第四纪研究  2017, Vol.37 Issue (5): 1009-1016   PDF    
第四纪北半球冰盖发育与东亚气候的遥相关
张仲石①,②,③ , 燕青 , 张冉 , 李香钰 , 戴高文 , 冷姗 , 田雨润     
(① 中国地质大学(武汉)环境学院大气科学系, 武汉 430074;
② 中国科学院大气物理研究所竺可桢-南森国际研究中心, 北京 100029;
③ Uni Research Climate, Bjerknes Centre for Climate Research, Allégaten 70, Bergen 5007, Norway;
④ 中国科学院气候变化研究中心, 北京 100029)
摘要:新生代东亚气候演化和北半球冰盖演化具有很好的耦合性。这种耦合性在气候学上可以被称为遥相关。一般认为,北半球冰盖的消长通过影响西伯利亚高压来改变东亚气候。第四纪冰期,北半球冰盖的增长,可以加强西伯利亚高压,从而增强东亚冬季风和加剧亚洲内陆干旱程度;反之,间冰期北半球冰盖的消退,可以减弱西伯利亚高压,并加强东亚夏季风。本文利用通用大气模式CAM4,开展理想试验,模拟了北半球冰盖对东亚气候的影响。模拟结果证实,冰期北半球冰盖消长与东亚地区气候变化存在遥相关,很好地支持了地质记录所反映的东亚气候与冰盖演化之间的耦合性。第四纪冰期,北半球气候变冷和冰盖发育,可以加剧我国北方的干旱程度。北半球北美-欧亚冰盖的发育,尤其是冬季,通过影响北半球的槽脊系统,在北美-欧亚冰盖南侧形成一个气旋式环流异常,这对加强我国西北内陆和黄土高原区西风或西北风至关重要。然而我们的模拟并不支持北美-欧亚冰盖通过加强西伯利亚高压来影响东亚冬季大气环流这一传统认识,第四纪北半球冰盖发育与东亚气候的遥相关可能比我们原有的认识复杂。
主题词遥相关     东亚气候     北半球冰盖    
中图分类号     P534.63;P532                     文献标识码    A

1 引言

新生代东亚气候演化往往和北半球冰盖演化联系在一起[1~6]。构造时间尺度上,7~8Ma我国北方六盘山以东地区开始大面积接受红粘土沉积[7~11],3~2.5Ma我国北方黄土高原地区开始大规模黄土沉积[12~15],黄土的沉积通量和粒度增加,标志着亚洲内陆干旱程度的加剧或者西北风(东亚冬季风)的加强。这两个时期都是北半球冰盖发育的关键时期[16, 17]。轨道时间尺度上,北半球冰盖发育与黄土粒度变化具有很好的耦合关系[18]。第四纪冰期北半球冰盖增大时,黄土沉积的粒度明显变粗,指示亚洲内陆干旱程度的加剧和西北风(东亚冬季风)的加强[18~27];相反的,间冰期北半球冰盖消退时,黄土沉积的粒度明显变细,古土壤开始发育,指示西南风或东南风(东亚夏季风)的加强[23, 28, 29]。亚轨道时间尺度上,虽无直接证据指示北半球冰盖发生了显著的变化,但黄土沉积的粒度变化与北半球典型的千年尺度冷气候事件(比如Younger Drays、Heinrich)可较好对应[30, 31]。这些千年尺度冷气候事件的可能诱发因素之一是,北半球冰盖消融对北大西洋温盐环流的影响[32]。当然,除黄土沉积外,东亚石笋氧同位素和冰芯氧同位素记录的良好对比[33, 34]以及南海沉积物中浮游、底栖有孔虫壳体的氧同位素和Mg/Ca比值[35]与深海氧同位素综合曲线的良好对比,都指示北半球冰盖消长与东亚夏季风气候演化具有很好的耦合关系。

一般认为,北半球冰盖的消长通过影响西伯利亚高压来改变东亚气候[18, 25]。随着北极冰盖范围和厚度的增加,西伯利亚高压被加强,从而加剧亚洲内陆的干旱,加强东亚冬季风(西北气流);这样的变化,既为风成沉积提供了充足的物源,又为风成沉积提供了强劲的动力,在风成沉积物中表现为粒度或沉积速率明显增大[23, 24, 31]

第四纪北半球冰盖的消长,目前认为主要发生在北美大陆和欧洲北部,距离东亚万里之遥。在气候学上,相距数千公里以上两地间气候要素较高程度的相关性,被称为“遥相关”[36, 37]。最为人熟悉的遥相关是发生在热带太平洋的“南方涛动”:当东南太平洋塔希提站(148°05′W,17°53′S)气压出现正距平时,澳大利亚达尔文站(130°59′E,12°20′S)气压出现负距平[38];反之亦然。而在中高纬地区,气候的遥相关往往与北半球的槽脊系统和大气长波的变化联系在一起[39, 40]。虽然“遥相关”这个概念在第四纪气候研究中并不常用,但第四纪北半球冰盖消长与东亚气候的耦合关系符合遥相关的定义,其实也是一种遥相关。

本文利用CAM4模式,开展理想试验来模拟北美-欧亚冰盖消长对东亚气候的影响;尝试性的初步探讨北半球冰盖发育与东亚气候的遥相关。

2 模式介绍及试验设计

我们采用的模式是通用大气模式(CAM4)。该模式是由美国国家大气研究中心(NCAR)开发的全球大气环流模式。CAM4模式的动力内核默认采用有限体积动力框架。CAM4模式改进了深对流参数化方案,其对ENSO(厄尔尼诺-南方涛动)的位相、幅度和空间形态模拟能力得到显著提高[41, 42]。对北极云量模拟的改进,使得CAM4对北极温度模拟的暖偏差较CAM3明显改善[42]。我们使用的CAM4的水平分辨率是F09(大约1°),垂直方向26层。CAM4很好的模拟了现代北半球的大气环流特征。例如,以1月为代表的冬季,CAM4很好地模拟了北半球中高层500hPa的位势高度结构(图 1)。模拟的500hPa等位势高度线在东亚、北美和北欧向低纬地区突出,形成3个槽。其中,北欧上空的槽相对于其他两个要弱。这样的模拟结果与观测[40]相一致。

图 1 CAM4模拟的1月500hPa位势高度(等值线,gpm) 填色表示海拔高度(km) Fig. 1 January 500hPa geopotential height simulated with CAM4(contours, gpm). The color shows the elevation(km)

在试验设计中,我们使用了挪威地球系统模式(NorESM-L)[43, 44]和并行冰盖模式(PISM)[45~47]的模拟结果作为CAM4模拟的边界条件(图 2)。由于这两个模式不是本文的重点,并且在其他已经发表的文章中已有详细的介绍[43~50],这里我们不再介绍这两个模式。

图 2 边界条件 (a)工业革命前海表面温度(℃),(b)理想冰期海表面温度(℃),
(c)理想冰期北半球北美-欧亚冰盖厚度异常(蓝白色阶,m)
Fig. 2 Boundary conditions. (a)Pre-industrial SST(℃), (b)idealized glacial SST(℃), (c)idealized glacial Northern Hemisphere American-Eurasian ice sheet depth anomalies (blue-white shading, m)

利用CAM4,我们一共设计了3个试验(表 1)。第一个试验(CON),是参照试验,采用工业革命前的气候边界条件。第二个试验(EXP2),是理想全球变冷敏感性试验。在这个试验里,我们将地球轨道参数中的地轴倾角变成22°,大气CO2浓度降低到200ppmv;海表面温度(SST)采用NorESM-L在相同地轴倾角和大气CO2浓度条件下模拟的一个结果(图 2b)。第三个试验(EXP3),是理想冰盖敏感性试验。在试验EXP2的基础上,试验EXP3里加入了模拟的北美-欧亚冰盖的异常(图 2c)。这一冰盖异常,是PISM用NorESM-L在EXP2相同边界条件下提供的强迫场模拟出来的结果。虽然PISM模拟的结果与重建的冰盖[51]存在一些差异,但这样的试验设计,保证了CAM4模拟与NorESM-L耦合模拟的一致性。每个CAM4试验积分50年,我们分析后30年的结果。通过这些理想试验,我们就可以从模拟的角度来区分全球变冷和冰盖增长对东亚气候的影响。

表 1 试验设计与边界条件 Table 1 Experiment design and boundary condition
3 试验结果 3.1 理想冰期的气候变化

在理想冰期条件下,模拟显示北半球以及东亚地区显著变冷,低空大气环流发生改变。以1月为代表的冬季,我国西北内陆低层大气出现西风异常,而我国东部季风区低层大气出现西南气流异常(图 3a);以7月为代表的夏季,我国黄土高原区和东北地区低层大气出现北风异常,而在我国长江以南地区低层大气则出现西南气流异常(图 3b);北半球高纬地区年均温的降温幅度超过8℃(图 3c)。

图 3 模拟的800hPa温度(填色,℃)和风场(箭头,m/s)的变化 (a)、(b)和(c),冰盖试验EXP3减去参照试验CON,包括了变冷和冰盖的共同作用;第二行(d)、(e)和(f),变冷试验EXP2减去参照试验CON,显示了变冷的作用;第三行(g)、(h)和(i),冰盖试验EXP3减去变冷试验EXP2,显示了冰盖的作用图中显示的温度变化超过95 %显著性水平 Fig. 3 Simulated changes in 800hPa temperature(shaded, ℃)and winds(arrow, m/s). Upper panel (a), (b)and (c) show the difference between EXP3 and CON, illustrating the impact of global cooling and American-Eurasian ice sheets. Middle panel (d), (e)and (f) show the difference between EXP2 and CON, illustrating the impacts of global cooling. Lower panel (g), (h)and (i) show the difference between EXP3 and EXP2, illustrating the impacts of American-Eurasian ice sheets. Only changes in temperature that are significant at the 95 % confidence level(two-talled unequal t-test)are shown

从模拟的角度,如果将全球变冷的作用(图 3d3e3f)与北美-欧亚冰盖的作用(图 3g3h3i)区分开,我们可以看到,冰盖对冬季大气环流的改变(图 3g)与这两者作用的总和(图 3a)更为相似,说明冰盖对冬季大气环流的改变更重要;同理,全球变冷对夏季大气环流的影响更为明显。当然,在冰期,地球轨道参数引起的全球变冷和北半球冰盖增长,它们对东亚气候的作用往往是耦合在一起,实际上很难区分。

3.2 冰期冰盖对东亚气候的影响

在理想冰期条件下,北美-欧亚冰盖的出现,使得我国北方冬季西风或西北风明显加强。在欧亚冰盖的南侧,低层大气出现一个冷异常中心;其年平均温度可以降低8℃以上,冬季降温幅度更大(图 3g)。对应于这个冷异常中心,欧洲低空出现一个气旋式环流异常,尤其是在冬季。在这个环流异常的南侧,西风显著加强,吹过黑海,里海,进入到亚洲腹地;并在我国的内陆和黄土高原区转向,形成西北风异常;在我国的东北转向形成东南风异常(图 3g)。有意思的是,北美和欧亚冰盖的出现,使得我国东部季风区冬季出现西南风异常。

在理想冰期条件下,由地轴倾角和大气CO2浓度改变引起的变冷,也使得我国北方降水显著减少(图 4b)。北美-欧亚冰盖的出现,使得我国内陆尤其是黄土高原区降水进一步减少(图 4c),加剧了这些区域的干旱程度(图 4a)。

图 4 模拟的年降水量的变化(mm) (a)冰盖试验EXP3减去参照试验CON,包括了变冷和冰盖的共同作用;(b)变冷试验EXP2减去参照试验CON,显示了变冷的作用;(c)冰盖试验EXP3减去变冷试验EXP2,显示了冰盖的作用图中显示的降水变化超过95 %显著性水平 Fig. 4 Simulated changes in annual precipitation(mm). (a)Difference between EXP3 and CON, including the influences of global cooling and American-Eurasian ice sheets; (b)difference between EXP2 and CON, illustrating the impacts of global cooling; (c)difference between EXP3 and EXP2, illustrating the impacts of American-Eurasian ice sheets. Only changes in precipitation that are significant at the 95 % confidence level(two-talled unequal t-test)are shown

上述模拟的大气环流的变化,尤其是冬季,与北美-欧亚冰盖对槽脊系统的影响密切相关(图 5a5b)。欧洲北部冰盖的出现,欧亚冰盖的上空500hPa位势高度出现正异常(可以简单的理解为高压异常),在其南侧则激发出500hPa位势高度的负异常(可以简单的理解为低压异常,图 5a)。在低空例如800hPa这样的异常结构同样存在,对应于欧亚冰盖南侧的气旋式异常环流(图 3g)。这样的变化显示:北美冰盖使得北美上空的槽减弱,欧亚冰盖倾向于加强欧洲上空的槽。这两个地区的变化,又影响到东亚,使得东亚大槽相对减弱。

图 5 北美-欧亚冰盖异常导致的500hPa位势高度(等值线,gpm)和温度(填色,℃)变化 冰盖试验EXP3减去变冷试验EXP2,(a)1月,(b)年平均; 图中显示的温度变化超过95 %显著性水平 Fig. 5 Changes in 500hPa geopotential height(contours, gpm)and temperature(shaded, ℃)due to the American-Eurasian ice sheet anomalies, between EXP3 and EXP2, (a)January, (b)annual mean. Only changes in precipitation that are significant at the 95 % confidence level(two-talled unequal t-test)are shown
4 讨论与总结

我们的模拟,虽然仅仅是理想试验,但证实了第四纪冰期北美-欧亚冰盖演化和东亚气候之间存在遥相关。以往大量的工作探讨了北美冰盖和欧亚冰盖之间的相互作用[52],或者北美-欧亚冰盖对北大西洋地区的影响[53~55],亦或直接模拟东亚的冰期气候[56]。专门关注北美-欧亚冰盖演化与东亚气候遥相关的模拟工作并不多见。我们的模拟是在这个方向上有意义的尝试。

就模拟而言,最完美的是冰盖与气候模式全耦合瞬变模拟,可以把冰盖的反馈效应完全考虑在内。但是,利用目前的地球系统模式开展这样的工作还有相当大的难度。中等复杂程度的模式虽然可以模拟轨道时间尺度的冰盖和气候的演化[52, 57],可以考虑冰雪反照率的反馈机制;但中等复杂程度的模式对北半球槽脊系统、大气长波的模拟有待优化[52]。而高分辨率的大气环流模式,虽然可以很好的模拟北半球槽脊系统、大气长波,但受限于其巨大的计算量,又不可能用于轨道时间尺度的瞬变模拟。

我们的模拟结果显示,欧亚冰盖南侧的气旋式异常环流既影响了欧洲,又影响了东亚。这一结果表明,欧洲黄土沉积和我国黄土高原的黄土沉积,在物源上不同,但风动力可能是一致的,受同一系统的控制。

在我们的理想冰期试验里,我国长江以南和南海地区,冬季并没有出现东北风异常(东北风异常指示冬季风加强)。一般认为,冰期北半球冰盖的发育可以加强东亚冬季风。很显然,我们理想试验的模拟结果与这一传统的认识并不一致。这有可能是我们的理想试验中没有充分考虑冰期的条件造成的,比如缺少东亚地区的植被或土壤变化,东亚海陆分布变化等。并且,我们的理想试验,没有考虑大气CO2浓度和地球轨道参数之间的协同作用[58],也没有考虑冰盖与海表面温度之间的反馈作用[54];这些都有可能导致模拟结果产生不确定性。因此,基于目前的理想试验,我们还无法深入探讨其原因。但另外一种可能性现在还不能完全排除,冰期北半球冰盖的发育和东亚季风的遥相关要比我们的一般认识复杂;这有待于今后更加完善的模拟和深入的动力学分析。

总的来说,我们的理想试验表明,冰期北半球气候变冷、冰盖发育,可以加剧我国北方的干旱程度;尤其是北美-欧亚冰盖的发育,对加强我国西北内陆和黄土高原区冬季西风或西北风至关重要。我们的模拟结果,很好地支持了地质记录所反映的黄土沉积与第四纪冰盖演化的耦合性;但并不支持北美-欧亚冰盖通过加强西伯利亚高压来影响东亚冬季大气环流这一传统认识。

致谢: 感谢审稿专家的宝贵修改意见。本研究由国家自然科学基金项目(批准号:41472160、41402158和41305073)、中国博士后科学基金资助项目(批准号:2015M581154)、青年千人项目和挪威研究理事会OCCP、PEGSIE项目和北欧研究理事会GREENICE项目共同资助。

参考文献(References)
1
刘东生, 郑绵平, 郭正堂. 亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性. 第四纪研究, 1998(3): 194-204.
Liu Tungsheng, Zheng Mianping, Guo Zhengtang. Initiation and evolution of the Asian monsoon system timely coupled with the ice-sheet growth and the tectonic movement in Asia. Quaternary Sciences, 1998(3): 194-204.
2
Liu T, Ding Z. Stepwise coupling of monsoon circulations to global ice volume variations during the Late Cenozoic. Global and Planetary Change, 1993, 7(1~3): 119-130.
3
郭正堂, 彭淑贞, 郝青振, 等. 晚第三纪中国西北干旱化的发展及其与北极冰盖形成演化和青藏高原隆升的关系. 第四纪研究, 1999(6): 556-567.
Guo Zhengtang, Peng Shuzhen, Hao Qingzhen, et al. Late Tertiary development of aridification in Northwestern China:Link with the arctic ice-sheet formation and Tibetan uplifts. Quaternary Sciences, 1999(6): 556-567.
4
Ge J, Dai Y, Zhang Z-S, et al. Major changes in East Asian climate in the mid-Pliocene:Triggered by the uplift of the Tibetan Plateau or global cooling?. Journal of Asian Earth Sciences, 2013, 69: 48-59. DOI:10.1016/j.jseaes.2012.10.009
5
汪品先, 李前裕, 田军, 等. 从南海看第四纪大洋碳储库的长周期循环. 第四纪研究, 2015, 35(6): 1297-1319.
Wang Pinxian, Li Qianyu, Tian Jun, et al. Long-term cycles in carbon reservoir of the Quaternary ocean:A perspective from the South China Sea. Quaternary Sciences, 2015, 35(6): 1297-1319.
6
刘植, 黄少鹏. 不同时间尺度下的大气CO2浓度与气候变化. 第四纪研究, 2015, 35(6): 1458-1470.
Liu Zhi, Huang Shaopeng. Multiple time scales of variations of atmospheric CO2 concentration and global climate. Quaternary Sciences, 2015, 35(6): 1458-1470.
7
Ding Z L, Xiong S F, Sun J M, et al. Pedostratigraphy and paleomagnetism of a~7.0Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution.. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 152(1): 49-66.
8
Ding Z L, Yang S L, Hou S S, et al. Magnetostratigraphy and sedimentology of the Jingchuan red clay section and correlation of the Tertiary eolian red clay sediments of the Chinese Loess Plateau. Journal of Geophysical Research: Solid Earth, 2001, 6399-6407.
9
Ding Z L, Sun J M, Yang S L, et al. Preliminary magnetostratigraphy of a thick eolian red clay-loess sequence at Lingtai, the Chinese Loess Plateau. Geophysical Research Letters, 1998, 25(8): 1225-1228. DOI:10.1029/98GL00836
10
Sun D H, An Z S, Shaw J, et al. Magnetostratigraphy and palaeoclimatic significance of Late Tertiary aeolian sequences in the Chinese Loess Plateau. Geophysical Journal International, 1998, 134(1): 207-212. DOI:10.1046/j.1365-246x.1998.00553.x
11
Evans M E, Wang Y, Rutter N, et al. Preliminary magnetostratigraphy of the red clay underlying the loess sequence at Baoji, China. Geophysical Research Letters, 1991, 18(8): 1409-1412. DOI:10.1029/91GL01800
12
刘东生, 等. 黄土与环境. 北京: 科学出版社, 1985, 1-358.
Liu Tunsheng, et al. Loess and the Environment. Beijing: Science Press, 1985, 1-358.
13
Heller F, Liu T. Magnetism of Chinese loess deposits. Geophysical Journal International, 1984, 77(1): 125-141. DOI:10.1111/j.1365-246X.1984.tb01928.x
14
Heller F, Liu T. Magnetostratigraphical dating of loess deposits in China. Nature, 1982, 300(5891): 431-433. DOI:10.1038/300431a0
15
马小林, 田军. 15Ma以来海陆记录的轨道-构造尺度东亚季风的演化以及西北内陆的干旱化. 第四纪研究, 2015, 35(6): 1320-1330.
Ma Xiaolin, Tian Jun. East Asian monsoon evolution and aridification of Northwest China viewed from land and sea on the tectonic-orbital time scale since 15Ma. Quaternary Sciences, 2015, 35(6): 1320-1330.
16
Larsen H C, Saunders A D, Clift P D, et al. Seven million years of glaciation in greenland. Science, 1994, 264(5161): 952-955. DOI:10.1126/science.264.5161.952
17
Haug G H, Tiedemann R. Effect of the formation of the Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature, 1998, 393(6686): 673-676. DOI:10.1038/31447
18
Hao Q, Wang L, Oldfield F, et al. Delayed build-up of Arctic ice sheets during 400, 000-year minima in insolation variability. Nature, 2012, 490(7420): 393-396. DOI:10.1038/nature11493
19
刘东生, 丁仲礼. 二百五十万年来季风环流与大陆冰量变化的阶段性耦合过程. 第四纪研究, 1992(1): 12-23.
Liu Tungsheng, Ding Zhongli. Stepwise coupling of monsoon circulation to continental ice-volume variations during the past 2500000 years. Quaternary Sciences, 1992(1): 12-23.
20
安芷生, PortS C. 最近130ka洛川黄土堆积序列与格陵兰冰芯记. 科学通报, 1994, 39(24): 2254-2256.
An Zhisheng, Port S C. Luochuan loess stacking sequence and Greenland ice core record in recent 130ka. Chinese Science Bulletin, 1994, 39(24): 2254-2256.
21
Liu T, Ding Z, Chen M, et al. The global surface energy system and the geological role of wind stress. Quaternary International, 1989, 2: 43-54. DOI:10.1016/1040-6182(89)90020-7
22
An Z, Liu T, Lu Y, et al. The long-term paleomonsoon variation recorded by the loess-paleosol sequence in Central China. Quaternary International, 1990, 7.
23
Ding Z L, Rutter N W, Han J T, et al. A coupled environmental system formed at about 2.5Ma in East Asia.. Palaeogeography, Palaeoclimatology, Palaeoecology, 1992, 94(1~4): 223-242.
24
Ding Z L, Yu Z W, Rutter N W, et al. Towards an orbital time scale for chinese loess deposits. Quaternary Science Reviews, 1994, 13(1): 39-70. DOI:10.1016/0277-3791(94)90124-4
25
Ding Z L, Liu T, Rutter N W, et al. Ice-volume forcing of East Asian winter monsoon variations in the past 800, 000 years. Quaternary Research, 1995, 44(2): 149-159. DOI:10.1006/qres.1995.1059
26
Liu T, Ding Z. Chinese loess and the paleomonsoon. Annual Review of Earth and Planetary Sciences, 1998, 26(26): 111-145.
27
黄恩清. 中更新世以来东亚冬季风海陆记录对比. 第四纪研究, 2015, 35(6): 1331-1341.
Huang Enqing. A comparison of the East Asian winter monsoon reconstructions from terrestrial and marine sedimentary records since the Mid-Pleistocene. Quaternary Sciences, 2015, 35(6): 1331-1341.
28
An Z S, Kukla G J, Porter S C, et al. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of Central China during the last 130, 000 years. Quaternary Research, 1991, 36(1): 29-36. DOI:10.1016/0033-5894(91)90015-W
29
陆浩, 贾佳, 夏敦胜, 等. 黄土高原记录的MIS, 6.5期东亚夏季风信号及其古气候意义. 第四纪研究, 2015, 35(6): 1402-1411.
Lu Hao, Jia Jia, Xia Dunsheng, et al. East Asian summer monsoon evolution during MIS, 6.5 record in Chinese Loess Plateau and its implications. Quaternary Sciences, 2015, 35(6): 1402-1411.
30
Wang X, Yi S, Lu H, et al. Aeolian process and climatic changes in loess records from the northeastern Tibetan Plateau:Response to global temperature forcing since 30ka. Paleoceanography, 2015, 30(6): 612-620. DOI:10.1002/2014PA002731
31
Sun Y, Clemens S C, Morrill C, et al. Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon. Nature Geoscience, 2012, 5(1): 46-49.
32
Fairbanks R G. A 17, 000-year glacio-eustatic sea level record:Influence of glacial melting rates on the Younger Dryas event and deep-ocean circulation. Nature, 1989, 342(6250): 637-642. DOI:10.1038/342637a0
33
Wang Y J, Dorale J A. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science, 2001, 294(5550): 2345-2348. DOI:10.1126/science.1064618
34
王晓锋, 张平中, 周鹏超, 等. MIS, 5c向MIS, 5b转换期亚洲夏季风的演变特征——万象洞石笋记录. 第四纪研究, 2015, 35(6): 1412-1417.
Wang Xiaofeng, Zhang Pingzhong, Zhou Pengchao, et al. The evolution of Asian summer monsoon during MIS 5c-5b from a stalagmite record in Wanxiang Cave. Quaternary Sciences, 2015, 35(6): 1412-1417.
35
Tian J, Pak D K, Wang P, et al. Late Pliocene monsoon linkage in the tropical South China Sea. Earth and Planetary Science Letters, 2006, 252(1~2): 72-81.
36
Bjerknes J. Atmospheric teleconnections from the equatorial Pacific. Monthly Weather Review, 1969, 97(3): 163-172. DOI:10.1175/1520-0493(1969)097<0163:ATFTEP>2.3.CO;2
37
Wallace J M, Gutzler D S. Teleconnections in the geopotential height field during the Northern Hemisphere winter. Monthly Weather Review, 1981, 109(4): 784-812. DOI:10.1175/1520-0493(1981)109<0784:TITGHF>2.0.CO;2
38
Walker G T, Bliss E W. Memoirs of the Royal Meteorological Society. World Weather V, 1932, 4: 53-84.
39
符淙斌. 埃尔尼诺/南方涛动现象与年际气候变化. 大气科学, 1987, 11(2): 209-220.
Fu Congbin. A review of study on El Niño/Southern Oscillation associated with the interannual climate variability. Scientia Atmospherica Sinica, 1987, 11(2): 209-220.
40
李崇银. 气候动力学引论. 北京:气象出版社, 2000, 1-515.
Li Chongyin. Introduction to Climate Dynamics. Beijing:China Meteorological Press, 2000, 1-515.
41
Neale R B, Richter J H, Jochum M. The impact of convection on ENSO:From a delayed oscillator to a series of events. Journal of Climate, 2008, 21(22): 5904-5924. DOI:10.1175/2008JCLI2244.1
42
Neale R B. Description of the NCAR community atmosphere model(CAM 4.0). Land Model Ncar Tech. note, NCAR, 2010:TN-485+STR
43
Zhang Z-S, Nisancioglu K H, Bentsen M, et al. Pre-industrial and Mid-Pliocene simulations with NorESM-L. Geoscientific Model Development, 2012, 5: 523-533. DOI:10.5194/gmd-5-523-2012
44
Bentsen M, Bethke I, Debernard J B, et al. The Norwegian Earth System Model, NorESM 1-M-Part 1:Description and basic evaluation of the physical climate. Geoscientific Model Development, 2013, 6(3): 687-720. DOI:10.5194/gmd-6-687-2013
45
The PISM authors. PISM, a Parallel Ice Sheet Model. http://www.pism-docs.org, 2016
46
Winkelmann R, Martin M A, Haseloff M, et al. The Potsdam Parallel Ice Sheet Model(PISM-PIK)-Part 1:Model description. The Cryosphere, 2011, 5: 715-726. DOI:10.5194/tc-5-715-2011
47
Martin M A, Winkelmann R, Haseloff M, et al. The Potsdam Parallel Ice Sheet Model(PISM-PIK)-Part 2:Dynamic equilibrium simulation of the Antarctic ice sheet. The Cryosphere, 2011, 5: 727-740. DOI:10.5194/tc-5-727-2011
48
Zhang Z-S, Nisancioglu K, Ninnemann U. Increased ventilation of Antarctic deep water during the warm mid-Pliocene. Nature Communications, 2013, 4: 1499. DOI:10.1038/ncomms2521
49
Zhang Z-S, Ramstein G, Schuster M, et al. Aridification of the Sahara Desert caused by Tethys Sea shrinkage during Late Miocene. Nature, 2014, 513: 401-404. DOI:10.1038/nature13705
50
Yan Q, Zhang Z-S, Wang H-J. Investigating uncertainty in the simulation of the Antarctic ice sheet during the mid-Piacenzian. Journal of Geophysical Research:Atmosphere, 2016, 121(4): 1559-1574. DOI:10.1002/2015JD023900
51
Kleman J, Fastook J, Ebert K, et al. Pre-LGM Northern Hemisphere ice sheet topography. Climate of the Past, 2013, 9: 2365-2378. DOI:10.5194/cp-9-2365-2013
52
Beghin P, Charbit S, Dumas C, et al. Interdependence of the growth of the Northern Hemisphere ice sheets during the last glaciation:The role of atmospheric circulation. Climate of the Past, 2014, 10: 345-358. DOI:10.5194/cp-10-345-2014
53
Ullman D J, Legrande A N, Carlson A, et al. Assessing the impact of Laurentide Ice Sheet topography on glacial climate. Climate of the Past, 2014, 10: 487-507. DOI:10.5194/cp-10-487-2014
54
Zhang X, Lohmann G, Knorr G, et al. Abrupt glacial climate shifts controlled by ice sheet changes. Nature, 2014, 512: 290-294. DOI:10.1038/nature13592
55
Li C, Battisti D S. Reduced Atlantic storminess during Last Glacial Maximum:Evidence from a coupled climate model. Journal of Climate, 2008, 21: 3561-3578. DOI:10.1175/2007JCLI2166.1
56
Jiang D, Wang H-J, Drange H, et al. Last glacial maximum over China:Sensitivities of climate to paleovegetation and Tibetan ice sheet. Journal of Geophysical Research, 2003, 108(D3): 4102. DOI:10.1029/2002JD002167
57
Ganopolski A, Calov R, Claussen M. Simulation of the Last Glacial cycle with a coupled climate ice-sheet model of intermediate complexity. Climate of the Past, 2010, 6(2): 229-244. DOI:10.5194/cp-6-229-2010
58
Yin Q, Berger A. Individual contribution of insolation and CO2 to the interglacial climates of the past 800, 000 years. Climate Dynamics, 2012, 38(3~4): 709-724.
Teleconnection between Northern Hemisphere ice sheets and East Asian climate during Quaternary
Zhang Zhongshi①,②,③, Yan Qing, Zhang Ran, Li Xiangyu, Dai Gaowen, Leng Shan, Tian Yurun     
(① Department of Atmospheric Science, School of Environmental Studies, China University of Geosicences(Wuhan), Wuhan 430074;
Nansen-Zhu International Research Centre, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029;
Uni Research Climate, Bjerknes Centre for Climate Research, Allégaten 70, Bergen 5007, Norway;
Climate Change Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029)

Abstract

During the Quaternary, the evolution of East Asian climate was coupled with the development of Northern Hemisphere(NH)ice sheets. This coupled relationship satisfies the definition of teleconnection, a climatology termination, thus can also be called the teleconnection between ice sheets and East Asian climate. It is believed that the wax and wane of Northern Hemisphere ice sheets, modifies the West Siberian high pressure system, thus influencing East Asian climate. In glacial periods, the wax of ice sheets can intensify the West Siberian high pressure, hence enhancing the Asian inland aridity and East Asian winter winds. On the contrary, in interglacial periods, the wane of ice sheets can weaken the West Siberian high pressure, allowing the intensification of East Asian summer winds. Here, using the Community Atmosphere Model version 4(CAM4), we carry out idealized experiments to investigate the impacts of NH ice sheets on East Asian climate. Started from a preindustrial control experiment, we decrease obliquity and atmospheric CO2 level to produce an idealized glacial climate. Then we add the American-European ice sheets anomalies in, to investigate the climate responses to the ice sheets in the idealized glacial climate. Our simulations confirm the teleconnection between the NH ice sheets and East Asian climate, giving a strong dynamics support to the coupled relationship revealed by geological evidence. The idealized experiments illustrate that the global cooling and the wax of NH ice sheets can reduce annual precipitation in Northern China, thus enhancing aridity there. Compared to the global cooling, the wax of American-European ice sheets plays a more important role in reshaping atmospheric circulations in winter. It changes the existing trough and ridge systems in the NH. The wax of American-European ice sheets leads to an anomaly cyclonic on the south of the European ice sheets in winter. The anomaly cyclonic is crucial for the strengthened winter westerlies and northwesterlier over inland China and Chinese loess plateau. However, these experiments do not show that the wax of American-European ice sheets can enhance the West Siberian high pressure.
Key words: teleconnection     East Asian climate     Northern Hemisphere ice sheets