 88-106.
[135]
Nathan R P, Thomas P J, Jain M et al. Environmental dose rate heterogeneity of beta radiation and its implications for luminescence dating:Monte Carlo modeling and experimental validation. Radiation Measurements, 2003, 37(4-5): 305-313. DOI:10.1016/S1350-4487(03)00008-8
[136]
Smith B W, Rhodes E J. Charge movements in quartz and their relevance to optical dating. Radiation Measurements, 1994, 23(2-3): 329-333. DOI:10.1016/1350-4487(94)90060-4
[137]
Bailey R M, Smith B W, Rhodes E J. Partial bleaching and the decay form characteristics of quartz OSL. Radiation Measurements, 1997, 27(2): 123-136. DOI:10.1016/S1350-4487(96)00157-6
[138]
Bulur E, Bøtter-Jensen L, Murray A S. Optically stimulated luminescence from quartz measured using the linear modulation technique. Radiation Measurements, 2000, 32(5-6): 407-411. DOI:10.1016/S1350-4487(00)00115-3
[139]
Jain M, Murray A S, Bøtter-Jensen L. Characterisation of blue light stimulated luminescence components in different quartz samples:Implications for dose measurement. Radiation Measurements, 2003, 37(4-5): 441-449. DOI:10.1016/S1350-4487(03)00052-0
[140]
Singarayer J S, Bailey R M. Further investigations of the quartz optically stimulated luminescence components using linear modulation. Radiation Measurements, 2003, 37(4-5): 451-458. DOI:10.1016/S1350-4487(03)00062-3
[141]
Jain M, Murray A S, Bøtter-Jensen L et al. A single-aliquot regenerative-dose method based on IR(1.49 eV) bleaching of the fast OSL component in quartz. Radiation Measurements, 2005, 39(3): 309-318. DOI:10.1016/j.radmeas.2004.05.004
[142]
Li S H, Li B. Dose measurement using the fast component of LMOSL signals from quartz. Radiation Measurements, 2006, 41(5): 534-541. DOI:10.1016/j.radmeas.2005.04.029
[143]
Bailey R M. Direct measurement of the fast component of quartz optically stimulated luminescence and implications for the accuracy of optical dating. Quaternary Geochronology, 2010, 5(5): 559-568. DOI:10.1016/j.quageo.2009.10.003
[144]
Choi J H, Duller G A T, Wintle A G. Analysis of quartz LM-OSL curves. Ancient TL, 2006, 24: 9-20.
[145]
Shen Z X, Lang A. Quartz fast component optically stimulated luminescence:Towards routine extraction for dating applications. Radiation Measurements, 2016, 89: 27-34. DOI:10.1016/j.radmeas.2016.01.034
[146]
Durcan J A, Duller G A T. The fast ratio:A rapid measure for testing the dominance of the fast component in the initial OSL signal from quartz. Radiation Measurements, 2011, 46(10): 1065-1072. DOI:10.1016/j.radmeas.2011.07.016
[147]
Ballarini M, Wallinga J, Wintle A G et al. A modified SAR protocol for optical dating of individual grains from young quartz samples. Radiation Measurements, 2007, 42(3): 360-369. DOI:10.1016/j.radmeas.2006.12.016
[148]
Duller G A T. Distinguishing quartz and feldspar in single grain luminescence measurements. Radiation Measurements, 2003, 37(2): 161-165. DOI:10.1016/S1350-4487(02)00170-1
Application of optically stimulated luminescence dating to Late Quaternary coastal deposits in China
Nian Xiaomei, Zhang Weiguo     
( State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062)

Abstract

The coastal system, lying at the interface between the land and the ocean, is sensitive to environmental changes. Coastal deposits are archives of regional and global environment changes. However, due to the complex sedimentary processes, such as sediment reworking and redeposition, and lack of suitable material for 14C dating, accurate age determination remains a challenge for Quaternary stratigraphic study in coastal system. Optically stimulated luminescence(OSL) dating, which normally uses quartz and feldspar as the dating minerals, can be applied to obtain depositional age or burial age of the sediments in a variety of sedimentary environments. The technique provides a wide age range from nearly a hundred years to several hundred thousand years. Recent development in the luminescence methodology has led to great improvement in the applicability and precision of luminescence dating, especially the improved single-aliquot regenerative-dose(SAR) protocol for OSL, and its rapid development has offered an invaluable technique for dating late Quaternary coastal deposits. Here we compiled more than forty papers published since 2002 in China, twenty-seven of which are written in English and contain more than five hundred OSL data. From the statistical analysis, we can found that OSL dating technique is mainly applied to the Huanghe(Yellow)/Changjiang(Yangtze)/Zhujiang(Pearl) River deltas and their adjacent continental shelfs, and the coastal plains on both side of Taiwan Strait. Based on a review of recent progress of OSL dating technique and its application in coastal regions of China, this paper discusses the common issues and coping strategies in establishing reliable chronology for coastal sediments using OSL method, including selection of dating minerals(quartz vs. feldspar), incomplete bleaching, dose rate, components of quartz OSL signal and feldspar inclusion. An understanding of these issues is critical to the assessment of OSL dating accuracy, which would provide good support to Quaternary environment change study in coastal region. It has been found that OSL technique is mainly applied to sediments deposited during the second half of Late Pleistocene and Holocene in China, and quartz is the main choice for measurement. Quartz from different coastal areas show different bleaching characterizes, which may be connected with various sediment provenance and transport history in the coastal zones. Through the investigation of the samples from the Yangtze River delta, we found that medium-grained quartz samples generally appeared to be well bleached than coarse-grained quartz. Incomplete bleaching, dose rate, purity of quartz, different grain-size fractions(quartz or feldspar), different protocols can affect the accuracy of OSL dating results. Therefore, it is needed to choose suitable grain-size fractions, minerals, and protocols according to the characteristics of the sediment. Meanwhile, when analyzing the data, we should consider the possibility of incomplete bleaching, dose rate and characteristics of quartz OSL signal components to obtain accurate ages for the samples. Quartz is normally an ideal choice for dating relative young sample. However, there has been an apparent age limit around 70~80 ka, i.e. samples from obviously older layers tend to yield luminescence ages around 70~80 ka. Feldspar should be the first choice for determining the age of relative old samples. At present, there are limited studies on feldspar OSL dating for old(>70~80 ka) coastal sediments in China. A few relative old OSL ages were mainly obtained using the traditional quartz OSL signal and feldspar infrared stimulated luminescence(IRSL) signal without anomalous fading correction, which may underestimate the OSL ages. According to the above considerations, an integrated study of various dating techniques(including the internal comparison of OSL results obtained from different particle-size fractions, different minerals and different protocols), as well as the consideration of stratigraphic sequence and geomorphological evolution, will improve the reliability of dating results.
Key words: optically stimulated luminescence(OSL)dating     incomplete bleaching     dose rate     quartz     feldspar     components of quartz OSL signal     feldspar inclusion