第四纪研究  2017, Vol.37 Issue (5): 974-981   PDF    
近千年来青海湖水热变化再重建
柳中晖 , 周爱锋 , 刘卫国     
(① 香港大学地球科学系, 香港;
② 兰州大学西部环境与气候变化研究院, 西部环境教育部重点实验室, 兰州 730000;
③ 中国科学院地球环境研究所, 黄土与第四纪地质国家重点实验室, 西安 710075)
摘要:中国近千年来的水文气候变化大致以暖期时季风区相对湿润而西北西风区相对干旱为特征,处在季风边缘区的青海湖对验证此特征因此显得特别重要。然而相互不一致的青海湖研究结果还时常出现,多数时候与沉积物年代及所采用指标的解释的不确定性有关。本文重新分析了青海湖东部靠近沙岛水深5m处的一根2m的沉积柱里的有机指标,长链烯酮和正构烷烃的分布特征。长链烯酮U37K'古温度指标、%C37:4古盐度指标和直链烷烃的水生植物比(Paq)指标显示当代暖期(1850~2000A.D.)和中世纪暖期(800~1400A.D.)时湖水相对温暖,盐度较低和湖水深度增加,而小冰期时(1400~1850A.D.)相反;并且中世纪暖期相对当代暖期要温暖湿润,证实了以前从湖心深水沉积柱获得的烯酮结果。本文结果也显示至少在盐度变化明显的青海湖长链烯酮古温度指标不包括C37:4可能更合理一些;另外,气候从冷到暖的转变过程中,湖水温度和盐度变化似乎不同步,可能与径流输入的突然性增加有关。
主题词青海湖     湖泊沉积物     长链烯酮     古温度     古盐度     气候变化    
中图分类号     P941.78;P534.63+2;P532                     文献标识码    A

1 引言

近一、两千年来的气候变化一直是古气候研究的热点和难点问题,近年来更加强了对区域性降雨和湿度变化对全球气候变化的响应研究。我国区域性气候差异异常明显,气候响应的研究就更为重要,吸引了大批国内外学者的关注[1~13]。在全球变暖背景下,温度、降水和湿度的变化对西北干旱/半干旱区的水资源及生态环境影响尤为重要。研究我国近千年来的水汽变化的区域性特征将有助于预测将来的可能变化,以准备必要的应对措施。我国东部主要受季风环流控制相对湿润,而西北地区受西风环流控制[12],由于湿润的海洋气流很少到达,西北地区是我国最干旱的地区。季风区和西风区的大致分界线处在现代季风环流的边界位置,年降雨量300mm线附近[12]。我国学者基于大量的古气候记录综合集成得出结论,在相对寒冷的小冰期期间(Little Ice Age,简称LIA;1400~1850A.D.),中国西北干旱/半干旱区并延伸到广泛的中亚内陆地区要比当代暖期(1850~2000A.D.)和中世纪暖期(Medieval Warm Period,简称MWP;800~1400A.D.)要湿润一些;而在季风区里我国北部要干旱一些,华南有一定程度的变湿润[12, 13]

青海湖处在东亚季风的边缘地带,受东亚季风,西风和亚洲冬季风共同控制影响,是受气候变化影响的敏感区域。由于其特殊地理位置,青海湖的水汽变化研究也可以对上述提出的我国近千年来水汽变化模式[12, 13]提供关键的验证。青海湖的古气候研究已进行很多并受到多次回顾评论[8, 9],但针对最近一千年古气候研究的评论[9]指出,由于受到沉积物年代及所选用指标解释的不确定性影响,青海湖水汽随温度变化的关系目前还很难下准确结论。沉积物红度[14]、长链烯酮[15]和全有机碳同位素[16]记录被解释为指示小冰期时相对干旱;但碳同位素记录[16]又被重新解释反映有机质的物源变化,并不一定反映干湿变化[9]。另一方面,湖泊碳酸盐氧同位素大致在小冰期时显示偏负,解释为有效湿度增加[9],与较早期的研究结果类似[17],但与近期其他指标得出的结论[14~16]不完全一致。然而,同一沉积柱的长链烯酮,长链脂肪酸氢同位素及湖泊碳酸盐氧同位素的多指标对比研究揭示氧同位素可能受温度、湿度和水汽来源的多因素影响[18],因此单一指标的湖泊碳酸盐氧同位素很难有效的指示干湿变化。

为进一步研究青海湖近千年来的水热变化,本文采用了较容易解释的有机指标:长链烯酮[19, 20]和正构烷烃[21~25]。长链烯酮指标已在欧洲[26]、中国[27]和北美[28]湖泊进行了大量的现代调查验证工作,并成功进行了不同温度下的实验室培养实验[29]。因为湖泊水生植物生长有一定的水深范围,基于直链烷烃的水生植物比(Paq)因此可指示湖水深度[30];但由于Paq值的多解性,需要结合其他指标来解释。更为重要的是,这些指标都在青海湖进行了细致的现代验证工作[31~33],为青海湖的古气候重建工作提供了坚实的科学基础。前期已报道过青海湖湖心深水沉积柱的长链烯酮工作[15],但受限于较低沉积速率及可能的年代误差,有必要进一步验证此结果。本文因此选取了水深较浅的靠近沙岛的一个沉积柱重新测试了上述有机指标,新获取的数据的确证实了以前的解释,并且由于数据分辨率的提高而得到了一些新的认识。

2 样品分析

2012年,在青海湖东部沙岛附近(37°02′17.80″N,100°27′14.07″E;水深5m)获取了约2m的沉积柱(QHH12A)(图 1)。现场观察沉积柱顶部没有明显扰动痕迹。封存后带回兰州大学实验室低温保存并进行了常规扫描测试工作,纵向剖开并按1cm分样,在香港大学进行了共204个样品的有机测试分析。

图 1 青海湖研究地点图 图中标示了中国年平均降雨线(mm)以及本文(QHH12A)和以前研究的(QHN3/1)[15]沉积柱地点 Fig. 1 Location map of Lake Qinghai superimposed with mean annual precipitation lines(mm) Core locations in present(QHH12A)and previous(QHN3/1)[15] studies are also indicated

为获得沉积柱QHH12A的年代,选送了8个样品做全有机质的AMS-14 C年代测试分析。得到的14 C年代普遍偏老,在20~204cm的深度范围,14 C年代值在2590~5370年之间(表 1)。显示此沉积柱的老碳效应较大,可能与沉积柱地点离湖岸较近而导致较多陆源老碳输入有关。特别在20cm、100cm和148cm处14 C年代明显偏离其他样品所显示的大致线性关系,而这三处刚好对应青海湖的湖水较淡及可能的高湖面时期(见结果部分),也就是说当时的湖泊状态与其他时间段存在显著差异,因此我们不认为这3个14 C年代显示了沉积柱的扰动,而较大可能性是与当时的陆源老碳随径流输入进一步增多有关。近年来湖泊碳库效应随湖泊状态变化已有报道[34, 35]。因此在构建年代模式时,我们去除了这3个年代,仅对余下的5个14 C年代做线性回归,并假定顶部年代为2000A.D.,得出平均碳库效应为2368年。此值比水深较深的青海湖沉积柱的碳库效应值要大[9],但与我国干旱/半干旱区的大部分湖泊[36, 37]及季风边缘区(岱海[38])的碳库值类似。而岱海的表层沉积物14 C年代结果也显示近岸比湖心的碳库效应值要大[38]。余下的5个14 C年代可能还存在碳库效应的差异,因此,此处的平均碳库效应只是粗略的估计以得到年代模式。扣除此平均碳库后,运行了Bacon程序[39]计算出50~204cm的cal. a B.P.,并换算成A. D.年代(A. D.=1950-a B. P.),然后对0~50cm线性插值,最后得出此沉积柱的年代模式(图 2)。基于此年代模式,底部204cm处年代为约450A.D.。此沉积柱的沉积速率估算为1.3mm/a,按1cm分析样品,样品分辨率达到平均约8年。本文未进行顶部沉积物的铅、铯定年分析,将来此项工作会有助于更准确确定顶部年代。

表 1 青海湖沉积柱QHH12A的碳同位素年龄 Table 1 Radiocarbon dates from the core QHH12A

图 2 青海湖QHH12A沉积柱的年代模式 基于5个14 C年代点得出平均碳库年龄为2368年,扣除碳库年龄后由Bacon程序[39]得出校正年代模式;3个较老的年代点本文中未采用 Fig. 2 Age model for the Lake Qinghai core QHH12A Carbon reservoir effect was determined to be 2368 years based on 5 relatively young 14 C dates. The age model was established by running the 5 14 C dates with the Bacon program and the other 3 dates were not used in this study

长链烯酮和正构烷烃的分析步骤遵循Liu等[31~33]的标准过程。样品经冷冻干燥并磨碎后取5~15g用有机溶剂进行超声萃取。少量样品用自动加速抽提仪(Dionex ASE 300) 萃取并和超声抽提对比,结果未有显著差异。抽提物在氮气环境下吹干,并加入氢氧化钾的甲醇/水溶液皂化以除去影响烯酮识别的烯酸酯。将皂化后的萃取物用硅胶色谱柱分离为极性不同的正己烷,二氯甲烷和甲醇3个组分。长链烯酮和正构烷烃的识别和分析在Agilent 7890型气相色谱仪上进行,C36正构烷烃作为内标用于计算长链烯酮和正构烷烃的含量。各指标的计算如下:=C37:2/(C37:3+C37:2)[40];U37K=(C37:2-C37:4)/(C37:4+C37:3+C37:2)[41];%C37:4=C37:4/(C37:4+C37:3+C37:2)x100[42],其中C37:n表示碳链长度为37的含n(n=2,3,4) 个双键的长链烯酮的含量。Paq=(C23+C25)/(C23+C25+C29+C31)[30],其中Cn表示不同碳链长度的正构烷烃的含量。单个有机物的定量分析误差可达到5 %,但是由于这些指标都是基于比值,因此估计的分析误差要小得多。在QHH12A柱的深度100~175cm处(约700~1200A.D.),长链烯酮的含量较低而导致分析误差较大,因此本文剔除了在色谱仪上C37:3的信号低于40pA(相当于约10ng)的样品。此时间段基于长链烯酮指标的记录不连续。

3 结果

在过去1600年里,各项指标都有显著变化(图 3)。值变化范围从0.15到0.50,比湖心钻孔(QHN3/1) 的0.1单位[15]的变化范围要大的多(图 4);%C37:4值从15 %到80 %,也比湖心钻孔的15 %到45 % [15]要大;U37K很大程度上与%C37:4变化一致,因此主要反映了C37:4的变化,U37K值变化范围在-0.7到0.2之间;Paq值变化范围在0.2到0.7之间。

图 3 青海湖QHH12A沉积柱的有机指标(a)U37K′、(b) %C37:4、(c)U37K和(d)Paq的记录 Fig. 3 Proxy records of (a) U37K′, (b) %C37:4, (c)U37K and (d) Paq from the core QHH12A

图 4 青海湖沉积记录与太阳辐射及其他记录的对比 (a)太阳辐射变化[43]与(b)青海湖QHH12A、(c)青海湖QHN3/1[15]和(d)柴达木盆地尕海[37]的U37K′记录以及与(e)青海湖QHH12A、(f)青海湖QHN3/1[15]和(g)柴达木盆地尕海[37]的%C37:4记录 Fig. 4 Lake Qinghai records compared with the TSI record and other paleorecords (a)TSI[43], U37K′ records from (b) QHH12A, (c)QHN3/1[15] and (d) Lake Gahai[37], and %C37:4 records from (e) QHH12A, (f)QHN3/1[15] and (g) Lake Gahai[37]

图 34的研究表明,各项指标在各个时间段呈现的变化也较一致。约800A.D.之前,处在较高值而%C37:4值较低,Paq值显示一定的波动。如果U37K′、%C37:4和Paq指标分别解释为指示温度、盐度和湖水深度变化,此时间段应为相对温暖时期。考虑到温度变化可以影响到%C37:4[29],此时的湖水盐度可能比表面%C37:4值所显示的要偏淡。约700A.D.左右,似乎对应太阳辐射[43]低值(图 4),相对较低的各指标值,尤其是Paq值,显示一个短暂冷干期的存在。在中世纪暖期(约800~1400A.D.),有限的和%C37:4数据点显示处在高值,尽管有波动,因此指示暖湿状态,相对较高的Paq值指示湖水深度增加。小冰期时(约1400~1850A.D.),、%C37:4和Paq值处在基本恒定的低值,因此气候应为相对寒冷干旱状态,湖水位也较低。进入当代暖期后(约1850~2000A.D.),各项指标有波动增加的趋势。整体来说,中世纪暖期要比当代暖期温暖湿润,也是近1600年来最温暖湿润的时期(图 3)。而整个1600年来青海湖的水热变化,似乎和太阳辐射的变化对应良好,太阳辐射高值对应暖湿期而低值对应冷干期(图 4)。

U37K′和%C37:4值的变化在气候转型期似乎并不同步。刚进入中世纪暖期(约800A.D.)和当代暖期(约1850A.D.)时,U37K′和Paq值首先显著升高,而%C37:4值微弱升高或基本未变;大约在50~100年后(分别约900A.D.和1900A.D.,见图 3中虚线指示处),%C37:4值显著升高,而U37K′和Paq值有降低趋势。

4 讨论与结论

本文分析了较浅水深沉积柱(QHH12A)的有机指标,揭示了青海湖近千年来水热变化的更多细节,然而不利处在于长链烯酮的含量相对较低导致实验室分析误差增大及可能的降解作用对指标的影响开始显现,因此需对烯酮指标谨慎评估后使用。在中世纪暖期时值达到了0.5,近1600年来值的变化范围也达到了0.35。运用中国湖泊[27]或培养实验[29]得出的温度校正方程可估算烯酮生长季节温度变化达到10℃。而湖心柱(QHN3/1) 整个值变化范围不超过0.1,最高值仅0.16[15](图 4)。QHH12A沉积柱%C37:4值中世纪暖期时也达到80 %,而湖心孔只有45 % [15],现代湖泊中超过50 %的%C37:4值只发现于淡水湖泊中[31, 32],因而可认为中世纪暖期时湖水盐度很低。当浅水区的长链烯酮含量低时( < 100ng/g),高值可能受到烯酮同系物差异性分解和湖泊水体的差异性加热所影响[44]。本文中高值,以及高%C37:4和Paq值一般来说同时出现,特别是在中世纪暖期。此时沉积物颗粒也基本由细粒径组成(周爱锋等未发表数据)。这些证据都指示中世纪暖期时湖水偏淡,湖水位上升,因而此时长链烯酮的保存至少要比低水位的小冰期时要好,差异性分解相对来说不显著。同时,C37:4最易分解,高%C37:4值本身也说明差异性分解不显著[44]。因此高值更可能由湖泊水体的差异性加热导致[37]。因而此沉积柱值反映了已放大的大气温度信号,而湖心柱的更能代表区域性的大气温度。尽管如此,本文中的和%C37:4指标应该能定性地反映区域的水热变化。

目前对于U37K′还是U37K指标更好地反映湖水温度还有一定的争论。青海湖、柴达木盆地[31, 32]以及新疆[45]的现代湖泊沉积物长链烯酮的研究证实湖水盐度对C37:4所占比例影响很大,因此C37:4不宜放入温度指标来指示温度;而基于北美湖泊的研究结果,U37K(定义中包括C37:4)与湖水温度有较好的线性关系[46],而且如果把C37:2从U37K指标中剔除出去指标与温度的线性关系会更好[47]。从本文的烯酮结果来看(图 3),与大多数的湖泊烯酮记录一样,U37K基本上是反相的%C37:4,反映了主要受C37:4控制。因此,当湖泊盐度变化明显时,此盐度信号也就被误当作了温度信号。如果把U37K解释为温度指标,则此指标显示在中世纪暖期和当代暖期时湖水温度持续偏低,在气候上很难解释此现象;而指示温度时,尽管在暖期时也出现较低温,但不是持续的,解释起来相对容易一些。另外,青海湖的多个沉积柱,比如QHH12A、QHN 3/1[15]及中全新世样品[48, 49],都出现了长链烯酮C37:2和C37:4同时增加的现象,此种现象只能解释为温度和盐度变化同时影响了烯酮的分布特征[15],即和%C37:4分别指示温度和盐度变化;而单一的温度因素(U37K)无法解释此现象。目前和U37K都作为温度指标应用于青海湖的古温度重建[15, 48, 49],本文认为在古盐度变化明显的青海湖,作为温度指标可能更为合理一些。

本文也揭示了在气候转型期,即从冷期到暖期的转变过程中,浅水区域温度与盐度变化的不同步(图 3)。湖心沉积柱显示温度与盐度变化大致同步[15]。目前还不清楚此差异是由于湖心柱的低沉积速率而没有显示出变化的不同步性,还是湖心和近湖岸边的差异真实存在。而对QHH12A柱,中世纪暖期数据点有限,因此也不能评估进入到中世纪暖期后此不同步性依然存在还是消失了。目前的证据只能显示此不同步性在转型期存在。这也许与温度升到某一阈值,地表径流突然增加而导致暂时的非平衡状态有关。当淡水输入突然增加后,湖水盐度显著变淡,而湖水温度也略微下降(图 3)。如果此假设正确的话,意味着当代青海湖还是处在气候变化的转型期,类似于约900A.D.时的湖泊状态,还未有进入稳定的暖期状态。

QHH12A柱与湖心QHN3/1柱的长链烯酮结果整体来说相当一致,因此支持以前的解释[15]。结果显示了中世纪暖期和当代暖期时要相对湿润,而小冰期时相对干旱。这样的水热关系属于季风模式,而在西风模式下,暖期时对应相对干旱[12, 13](图 4)。青海湖以及西风区(以柴达木盆地尕海为例[37],见图 4)近千年来的水热变化似乎和太阳辐射变化也有较好的对应关系。但由于水热模式的不同,小冰期时水热变化对太阳辐射的响应也有所不同。在西风区,小冰期整体寒冷湿润的背景下,围绕1600A.D.左右存在一段相对温暖干旱时期[37],与当时的太阳辐射高值也对应[43]。而在青海湖,小冰期时期温度和盐度(湿度)变化相对平稳,在约1600A.D.时并没有特别明显响应,这也许与在季风区温度和盐度的变化是相互抑制的关系有关,即温度略微升高时,湖水位上升或湖水体积变大会抑制温度的进一步上升。而在西风区水热关系是相互加强的关系,因此微弱变化也可以放大显现出来[37]。在约700A.D.短暂的太阳辐射低值[43]时期(图 4),Paq值有显著响应(图 3);而烯酮温度和盐度变化不太明显,可能也与季风区水热模式及事件相对短暂有关。

本文重新分析了青海湖较浅水深处获得的沉积柱里的长链烯酮和正构烷烃的分布特征,重建了近1600年来的水热变化。本研究较大程度上支持了以前从深水区获得的长链烯酮结果[15],都显示了在暖期时青海湖区域要相对湿润而在冷期时相对干燥,因此证实了青海湖水热变化属于季风区模式[12, 13]。同时也验证了中世纪暖期要比当代暖期温暖湿润。最后,新记录似乎显示在气候由冷变暖的转变过程中,盐度变化要滞后于温度变化,可能与径流输入在转变过程中突然性的增加有关。如果推论正确,当代暖期应还处于转型期中,未进入稳定的暖期状态。

致谢: 感谢中国第四纪科学研究会及刘东生地球科学基金对第四纪青年学者的关怀提携;感谢审稿老师和编辑杨美芳老师提出的宝贵意见和建议。谨以此文纪念刘东生院士诞辰100周年。本研究得到香港研究资助局项目(批准号:17325516) 资助。

参考文献(References)
1
Shi Y F, Shen Y P, Kang E S, et al. Recent and future climate change in Northwest China. Climatic Change, 2007, 80(3-4): 379-393. DOI:10.1007/s10584-006-9121-7
2
Bao Y, Qin C, Wang J L, et al. A 3, 500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111(8): 2903-2908. DOI:10.1073/pnas.1319238111
3
Liu Y, Cai Q F, Song H M, et al. Amplitudes, rates, periodicities and causes of temperature variations in the past 2485 years and future trends over the central-eastern Tibetan Plateau. Chinese Science Bulletin, 2011, 56(28-29): 2986-2994. DOI:10.1007/s11434-011-4713-7
4
吴敬禄, 刘建军, 王苏民. 近1500年来新疆艾比湖同位素记录的气候环境演化特征. 第四纪研究, 2004, 24(5): 585-590.
Wu Jinglu, Liu Jianjun, Wang Sumin. Climate change record from stable isotopes in Lake Aibi, Xinjiang during the past 1500 years. Quaternary Sciences, 2004, 24(5): 585-590.
5
郝志新, 葛全胜, 郑景云. 宋元时期中国西北东部的冷暖变化. 第四纪研究, 2009, 29(5): 871-879.
Hao Zhixin, Ge Quansheng, Zheng Jingyun. Temperature variations during the Song and Yuan dynasties(960-1368A.D.)in the eastern part of north West China. Quaternary Sciences, 2009, 29(5): 871-879.
6
郭超, 马玉贞, 刘杰瑞, 等. 过去2000年来西藏羊卓雍错沉积物粒度记录的气候变化. 第四纪研究, 2016, 36(2): 405-419.
Guo Chao, Ma Yuzhen, Liu Jierui, et al. Climatic change recorded by grain-size in the past about 2000 years from Yamzhog Yumco Lake, Tibet. Quaternary Sciences, 2016, 36(2): 405-419.
7
倪振宇, 王永波, 刘兴起. 青藏高原北部库赛湖自生碳酸盐稳定同位素记录的晚全新世气候组合特征. 第四纪研究, 2016, 36(4): 961-969.
Ni Zhenyu, Wang Yongbo, Liu Xingqi. Late Holocene climatic combination on the northern Tibetan Plateau based on stable isotope analysis of authigenic carbonate from Kusai Lake. Quaternary Sciences, 2016, 36(4): 961-969.
8
Colman S M, Yu S Y, An Z S, et al. Late Cenozoic climate changes in China's western interior: A review of research on Lake Qinghai and comparison with other records. Quaternary Science Reviews, 2007, 26(17-18): 2281-2300. DOI:10.1016/j.quascirev.2007.05.002
9
Henderson A C G, Holmes J A. Palaeolimnological evidence for environmental change over the past millennium from Lake Qinghai sediments: A review and future research perspective. Quaternary International, 2009, 194(1-2): 134-147. DOI:10.1016/j.quaint.2008.09.008
10
史锋, 杨保, 冯娟, 等. 利用树轮资料集成重建的过去2000年北半球年平均温度变化. 第四纪研究, 2015, 35(5): 1051-1063.
Shi Feng, Yang Bao, Feng Juan, et al. Reconstruction of the Northern Hemisphere annual temperature change over the Common Era derived from tree rings. Quaternary Sciences, 2015, 35(5): 1051-1063.
11
王志远, 刘健. 过去2000年全球典型暖期特征与机制的模拟研究. 第四纪研究, 2014, 34(6): 1136-1145.
Wang Zhiyuan, Liu Jian. Modeling study on the characteristics and mechanisms of global typical warm periods over the past 2000 years. Quaternary Sciences, 2014, 34(6): 1136-1145.
12
Chen F H, Chen J H, Holmes J, et al. Moisture changes over the last millennium in arid Central Asia: A review, synthesis and comparison with monsoon region. Quaternary Science Reviews, 2010, 29(7-8): 1055-1068. DOI:10.1016/j.quascirev.2010.01.005
13
Chen J H, Chen F H, Feng S, et al. Hydroclimatic changes in China and surroundings during the Medieval Climate Anomaly and Little Ice Age: Spatial patterns and possible mechanisms. Quaternary Science Reviews, 2015, 107: 98-111. DOI:10.1016/j.quascirev.2014.10.012
14
Ji J, Shen J, Balsam W, et al. Asian monsoon oscillations in the northeastern Qinghai-Tibet Plateau since the Late Glacial as interpreted from visible reflectance of Qinghai Lake sediments. Earth and Planetary Science Letters, 2005, 233(1-2): 61-70. DOI:10.1016/j.epsl.2005.02.025
15
Liu Z, Henderson A C G, Huang Y. Alkenone-based reconstruction of Late-Holocene surface temperature and salinity changes in Lake Qinghai, China. Geophysical Research Letters, 2006, 33(9): L09707.
16
Xu H, Hou Z H, Ai L, et al. Precipitation at Lake Qinghai, NE Qinghai-Tibet Plateau, and its relation to Asian monsoons on decadal/interdecadal scales during the past 500 years. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 254(3-4): 541-549. DOI:10.1016/j.palaeo.2007.07.007
17
沈吉, 张恩楼, 夏威岚. 青海湖近千年来气候环境变化的湖泊沉积记录. 第四纪研究, 2001, 21(6): 508-513.
Shen Ji, Zhang Enlou, Xia Weilan. Records from lake sediments of the Qinghai Lake to mirror climatic and environmental changes of the past about 1000 years. Quaternary Sciences, 2001, 21(6): 508-513.
18
Liu Z, Henderson A C G, Huang Y. Regional moisture source changes inferred from Late Holocene stable isotopic records. Advances in Atmospheric Sciences, 2008, 25(6): 1021-1028. DOI:10.1007/s00376-008-1021-5
19
王明达, 李秀美, 梁洁, 等. 青藏高原湖泊长链不饱和烯酮研究现状及展望. 第四纪研究, 2016, 36(4): 1002-1014.
Wang Mingda, Li Xiumei, Liang Jie, et al. Progress in the studies of long chain unsaturated alkenones in Tibetan Plateau lakes. Quaternary Sciences, 2016, 36(4): 1002-1014.
20
张静静, 李宏亮, 陈建芳, 等. 南海沉降颗粒物UK'37指标的影响因素初探. 第四纪研究, 2015, 35(6): 1354-1365.
Zhang Jingjing, Li Hongliang, Chen Jianfang, et al. Influencing factors of UK'37 index in sinking particles in the South China Sea. Quaternary Sciences, 2015, 35(6): 1354-1365.
21
刘晶晶, 张江勇, 陈云如, 等. 基于叶蜡正构烷烃重建的南海及周边地区植被类型. 第四纪研究, 2016, 36(3): 553-563.
Liu Jingjing, Zhang Jiangyong, Chen Yunru, et al. Vegetation changes recorded by leaf-wax n-alkanes around the South China Sea. Quaternary Sciences, 2016, 36(3): 553-563.
22
匡欢传, 周浩达, 胡建芳, 等. 末次盛冰期和全新世大暖期湖光岩玛珥湖沉积记录的正构烷烃和单体稳定碳同位素分布特征及其古植被意义. 第四纪研究, 2013, 33(6): 1222-1233.
Kuang Huanchuan, Zhou Haoda, Hu Jianfang, et al. Variations of n-alkanes and compound-specific carbon isotopes in sediments from Huguangyan Maar Lake during the Last Glacial Maximum and Holocene Optimum: Implications for paleovegetation. Quaternary Sciences, 2013, 33(6): 1222-1233.
23
崔琳琳, 王旭, 沈吉, 等. 末次盛冰期以来泸沽湖沉积记录的正构烷烃分布特征和单体碳同位素组成及其古植被意义. 第四纪研究, 2015, 35(4): 871-880.
Cui Linlin, Wang Xu, Shen Ji, et al. Changes in distribution and compound-specific carbon isotope compositions of n-alkanes as recorded in Lugu Lake sediments from Southwestern China since Last Glacial Maximum and implications for paleovegetation evolution. Quaternary Sciences, 2015, 35(4): 871-880.
24
汪亘, 王永莉, 孟培, 等. 东北地区五大连池湖相沉积物正构烷烃和单体碳同位素特征及其古植被意义. 第四纪研究, 2015, 35(4): 890-900.
Wang Gen, Wang Yongli, Meng Pei, et al. Chemical and compound specific carbon isotopic characteristics of n-alkanes in the Qingshi lacustrine sediments, Wudalianchi, Northeast China, and their paleovegetation significances. Quaternary Sciences, 2015, 35(4): 890-900.
25
刘卫国, 王政, 李祥忠. 内源贡献对青海湖碳同位素指标量化的影响. 第四纪研究, 2016, 36(3): 623-629.
Liu Weiguo, Wang Zheng, Li Xiangzhong. The contribution of aquatic plants to sedimentary n-alkanes δ13C values using to qualify compositions of terrigenous plants in Lake Qinghai on the northeastern Qinghai-Tibetan Plateau. Quaternary Sciences, 2016, 36(3): 623-629.
26
Zink K G, Leythaeuser D, Melkonian M, et al. Temperature dependency of long-chain alkenone distributions in recent to fossil limnic sediments and in lake waters. Geochimica et Cosmochimica Acta, 2001, 65(2): 253-265. DOI:10.1016/S0016-7037(00)00509-3
27
Chu G Q, Sun Q, Li S Q, et al. Long-chain alkenone distributions and temperature dependence in lacustrine surface sediments from China. Geochimica et Cosmochimica Acta, 2005, 69(21): 4985-5003. DOI:10.1016/j.gca.2005.04.008
28
Toney J L, Leavitt P R, Huang Y. Alkenones are common in prairie lakes of interior Canada. Organic Geochemistry, 2011, 42(7): 707-712. DOI:10.1016/j.orggeochem.2011.06.014
29
Sun Q, Chu G, Liu G, et al. Calibration of alkenone unsaturation index with growth temperature for a lacustrine species, Chrysotila lamellosa(Haptophyceae). Organic Geochemistry, 2007, 38(8): 1226-1234. DOI:10.1016/j.orggeochem.2007.04.007
30
Ficken K J, Li B, Swain D L, et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry, 2000, 31(7-8): 745-749. DOI:10.1016/S0146-6380(00)00081-4
31
Liu W, Liu Z, Fu M, et al. Distribution of the C37 tetra-unsaturated alkenone in Lake Qinghai, China: A potential lake salinity indicator. Geochimica et Cosmochimica Acta, 2008, 72(3): 988-997. DOI:10.1016/j.gca.2007.11.016
32
Liu W, Liu Z, Wang H, et al. Salinity control on long-chain alkenone distributions in lake surface waters and sediments of the northern Qinghai-Tibetan Plateau, China. Geochimica et Cosmochimica Acta, 2011, 75(7): 1693-1703. DOI:10.1016/j.gca.2010.10.029
33
Liu W, Yang H, Wang H, et al. Carbon isotope composition of long chain leaf wax n-alkanes in lake sediments: A dual indicator of paleoenvironment in the Qinghai-Tibet Plateau. Organic Geochemistry, 2015, 83-84.
34
Zhou A, He Y, Wu D, et al. Changes in the radiocarbon reservoir age in Lake Xingyun, Southwestern China during the Holocene. PLOS ONE, 2015, 10(3): e0121532. DOI:10.1371/journal.pone.0121532
35
Zhang J, Ma X, Qiang M, et al. Developing inorganic carbon-based radiocarbon chronologies for Holocene lake sediments in arid NW China. Quaternary Science Reviews, 2016, 144: 67-79.
36
Hou J, D'Andrea W J, Liu Z. The influence of 14 C reservoir age on interpretation of paleolimnological records from the Tibetan Plateau. Quaternary Science Reviews, 2012, 48: 67-79. DOI:10.1016/j.quascirev.2012.06.008
37
He Y, Zhao C, Wang Z, et al. Late Holocene coupled moisture and temperature changes on the northern Tibetan Plateau. Quaternary Science Reviews, 2013, 80: 47-57. DOI:10.1016/j.quascirev.2013.08.017
38
吴艳宏, 王苏民, 周力平, 等. 岱海14 C测年的现代碳库效应研究. 第四纪研究, 2007, 27(4): 507-510.
Wu Yanhong, Wang Sumin, Zhou Liping, et al. Modern reservoir age for 14 C dating in Daihai Lake. Quaternary Sciences, 2007, 27(4): 507-510.
39
Blaauw M, Christen J A. Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Analysis, 2011, 6(3): 457-474.
40
Prahl F G, Wakeham S G. Calibration of unsaturation patterns in long-chain ketone compositions for paleotemperature assessment. Nature, 1987, 330(6146): 367-369. DOI:10.1038/330367a0
41
Brassell S C, Eglinton G, Marlowe I T, et al. Molecular stratigraphy—A new tool for climatic assessment. Nature, 1986, 320(6058): 129-133. DOI:10.1038/320129a0
42
Rosell-Melé A. Interhemispheric appraisal of the value of alkenone indices as temperature and salinity proxies in high-latitude locations. Paleoceanography, 1998, 13(6): 694-703. DOI:10.1029/98PA02355
43
Steinhilber F, Abreu J A, Beer J, et al. 9, 400 years of cosmic radiation and solar activity from ice cores and tree rings. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(16): 5967-5971. DOI:10.1073/pnas.1118965109
44
宋木, 刘卫国, 郑卓, 等. 西北干旱区湖泊沉积物中长链烯酮的古环境意义. 第四纪研究, 2013, 33(6): 1199-1210.
Song Mu, Liu Weiguo, Zheng Zhuo, et al. Paleoenvironmental implications of long chain alkenones in arid regions, Northwestern China. Quaternary Sciences, 2013, 33(6): 1199-1210.
45
Song M, Zhou A, He Y, et al. Environmental controls on long-chain alkenone occurrence and composition patterns in lacustrine sediments, Northwestern China. Organic Geochemistry, 2016, 91: 43-53. DOI:10.1016/j.orggeochem.2015.10.009
46
Toney J L, Huang Y, Fritz S C, et al. Climatic and environmental controls on the occurrence and distributions of long chain alkenones in lakes of the interior United States. Geochimica et Cosmochimica Acta, 2010, 74(5): 1563-1578. DOI:10.1016/j.gca.2009.11.021
47
Zheng Y, Huang Y, Andersen R A, et al. Excluding the di-unsaturated alkenone in the U37K index strengthens temperature correlation for the common lacustrine and brackish-water haptophytes. Geochimica et Cosmochimica Acta, 2016, 175: 36-46. DOI:10.1016/j.gca.2015.11.024
48
Wang Z, Liu Z, Zhang F, et al. A new approach for reconstructing Holocene temperatures from a multi-species long chain alkenone record from Lake Qinghai on the northeastern Tibetan Plateau. Organic Geochemistry, 2015, 88: 50-58. DOI:10.1016/j.orggeochem.2015.08.006
49
Hou J, Huang Y, Zhao J, et al. Large Holocene summer temperature oscillations and impact on the peopling of the northeastern Tibetan Plateau. Geophysical Research Letters, 2016, 43(3): 1323-1330. DOI:10.1002/2015GL067317
Further reconstruction of temperature and salinity changes in Lake Qinghai over the past millennium
Liu Zhonghui, Zhou Aifeng, Liu Weiguo     
(① Department of Earth Sciences, the University of Hong Kong, Hong Kong Special Administrative Region;
Key Laboratory of Western China's Environmental System(Ministry of Education), Research School of Arid Environment & Climate Change, Lanzhou University, Lanzhou 730000;
State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075)

Abstract

Hydroclimatic changes in China over the past millennium are characterized by the association of warm periods with wetter conditions in monsoonal regions but with drier conditions in westerly regions. Lake Qinghai, located at the margin of monsoonal regions, is thus critical to evaluating this proposal by studying its sediment archive. However, paleoclimatic results from this lake are still controversial, mostly due to uncertainties in sediment chronology and proxy interpretations. We here again analyze biomarkers, long-chain alkenones and n-alkanes, from a 2m sediment core, newly retrieved from the eastern lake(37°02'17.80"N, 100°27'14.07"E), at a relatively shallow(5m)water depth. The core chronology was established with 14C dates, indicating the core spanning the last ca.1600 years. We have analyzed sediment materials at every one centimeter, with 204 samples in total, and based on our chronology, achieved a sampling resolution of ca.8 years. Over the past 1600 years, alkenone U37K' values varied between 0.15 and 0.50, and%C37:4 varied between 15% and 80%, much larger than the range documented previously from a core retrieved from the lake center of the same lake(0.1 unit for U37K' and 15%~45% for%C37:4). Paq(proportion of aquatic plants)values range from 0.2 to 0.7. High U37K', %C37:4 and Paq values occurred during the current warm period(since 1850A.D.)and the Medieval Warm Period(800~1400A.D.), while during the Little Ice Age(1400~1850A.D.), those values showed little variability and remained low. During the transition from colder toward warmer conditions(ca.1850A.D. and 800A.D.), it appears that U37K' and Paq values increased first while%C37:4 changes lagged by ca. 50~100 years(ca. 900A.D. and 1900A.D.). Thus the biomarker records of temperature(U37K'), salinity(%C37:4)and water depth(Paq)suggest that during the current warm period and the Medieval Warm Period, lake water was warmer and fresher and water level was higher, while being the opposite during the Little Ice Age. Despite different magnitude of changes in the alkenone indices documented from the shallow and deep water cores, the pattern of their changes is largely consistent. It confirms that in Lake Qinghai, warmer conditions were generally associated with wetter/fresher conditions and vice versa, the typical pattern in monsoonal regions and opposite to the association in westerly regions. It also appears that the extent of warmth and wetness during the current warm period has not exceeded that during the Medieval Warm Period.%C37:4 value, up to 80%, during the Medieval Warm Period suggest extremely fresh conditions, at least in nearshore shallow waters in Lake Qinghai at the time. Our results further suggest that in Lake Qinghai with substantial salinity changes in the past, alkenone C37:4 should not be included for temperature calculation. Lastly, during climate transition from cold toward warm stages, salinity changes appear to lag temperature changes, possibly due to abrupt riverine input. If correct, then our current warm period is still at a transitional stage and has not entered into a stable warm stage yet.
Key words: Lake Qinghai     lacustrine sediment     long-chain alkenones     paleotemperature     paleosalinity     climatic changes