第四纪研究  2017, Vol.37 Issue (3): 667-678   PDF    
渤海湾北岸TZ02孔晚新生代沉积环境演化过程
高峰①,② , 胥勤勉②,① , 袁桂邦②,① , 杨吉龙 , 范友良①,② , 刘文达①,② , 赵建军     
(① 天津城建大学地质与测绘学院, 天津 300384;
② 中国地质调查局天津地质调查中心, 天津 300170)
摘要:渤海湾北岸晚新生代沉积环境和沉积体系不仅是区域水文地质、工程地质的基础,也为古近纪沉积模式提供“将今论古”的依据。本文依据沉积物色度和粒度,以及沉积物岩性、结构和构造等,将渤海湾北岸TZ02孔划分了6个沉积组合、4个沉积阶段:1)2.10~3.22Ma,沉积组合Ⅰ和Ⅱ,湖盆填充期,发育湖相-泛滥平原相或湖相-曲流河相,该时期处于构造稳定期,干冷气候时期发育河流相、泛滥平原相,湿润气候时期发育湖泊相。2)1.33~2.10Ma,沉积组合Ⅲ,湖盆开始发育期,主要为浅湖相,仅有少量砂体,下部多有机质,上部多钙质淀积结核,指示了盆山之间的构造分异后,湖泊初始发育的特征。3)0.62~1.33Ma,沉积组合Ⅳ,湖盆扩张期,以湖相为主,多砂体,且有短期湖泊水位变浅和成陆过程;指示了盆山构造分异后,盆地加速沉降,湖盆扩张;山体隆起、河流下切,盆地中湖相砂体增多;此时TZ02孔附近为湖相中心,BG10孔为湖泊边缘。4)0~0.62Ma,沉积组合Ⅴ和Ⅵ,湖泊填充期,BG10孔为湖相的沉积中心,而TZ02孔为湖泊的边缘,接受滦河迁移摆动后的沉积物;中更新世后,构造沉降形成湖相,而间冰期发育海相,埋深0~22.5m的海相-河流相更直接地反映了末次冰消期海平面变化过程。
主题词渤海湾北岸     沉积相     粒度     色度    
中图分类号     P722.4;P737.12+1;P534.62+2                     文献标识码    A

渤海湾盆地古近纪断陷形成湖相为主的地层,并成为主要的生油层[1~4];新近纪裂陷作用形成河流冲积体系[5~7];第四纪仍以裂陷为主,其沉积体系却缺少系统的研究。

渤海湾北岸第四纪主要由滦河在山前不断的摆动,填充渤海湾盆地,形成多期滦河冲积扇-三角洲[8, 9]。这种燕山侵蚀、河流搬运、渤海湾盆地沉积的“源-汇”模式,不仅记录了第四纪燕山隆起和渤海湾盆地沉降的过程,其沉积环境和沉积体系更是区域水文地质、工程地质的基础,也可为古近纪沉积模式提供“将今论古”的依据。

沉积环境和沉积相的研究方法较多,例如测井曲线[10~12]、粒度[13, 14]、磁化率[15, 16]和色度[17, 18]等,每种方法均有各自的适用性,多以多指标的方式来指示沉积环境和沉积相。色度作为反映气候和环境变化的重要指标之一,可以通过沉积物的亮度值和红度值变化来反应沉积物中钙质胶结物及铁氧化物的含量变化[19~21],进而反映沉积环境;粒度则是分析沉积环境更直接的手段[22, 23]

本文利用历史时期滦河三角洲TZ02孔,基于分离出特征剩磁的354个样品建立的磁性地层序列,依据色度和粒度,分析其沉积环境和沉积相的变化,探讨研究区晚上新世以来区域沉积演化过程。

1 区域地质背景

渤海湾北岸位于黄骅坳陷北部,具有多个次级构造单元,其新生代以来持续沉降,厚度平均为6000余米,其中古近系厚3100m,新近系厚2400m[24~26],第四纪时期为新生代晚期裂陷后的加速沉降时期[27]。渤海湾北岸的地层沉积以湖相和河流相沉积为主,同时含有海相层;第四纪期间,发生了4次海侵[28, 29]。渤海湾北岸地貌主要由晚更新世晚期和全新世滦河三角洲的沙坝-潟湖海岸组成[9, 30~33]。由于断裂活动的影响,使得渤海湾北岸地区各次级构造单元的沉积厚度有所差异[12, 34, 35],该区的第四纪沉积厚度约为330~490m[35~37],晚第四纪沉积厚度为80~120m[28, 29, 38]

TZ02孔(39°19.7′N,119°5.3′E)孔口高程为0.5m,钻孔深550m,位于河北省唐山市乐亭县南部,渤海湾北岸黄骅坳陷的乐亭凹陷之中,地貌上属于滦河废弃河道的天然堤(图 1)。该孔位于滦河三角洲上,全新世海侵明显。

图 1 渤海湾北岸构造简图和TZ02孔位置(据文献[24, 25]修改) ①——昌黎-宁河断裂(Changli-Ninghe Fault);②——蓟运河断裂(Jiyunhe Fault);③——沧东断裂(Cangdong Fault);④——汉沽断裂(Hangu Fault);⑤——黑沿子断裂(Heiyanzi Fault);⑥——西南庄断裂(Xinanzhuang Fault);⑦——柏各庄断裂(Baigezhuang Fault);⑧——新寨断裂(Xinzhai Fault);⑨——李各庄断裂(Ligezhuang Fault);⑩——红房子断裂(Hongfangzi Fault);B11——石臼坨3号断裂(Shijiutuo No.3 Fault);B12——庞各庄断裂(Panggezhuang Fault);B13——滦县-乐亭断裂(Luanxian-Laoting Fault) Fig. 1 The tectonic map in the northern Bohai Bay and the location of borehole TZ02, modified from references[24, 25]
2 材料和研究方法 2.1 钻孔时代

TZ02孔472个样品进行了系统退磁和测量,其中热退磁368个,混合退磁104个,在TD-48热退磁炉中进行系统热退磁,从室温退至690℃,退磁间隔为10~50℃;混合退磁一般先热退到150℃,再转为交变退磁,步长为3~10mT,最大交变退磁场为70mT;剩磁在美制2G-760R低温超导磁力仪上进行。实验在中国科学院地质与地球物理研究所古地磁与地质年代学实验室完成。354个样品分离出特征剩磁,建立磁性地层序列。

TZ02孔Matsuyama/Brunhes(M/B)极性时界线埋深138.5m,Jaramillo极性亚时埋深为183.0~190.0m,Olduvai极性亚时埋深为318.0~337.0m,Gauss/Matsuyama(G/M)极性时界线埋深为435.3m。钻孔底部位于C2An.2n正极性亚时,为Gauss正极性时期,用其上部的沉积速率外推钻孔底部年代,推测TZ02孔底部年龄约为3.22Ma(图 2)。

图 2 TZ02孔粒度参数曲线、色度曲线、沉积相分类图 Fig. 2 The grain parameters, the color index curves and the sedimentary types of borehole TZ02 in the northern Bohai Bay
2.2 采样和研究方法

本次测试705个粒度样品。对含较多的贝壳碎屑、有机质和钙质结核的样品用双氧水和盐酸进行前处理。具体步骤如下:给样品加入10ml浓度为10 %的双氧水并煮沸,使其充分反应;冷却后加入10ml浓度为10 %的盐酸并煮沸,使其充分反应;给烧杯中注满水,静置一夜后,抽去水;加入10ml浓度为0.05mol/L的六偏磷酸钠((NaPO3)6)分散剂,静置24小时后上机测试,测试时使用超声波振荡。测试仪器为英国产Mastersizer 2000粒度仪。粒度仪测量范围为0.2~2000μm,重复测量的相对误差 < 3 %,每个样品测试时间为3分钟左右。粒度参数采用McManus[39]在1988年提出的矩法粒度参数计算公式,粒度参数有平均粒径、标准差、偏度和峰态。

本次测试509个色度样品,样品在温室条件下自然风干,在不损坏自然颗粒结构前提下捣碎磨细,约200目筛,取少量样品平摊于白纸上,在避光的室内用SPAD-503便携式色度仪进行测量,每个样品测量3次,计算平均值,分别记录样品的亮度(L*)、红度(a*)和黄度(b*)。

3 结果 3.1 色度值与沉积环境的关系

沉积物颜色(既色度指标)作为沉积物最直观的特征之一,与沉积物矿物成分有着十分紧密的联系,其中L*值的高低主要与沉积物中碳酸钙、石英、长石等浅色矿物以及有机质的含量多少有关[40, 41];a*值的变化,受控于沉积物中的赤铁矿、磁铁矿等致色矿物的含量,尤以赤铁矿对a*值的贡献最大[42, 43];b*值,主要受控于不同价态的铁的氢氧化物的含量[44~46]

依据沉积物的颜色、结构、构造,以及包含物等沉积特征,a*、b*值大致可以分为两类沉积环境:a*值大于2.5,b*值大于13.0为陆相沉积环境或含有钙质淀积的湖相沉积;a*值小于2.5,b*值小于13.0为湖相或海相沉积。因此,根据色度指标(a*、b*和L*)曲线变化特征,可以将TZ02孔自下到上分为6个组合:Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ和Ⅵ(图 2表 1),其时代依据磁性地层线性内插获得。

表 1 TZ02孔不同阶段色度对比 Table 1 Contrast of color in different stages of borehole TZ02 in the northern Bohai Bay

L*、a*与b*之间存在着一定的相关性,其中a*值和b*值呈很好的线性相关(图 3),相关系数为0.845,但L*值与a*、b*值的相关性则相对复杂,在Ⅰ、Ⅳ、Ⅴ阶段(表 1),L*值与a*呈很好的相关性,其中在Ⅰ阶段中呈正相关,相关系数为0.382,在Ⅳ和Ⅴ阶段,则呈负相关,相关系数分别为-0.371和-0.294,但在其他阶段,其相关性不强(表 2)。

图 3 a*与b*值的相关性图 Fig. 3 Correlation diagram of a* and b*

表 2 不同阶段L*与a*、b*所呈的相关系数 Table 2 Correlation coefficient between L* and a* and b* in different stages
3.2 沉积组合 3.2.1 沉积组合Ⅰ

埋深439.5~550.0m,年代为2.58~3.22Ma。该组的色度曲线呈振幅较大的波状幅动,其中a*值和b*值呈很好的正相关,L*与a*值呈正相关,相关系数为0.382,根据振幅可将其分呈5个亚段,分别为Ⅰa(埋深525. 5~550. 0m)、Ⅰb(埋深510. 5~525.5m)、Ⅰc(埋深480.0~510.5m)、Ⅰd(埋深459.5~480.0m)和Ⅰe(埋深439.5~459.5m)(表 1),其中Ⅰa、Ⅰc和Ⅰe段的a*值和b*值处于曲线的波峰上,其a*值分别为0.7~4.7、1.4~4.7和0.5~4.2,其平均分别为3.0、3.3和3.0;b*值分别为5.5~17.8、8.8~19.5和11.4~19.0,其平均分别为13.8、15.1和15.0,对应陆相沉积环境。Ⅰa平均粒度为1.1~5.8,平均为3.8;标准差为1.2~2.3,平均为1.7,分选较差;偏度为-1.0~2.6,平均为0.9,以正偏为主;峰态为1.9~9.8,平均为4.7;粒度参数均呈现大小相间分布,色度显示为陆相,综合判断为泛滥平原相。Ⅰc平均粒度为1.1~6.2,平均为3.8;标准差为1.0~2.2,平均为1.6;偏度为-0.5~3.7,平均为1.3,相比Ⅰa更向正偏;峰态为1.7~20.4,平均为5.7,峰态增大;Ⅰc的粒度参数分别在480.0~488.0m和488.0~510.5m呈现两个沉积旋回,其平均粒径均为下粗上细,分选为下好上差,偏度和峰态为下大上小,为两套曲流河相。Ⅰe平均粒度为2.3~6.4,平均为4.4;标准差为1.0~2.0,平均为1.6;偏度为-0.8~2.5,平均为0.7;峰态为1.9~8.9,平均为3.6;粒度参数均呈现大小相间分布,色度显示为陆相,综合判断为泛滥平原相。Ⅰb和Ⅰd段的a*值和b*值处于曲线的波谷处,a*值的平均分布为1.7和1.2,b*值的平均分别为10.9和10.6,均相对较低;其平均粒径分别为4.4和4.8,标准差分别为1.8和1.7,偏度分别为0.5和0.4,峰态分别为2.9和2.7,二者粒度均相对较细,并以橄榄灰色粉砂为主,色度显示为湖相;综合判断为湖相沉积。

该组合Ⅰa为泛滥平原相,Ⅰb和Ⅰc组成湖相-曲流河相沉积旋回,Ⅰd和Ⅰe组成湖相-泛滥平原相沉积旋回,因此,沉积组合Ⅰ包括两个半沉积旋回。

3.2.2 沉积组合Ⅱ

埋深为357.4~439.5m,年代为2.10~2.58Ma,L*值平均为53.8,相对组合Ⅰ明显略有增加并逐渐升高,a*和b*值平均为2.1和12.0,低于组合Ⅰ的陆相沉积,但高于湖相沉积,整体具有逐步增加的趋势。该组可分为两个亚段Ⅱa(埋深390.0~439.5m)和Ⅱb(埋深357.4~390.0m)。

a亚段沉积物L*值为46.9~62.7,平均为53.3,向上L*值逐渐增加;该段的a*和b*值分别为0.8~4.4和8.0~20.8,平均分别为1.8和11.3;该段沉积物以橄榄灰色砂质粉砂为主;平均粒径为1.8~6.4,平均为4.4;标准差为1.0~2.5,平均为1.6;偏度为-1.1~3.2,平均为0.7;峰态为1.7~15.0,平均为4.0;粒度参数均表现为大小相间的特征,色度显示为湖相;综合判断为湖相沉积。Ⅱb处的沉积物的L*值为51.3~60.7,平均为54.8,相对于Ⅱa增加明显;a*和b*值分别为1.2~4.3和11.1~17.9,平均分别为2.8和13.8,均明显高于Ⅱa;沉积物以棕黄色砂质粉砂、粉细砂为主,含有钙质淀积;平均粒径为2.5~6.5,平均值为4.8;标准差为1.1~2.4,平均值为1.6;偏度为-0.5~2.9,平均值为0.5;峰态为1.8~11.7,平均值为3.2;粒度参数显示大小相间的特征,色度显示为陆相,综合判断为泛滥平原相。

沉积组合Ⅱa为湖相b为泛滥平原相,组成湖相-泛滥平原相的沉积旋回。

3.2.3 沉积组合Ⅲ

埋深241.3~357.4m,年代为1.33~2.10Ma,该组L*值整体变化不大,平均值为53.1,略低于第Ⅱ组;a*和b*值相较第Ⅱ组明显降低,平均值为1.7和11.1,向上逐渐增加。该组可分为Ⅲa(埋深298.0~357.4m)和Ⅲb(埋深241.3~298.0m)两个亚段。

a亚段L*值为43.9~57.9,平均为53.5;a*值为0.3~3.5,平均为1.5;b*值为7.0~15.3,平均为10.3;均低于第Ⅱ组,其变化平稳,岩性以橄榄灰色粉砂质泥为主,夹少量中砂颗粒;平均粒径为1.6~6.5,平均值为4.6;标准差为0.7~2.4,平均值为1.6;偏度为-1.5~4.5,平均为0.6;峰态为1.7~31.2,平均为4.0;粒度整体以细粒为主,色度显示为湖相特征,综合判断为湖相。

b亚段L*值为40.8~59.2,平均为52.3;a*值为0.3~4.5,平均为2.2;b*值为7.4~19.5,平均为12.5;a*值和b*值明显高于Ⅲa亚段且呈逐渐增长的趋势,波动十分明显;沉积物以灰色粉砂为主,夹中砂层;平均粒径为1.0~6.5,平均为4.6;标准差为0.3~2.4,平均为1.3;偏度为-0.9~4.5,平均为0.9;峰态为1.8~31.9,平均为5.8;粒度整体显示为细粒夹粗粒的特征,色度显示为湖相,综合判断为湖相沉积。埋深289.3~298.3m,平均粒径为1.0~2.6,平均为1.9;标准差为0.3~1.0,平均为0.8;偏度为0.1~4.3,平均为3.4;峰态为2.5~31.9,平均为22.1;粒度较粗,分选达到全孔最好,偏度加大,出现极端峰态;但a*和b*值分别为1.6和9.3,显示为湖相特征;综合判断为湖相砂体。

沉积组合Ⅲa为湖相沉积,多有机质;Ⅲb为湖相沉积,夹湖相砂体。因此推测,沉积组合Ⅲ以湖相地层为主。

3.2.4 沉积组合Ⅳ

埋深120.9~241.3m,年代为0.62~1.33Ma,该组L*值的平均值为54.5,较高于第Ⅲ组的L*值,而a*和b*值较第Ⅲ组则明显降低,分别为1.4和10.6。在该组内部可根据色度曲线变换可分为Ⅳa(埋深183.8~241.3m)和Ⅳb(埋深120.9~183.8m)两个亚段。

a亚段下部(埋深189.3~241.3) L*值为45.0~60.2,平均为55.6,曲线较为平直;a*值为-0.6~3.1,平均为1.2;b*值为6.8~14.9,平均为10.4;相对于第Ⅲ组数值和变化幅度均减小,变化趋于平稳。岩性为灰黑色、棕黄色粉砂质砂夹厚层状中砂。平均粒径为1.4~6.5,平均为3.9;标准差为0.4~2.8,平均为1.4;偏度为-1.5~4.4,平均为1.2;峰态为1.5~27.2,平均为6.5;粒度呈现为粗细相间,色度显示为湖相,综合判断为湖相,多夹湖相砂体。Ⅳa亚段上部(埋深183.8~189.3m),a*值为2.2~4.3,平均为3.1;b*值为11.1~19.9,平均为14.7;a*、b*值较下部均显著增加;平均粒径为4.1~6.5,平均为5.5;标准差为1.1~1.9,平均为1.4;偏度为-0.5~0.7,平均为0.2;峰态为2.3~2.9,平均为2.6;沉积物中含有少量钙质结核和铁锰质结核,并以细颗粒沉积物为主,色度显示为陆相,综合判断为泛滥平原相。Ⅳa为湖相和泛滥平原相的沉积旋回。

b亚段(埋深120.9~183.8m)色度值波动较大,L*值47.5~67.3,平均为55.4,相较于Ⅳa段增加明显;a*值为-0.4~4.5,平均为1.3;b*值为6.9~19.9,平均为10.7;a*和b*值与Ⅳa亚段相差不大,但有多处峰值。埋深168.1~183.8m,沉积物以橄榄灰色粉砂、砂质粉砂和粉砂质砂为主,平均粒径为1.9~6.6,平均为5.1;标准差为0.9~2.7,平均为1.5;偏度为-1.4~2.5,平均为0.3;峰态为2.1~10.2,平均为3.2;沉积物颗粒较细,分选较好,偏度和峰态均较小,a*和b*值也显示为湖相,综合判断为湖相沉积。埋深138.9~139.7m,沉积物为橄榄灰色粉砂质砂,平均粒径为3.1~4.3,平均为3.6;标准差为1.6~1.8,平均为1.7;偏度为0.7~1.5,平均为1.1;峰态为2.6~4.9,平均为3.8;粒度较大,分选较好,峰态较小,可能为湖相远沙坝。埋深120.4~138.9m和139.7~168.1m,沉积物则以浅灰、棕黄色细砂为主,平均粒径为1.3~5.2,平均为3.1;标准差为0.8~2.5,平均为1.5;偏度为-0.4~4.5,平均为1.9;峰态为1.6~31.4,平均为9.5;粒度较粗,分选较好,正偏为主,峰态较大;a*和b*值均从下向上增大,显示湖水位变浅;综合判断为湖相砂体。Ⅳb亚段包括两个湖相-湖相砂体的沉积旋回,并在湖相砂体顶部成陆。

3.2.5 沉积组合Ⅴ

埋深22.5~120.9m,年代为0.01~0.62Ma,L*值平均为56.2,整体上高于第Ⅳ组;a*和b*值的均呈现向上增大的趋势。根据色度值的增加趋势,可以分为Ⅴa和Ⅴb两个亚段。Ⅴa亚段(43.0~120.9m)L*为43.6~68.3,平均为56.1;a*值为-0.1~3.6,平均为1.4;b*值为6.3~14.7,平均为10.1;沉积物以橄榄灰色的粉细砂和粉砂质砂为主,平均粒径1.0~6.5,平均为3.8;标准差为0.4~2.6,平均为1.6;偏度为-1.6~4.4,平均为1.0;峰态为1.7~31.5,平均为5.6。埋深70.5~72.8m橄榄灰色细砂、粉细砂,并含有少量贝壳碎片,判断为海相沉积;粒度参数显示沉积物以细颗粒为主,夹粗颗粒砂体;色度参数波动较小,上部增大,和上覆沉积过渡;综合判断为湖相,夹有部分湖相和海相砂体。

b亚段(埋深22.5~43.0m)L*为52.2~68.8,平均为56.4;a*值为1.5~5.3,平均为4.2;b*值为11.7~18.8,平均为15.7;沉积物为棕黄色细砂、中砂;平均粒径为0.8~5.1,平均为2.1;标准差0.4~1.7,平均为1.0;偏度为-0.9~4.3,平均为1.5;峰态为2.5~34.2,平均为9.0;粒度显示为下粗上细,具二元结构,分选较好,a*和b*较高,为陆相,因此综合判断为辫状河道。

3.2.6 沉积组合Ⅵ

埋深0~22.5m,年代为0~0.01Ma,该组L*值平均为48.8,为整个钻孔的最低值,a*和b*值平均分别为1.0和8.7,也要明显低于第Ⅴ组。该组可分为两亚段Ⅵa和Ⅵb。Ⅵa段(埋深2.0~22.5m)L*值为41.3~57.1,平均为48.8;a*值为-0.7~2.0,平均为1.0;b*值为7.4~11.5,平均为8.7;沉积物以橄榄灰色细砂夹粉砂质泥,多含贝壳碎片;平均粒径为1.0~6.1,平均为3.3;标准差为0.9~2.2,平均为1.6;偏度为-0.8~3.5,平均为1.3;峰态为1.7~19.0,平均为6.8;综合粒度、色度和沉积特征,该层为海相沉积,包括海相淤泥和沙坝。

b段(埋深0~2.0m)L*值和Ⅵa比变化不大,a*值和b*值则快速增加,a*值为3.5~4.6,平均为4.0;b*值为11.6~17.3,平均为14.5;沉积物为棕黄色细砂;平均粒径为0.9~2.4,平均为1.7;标准差为1.2~2.0,平均为1.7;偏度为1.7~3.0,平均为2.2;峰态为4.7~13.1,平均为7.9;粒度相对较粗,偏度、标准差和峰态均较高,分选较差;色度显示为陆相;综合判断该段为河流相沉积。

4 讨论 4.1 湖盆填充期(2.10~3.22Ma)

沉积组合Ⅰ和沉积组合Ⅱ整体呈现为3个沉积旋回,自下而上分别为湖相-曲流河相、湖相-泛滥平原相和湖相-泛滥平原相,显示了湖盆被填充的沉积特征,其时代为2.10~3.22Ma。湖相沉积L*值相对一致,均低于曲流河和泛滥平原相,指示了湖相沉积物中有机质含量较高;Ⅱa湖相L*值高于Ⅰb和Ⅰd,且厚度大,说明后期湖相发育时间久,但以浅湖相为主,湖泊水位较低。陆相沉积相a*和b*值自下而上的逐渐变小,说明氧化程度逐渐减弱。该时期BG10孔也为泛滥平原与湖相的交互地层[12],与TZ02孔的沉积模式一致。该时期太行山和燕山的T4阶地多形成在1.3Ma之后[47],与此同时,三门湖、泥河湾古湖亦为构造相对稳定的时期[48, 49],因此该时期处于构造稳定期,地层沉积可能受到气候环境的影响。与BG10孔一致,干冷气候发育河流相、泛滥平原相,在湿润气候时期发育湖泊相[12];Ⅱa湖相L*增大、Ⅱb陆相a*和b*值减小,也可能反映了亚洲大陆晚新生代的干旱化。

4.2 湖盆发育期(1.33~2.10Ma)

沉积组合Ⅲ为两层湖相沉积,其L*、a*和b*值与Ⅱa湖相基本相当,说明均为浅湖相,为湖盆的初始发育期,其时代为1.33~2.10Ma。Ⅲa和Ⅲb湖相沉积特征也有差异,Ⅲb湖相含少量湖相砂体,分选较好,偏度和峰态均较大;其多含钙质结核,对应a*和b*值出现峰值,说明湖水位波动频繁;但L*值平均较小,指示了有机质含量高,说明当时物源供给少,湖泊以富营养湖为主。该时期BG10孔为湖相-泛滥平原和湖相-曲流河-辫状河道的沉积组合[12],说明BG10孔为湖泊的边部,多接受河流沉积。BG10孔上部为曲流河-辫状河道,TZ02孔Ⅲb湖相仅有少量砂体,并以富营养湖为主,且更靠近燕山山前。这说明TZ02为湖泊中心,BG10孔河流相可能为渤海湾西部沉积物的侵蚀再搬运,也可能为较远流路的燕山西部山地河流或太行山山地河流。TZ02孔湖泊初始发育、BG10孔曲流河-辫状河道的发育,均可能指示了盆山之间的构造分异开始,这与1.3Ma太行山和燕山的T4阶地多形成[47]相吻合。

4.3 湖盆扩张期(0.62~1.33Ma)

沉积组合Ⅳ为两个沉积旋回,分别为湖相-泛滥平原相和湖相-湖相砂体;L*值要高于组合Ⅲ,上部湖相砂体夹的浅湖相中多钙质淀积结核,曲线波动明显,具有峰值;a*和b*值均低于组合Ⅲ,代表湖水位较深;但泛滥平原相和上部湖相砂体中多出现峰值,指示了湖水位短期的变浅和成陆过程;湖相砂体粒径较大,偏度和峰态均较大,分选系数自下而上变差,指示了沉积通量大,沉积物搬运可能较近;其时代为0.62~1.33Ma。该时期BG10孔为湖相-泛滥平原相和湖相-曲流河相的两个沉积旋回[12],基本与TZ02孔沉积旋回相一致。1.0Ma时期,燕山、太行山不断隆升,形成三级阶地[47, 50, 51]。盆山构造分异后,盆地加速沉降,湖盆扩张;山体隆起、河流下切,盆地中湖相砂体增多,逐渐向陆相沉积转变。同时,也可能是区域北西向构造活动占主导作用,使得TZ02孔附近为湖相中心,而BG10孔为湖泊边缘,更多接受河流沉积。

4.4 湖盆填充期(0~0.62Ma)

沉积组合Ⅴ为湖相-湖相砂体-辫状河道的沉积模式,沉积组合Ⅵ为海相-河流相的沉积模式。该时期L*值明显低于之前的组合,且向上逐渐降低,指示了沉积物中的有机质含量逐渐增加;湖相、湖相砂体和海相中的a*和b*值基本相当,平均值分别低于1.4和10.0,均较低于下伏地层中的湖相,可能沉积中氧化作用较弱,以及沉积物中较少铁的强氧化物;辫状河道和河流相中a*和b*值较大,与Ⅰc曲流河基本相当,而略高于泛滥平原相,说明除了陆相沉积物除了经历地球化学作用氧化成铁的致色矿物外,河流也可能携带了一部分铁的致色矿物;其时代为0~0.62Ma。该时期BG10孔为湖相-海相的交互地层[12],TZ02孔却发育少量河流相,指示了湖泊中心的迁移。BG10为湖泊沉积中心,并在晚第四纪叠加三期海侵[38];TZ02孔为湖泊的边缘,接受滦河迁移摆动后的沉积物。构造沉降和海平面上升,提供了更大的沉积空间,也为记录更为详细的气候变化提供了可能。该时期气候属于冰期和间冰期相互转换的气候特征[52],而且中更新世后华北持续变冷干[53],构造沉降形成湖相,而间冰期,尤其是超级间冰期则发育海相,沉积组合Ⅵ的海相-河流相更为直接的反映了末次冰消期海平面变化过程。

5 结论

TZ02孔沉积物的a*、b*值大致可以分为两类沉积环境:a*值大于2.5,b*值大于13.0为陆相沉积环境或含有钙质淀积的湖相沉积;a*值小于2.5,b*值小于13.0为湖相或海相沉积。L*值受到有机质、碳酸盐和石英等影响,与a*、b*值的相关性则相对复杂。

在沉积物的a*、b*值确定沉积环境的基础上,再结合沉积物粒度、岩性、结构和构造等划分沉积相和沉积组合,TZ02孔自下而上依次划分为Ⅰ~Ⅵ段:地层组合Ⅰ,埋深439.5~550.0m,年龄为2.58~3.22Ma,为湖相-泛滥平原相和湖相-曲流河相沉积组合;地层组合Ⅱ,埋深357.4~439.5m,年龄为2.10~2.58Ma,为湖相-泛滥平原沉积组合;地层组合Ⅲ,埋深241.3~357.4m,年龄为1.33~2.10Ma,为湖泊相,夹少量湖相砂体;地层组合Ⅳ,埋深120.9~241.3m,年龄为0.62~1.33Ma,为湖相-泛滥平原相和湖相-湖相砂体的沉积组合;地层组合Ⅴ,埋深22.5~120.9m,年龄为0.01~0.62Ma,为湖泊相-湖相砂体和湖相-辫状河道的沉积组合,下部湖相中夹较薄的海相地层;地层组合Ⅵ,埋深为0~22.5m,年龄为0~0.01Ma,为海相-河流相沉积组合。

TZ02孔分为4个沉积阶段:2.10~3.22Ma,湖盆填充期,发育湖相-泛滥平原相或湖相-曲流河相,该时期处于构造稳定期,地层沉积可能受到气候环境的影响。干冷气候发育河流相、泛滥平原相,湿润气候时期发育湖泊相;上部湖相L*增大、陆相a*和b*值减小,也可能反映了亚洲大陆晚新生代的干旱化。1.33~2.10Ma,湖盆开始发育期,主要为浅湖相,仅有少量砂体,下部多有机质,上部多钙质淀积结核,反映了湖水位逐渐变浅,沉积通量较小,指示了盆山之间的构造分异后,湖泊初始发育阶段。0.62~1.33Ma,湖盆扩张期,以湖相为主,多砂体,且有短期湖泊水位变浅和成陆过程;指示了盆山构造分异后,盆地加速沉降,湖盆扩张;山体隆起、河流下切,盆地中湖相砂体增多,逐渐向陆相沉积转变。同时,区域北西向构造活动占主导作用,使得TZ02孔附近为湖相中心,而BG10孔为湖泊边缘。0~0.62Ma,湖泊填充期,BG10孔为湖相的沉积中心,而TZ02孔为湖泊的边缘,接受滦河迁移摆动后的沉积物;构造沉降形成湖相,而间冰期,尤其是超级间冰期则发育海相,Ⅵ的海相-河流相更为直接的反映了末次冰消期海平面变化过程。

致谢 中国地质调查局天津地质调查中心李建国高级工程师提供影像,感谢审稿人提出宝贵意见。

参考文献(References)
1
吴磊, 徐怀民, 季汉成. 渤海湾盆地渤中凹陷古近系沉积体系演化及物源分析. 海洋地质与第四纪地质, 2006, 26(1): 81-88.
Wu Lei, Xu Huaimin, Ji Hancheng. Evolution of sedimentary system and analysis of sedimentary source in Paleogene of Bozhong sag, Bohai Bay. Marine Geology & Quaternary Geology, 2006, 26(1): 81-88.
2
张功成, 朱玮林, 邵磊. 渤海海域及邻区拉分构造与油气勘探领域. 石油学报, 2001, 22(2): 14-18.
Zhang Gongcheng, Zhu Weilin, Shao Lei. Pull-apart tectonic and hydrocarbon prospecting in Bohai Bay and its nearby area. Acta Petrolei Sinica, 2001, 22(2): 14-18. DOI:10.7623/syxb200102003
3
蔡东升, 罗毓晖, 武文来等. 渤海浅层构造变形特征、成因机理与渤中坳陷及其周围油气富集的关系. 中国海上油气(地质), 2001, 15(1): 35-43.
Cai Dongsheng, Luo Yuhui, Wu Wenlai et al. Shallow tectonic deformation and its relationship to hydrocarbon enrichment in Bozhong Depression and adjacent areas, Bohai Bay Basin. China Offshore Oil and Gas(Geology), 2001, 15(1): 35-43.
4
陆先量. 渤海湾盆地新生代断裂活动及其对含油气系统和油气分布的影响. 油气地质与采收率, 2005, 12(3): 31-36.
Lu Xianliang. Cenozoic faulting and its influence on the hydrocarbon-bearing systems and hydrocar-bon distribution in the Bohai Bay Basin. Petroleum Geology and Recovery Efficiency, 2005, 12(3): 31-36.
5
漆家福, 张一伟, 陆克政等. 渤海湾盆地新生代构造演化. 石油大学学报(自然科学版), 1995, 19(增刊): 1-5.
Qi Jiafu, Zhang Yiwei, Lu Kezheng et al. Cenozoic tectonic evolution in Bohai Bay Basin province. Journal of China University of Petroleum(Edition of Natural Science), 1995, 19.
6
郭兴伟, 施小斌, 丘学林等. 渤海湾盆地新生代沉降特征及其动力学机制探讨. 大地构造与成矿学, 2007, 31(3): 273-280.
Guo Xingwei, Shi Xiaobin, Qiu Xuelin et al. Cenozoic subsidence in Bohai Bay Basin:Characteristics and dynamic mechanism. Geotectonica et Matallogenia, 2007, 31(3): 273-280.
7
汤良杰, 万桂梅, 周心怀等. 渤海盆地新生代构造演化特征. 高校地质学报, 2008, 14(2): 191-198.
Tang Liangjie, Wan Guimei, Zhou Xinhuai et al. Cenozoic geotectionic evolution of the Bohai Basin. Geological Journal of China Universities, 2008, 14(2): 191-198.
8
高善明. 滦河冲积扇结构和沉积环境. 地理研究, 1958, 4(1): 54-62.
Gao Shanming. Structures and sedimentary environments of the alluvial fan of the Luan River. Geographical Research, 1958, 4(1): 54-62.
9
王颖, 付光翮, 张永战. 河海交互作用沉积与平原地貌发育. 第四纪研究, 2007, 27(5): 674-689.
Wang Ying, Fu Guanghe, Zhang Yongzhan. River-sea interactive sedimentation and plain morphological evolution. Quaternary Sciences, 2007, 27(5): 674-689.
10
王金荣, 刘洪涛. 测井沉积微相识别方法及应用. 大庆石油学院学报, 2004, 29(4): 18-20.
Wang Jinrong, Liu Hongtao. Identification of sedimentary microfacies of logging and its application. Journal of Daqing Petroleum Institute, 2004, 29(4): 18-20.
11
宋璠, 侯加根, 张震等. 利用测井曲线研究陆相湖泊沉积微相. 测井技术, 2009, 33(6): 589-592.
Song Fan, Hou Jiagen, Zhang Zhen et al. Application of log curves in indicating sedimentary microfacies of lake facies basins. Well Logging Technology, 2009, 33(6): 589-592.
12
赵琳琳, 胥勤勉, 袁桂邦等. 渤海湾北岸BG10孔晚新生代沉积环境演化过程. 第四纪研究, 2016, 36: 36.
Zhao Linlin, Xu Qinmian, Yuan Guibang et al. Sedimentary evolution of BG10 borehole in northern coast of Bohai Bay during Late Cenozoic. Quaternary Sciences, 2016, 36(1): 196-207.
13
赵亚楠, 王张华, 吴绪旭等. 长江口现代潮滩沉积物粒度特征及其在沉积相识别中的应用. 古地理学报, 2015, 17(3): 405-416.
Zhao Ya'nan, Wang Zhanghua, Wu Xuxu et al. Grain size distribution of modern tidal flat sediments at the Yangtze River mouth and its application to identification of sedimentary facies. Journal of Palaeogeography, 2015, 17(3): 405-416.
14
赵红梅, 刘林敬, 赵华等. 滹沱河古河道剖面粒度参数特征及沉积环境. 现代地质, 2016, 30(2): 485-492.
Zhao Hongmei, Liu Linjing, Zhao Hua et al. Grain size character and sedimentary environment of Hutuo River paleochannel section. Geoscience, 2016, 30(2): 485-492.
15
周汶, 韩军青, 田庆春等. 临汾盆地中更新世中晚期沉积环境与气候变化研究. 干旱区资源与环境, 2016, 30(4): 172-177.
Zhou Wen, Han Junqing, Tian Qingchun et al. Evolution of sedimentary environment and climate change in Linfen Basin since Mid-Late Pleistocene. Journal of Arid Land Resources and Environment, 2016, 30(4): 172-177.
16
殷勇, 方念乔, 王倩等. 云南中甸纳帕海湖泊沉积物的磁化率及环境意义. 地理科学, 2002, 22(8): 413-419.
Yin Yong, Fang Nianqiao, Wang Qian et al. Magnetic susceptibility of lacustrine sediments and its environmental significance:Evidence from Napahai Lake, Northwestern Yunnan, China. Scientia Geographica Sinica, 2002, 22(8): 413-419.
17
王涛, 刘秀铭, 吕镔等. 澳大利亚悉尼中新世古土壤形成时期的古气候特征. 第四纪研究, 2015, 35(4): 997-1005.
Wang Tao, Liu Xiuming, Lü Bin et al. Miocene paleosol in Sydney, Australia and its paleoclimatic significances. Quaternary Sciences, 2015, 35(4): 997-1005.
18
程瑜, 乔彦松, 刘宗秀等. 甘肃灵台邵寨红粘土的磁性地层及其色度记录. 第四纪研究, 2014, 34(2): 391-398.
Cheng Yu, Qiao Yansong, Liu Zongxiu et al. Magnetostratigraphy and chorma records of a red clay formation near Lingtai County of Gansu Province. Quaternary Sciences, 2014, 34(2): 391-398.
19
章云霞, 叶玮, 马春梅等. 浙江北湖桥孔色度记录的早-中全新世环境变化. 第四纪研究, 2016, 36(5): 1331-1342.
Zhang Yunxia, Ye Wei, Ma Chunmei et al. Environment variabilities archived by color of the drill core Beihuqiao in Hangjiahu plain during the Early-Mid Holocene, China. Quaternary Sciences, 2016, 36(5): 1331-1342.
20
陈宗颜. 浅析130ka以来柴达木盆地东南部沉积物色度记录的古气候意义. 青海师范大学学报(自然科学版), 2011, 27(4): 34-39.
Chen Zongyan. Paleoclimatic significance of sediment chorma in southeast of Qaidam Basin since 130ka B.P. Journal of Qinghai Normal University (Edition of Natural Science), 2011, 27(4): 34-39.
21
戴霜, 刘俊纬, 张明霞等. 兰州-民和盆地八盘峡剖面河口群沉积物色度纪录的140.66-124.19Ma间气候变化. 地质学报, 2011, 85(6): 1058-1067.
Dai Shuang, Liu Junwei, Zhang Mingxia et al. Climate change during 140.66-124.19Ma recorded by the color of the sediments of the Hekou Group from Lanzhou-Minhe Basin. Acta Geologica Sinica, 2011, 85(6): 1058-1067.
22
李超, 杨石岭, 李阳阳等. 河南卢氏盆地张家村组粒度特征与沉积环境研究. 第四纪研究, 2016, 36(6): 1428-1435.
Li Chao, Yang Shiling, Li Yangyang et al. Grain size characteristics and sedimentary environment of the Zhangjiacun Formation in the Lushi Basin, Henan Province. Quaternary Sciences, 2016, 36(6): 1428-1435.
23
胥勤勉, 胡云壮, 袁桂邦等. 渤海湾西南岸古黄河三角洲全新世地层层序和演化过程. 第四纪研究, 2015, 35(2): 326-339.
Xu Qinmian, Hu Yunzhuang, Yuan Guibang et al. Holocene sequence stratigraphy and evolution of the ancient Yellow River delta in the southwestern coast of the Bohai Bay. Quaternary Sciences, 2015, 35(2): 326-339. DOI:10.11928/j.issn.1001-7410.2015.02.08
24
河北省地质矿产局. 河北省北京市天津市区域地质志. 北京: 地质出版社, 1989, 590-616.
Geological and Mineral Bureau of Hebei Province. Regional Geological Annals of Hebei Province, Beijing and Tianjin. Beijing: Geological Publishing House, 1989, 590-616.
25
大港油田石油地质编写组. 中国石油地质志(卷四):大港油田分卷. 北京: 石油工业出版社, 1993, 32-49.
Editorial Committee of "Petroleum Geology of Dagang Oil Field" ed. Petroleum Geology of China(Volume 4):Dagang Oil Field. Beijing: Petroleum Industry Press, 1993, 32-49.
26
Dong Yuexia, Xiao Long, Zhou Haimin et al. The Tertiary evolution of the prolific Nanpu Sag of Bohai Bay Basin, China:Constraints from volcanic records and tectono-stratigraphic sequences. Geological Society of America Bulletin, 2010, 122(3-4): 609-626. DOI:10.1130/B30041.1
27
董敏, 漆家福, 杨桥. 渤海湾盆地黄骅坳陷新生代沉降特征. 地质科学, 2012, 47(3): 752-755.
Dong Min, Qi Jiafu, Yang Qiao. Tectonic subsidence characteristics of Huanghua depression in Bohai Bay Basin in Cenozoic. Chinese Journal of Geology, 2012, 47(3): 752-755.
28
李元芳, 高善明, 安凤桐. 滦河三角洲地区第四纪海相地层及其古地理意义的初步研究. 海洋与湖沼, 1982, 13(5): 433-439.
Li Yuanfang, Gao Shanming, An Fengtong. A preliminary study of the Quaternary marine strata and its paleogeographic significance in the Luanhe Delta region. Oceanologia et Limnologia Sinica, 1982, 13(5): 433-439.
29
汪品先, 闵秋宝, 卞云华等. 我国东部第四纪海侵地层的初步研究. 地质学报, 1981, 55(1): 1-13.
Wang Pinxian, Min Qiubao, Bian Yunhua et al. Strata of Quaternary transgressions in East China:A preliminary study. Acta Geologica Sinica, 1981, 55(1): 1-13.
30
高善明, 李元芳, 安凤桐等. 滦河三角洲滨岸沙体的形成和海岸线变迁. 海洋学报, 1980, 2(4): 102-114.
Gao Shanming, Li Yuanfang, An Fengtong et al. The formation of sand bars on the Luanhe River delta and the change of the coast line. Acta Oceanologica Sinina, 1980, 2(4): 102-114.
31
高善明. 全新世滦河三角洲相和沉积模式. 地理学报, 1981, 36(3): 303-314.
Gao Shanming. Facies and sedimentary model of the Luanhe River delta. Acta Geographca Sinica, 1981, 36(3): 303-314.
32
李从先, 陈刚, 王利. 滦河废弃三角洲和砂坝-泻湖沉积体系. 沉积学报, 1983, 1(2): 60-72.
Li Congxian, Chen Gang, Wang Li. The abandoned deltas of the Luanhe River and the barrier-lagoon sedimentary systems. Acta Sedimentologica Sinica, 1983, 1(2): 60-72.
33
李从先, 陈刚, 王传广等. 论滦河冲积扇-三角洲沉积体系. 石油学报, 1984, 5(4): 27-36.
Li Congxian, Chen Gang, Wang Chuanguang et al. On the Luanhe River alluvial fan-delta complex. Acta Petrolei Sinica, 1984, 5(4): 27-36. DOI:10.7623/syxb198404004
34
董敏, 漆家福, 杨桥等. 渤海湾盆地黄骅坳陷新生代伸展量的时空分布特征. 古地理学报, 2013, 15(3): 327-338.
Dong Min, Qi Jiafu, Yang Qiao et al. Characteristics of extension amounts and their temporal and spatial distribution of the Cenozoic of Huanghua Depression in Bohai Bay Basin. Journal of Palaeogeography, 2013, 15(3): 327-338. DOI:10.7605/gdlxb.2013.03.028
35
胥勤勉, 袁桂邦, 秦雅飞等. 滦河三角洲南部MT04孔磁性地层研究及其构造与气候耦合关系的探讨. 第四纪研究, 2014, 34(3): 540-552.
Xu Qinmian, Yuan Guibang, Qin Yafei et al. Magnetostratigraphy and discussion of coupling relationship between tectonic movement ang climate change of MT04 borehole in southern Luanhe River delta. Quaternary Sciences, 2014, 34(3): 540-552.
36
袁桂邦, 胥勤勉, 王艳等. 渤海湾北岸Bg10孔磁性地层研究及其地质意义. 地质学报, 2014, 88(2): 285-298.
Yuan Guibang, Xu Qinmian, Wang Yan et al. Magnetostratigraphy and geology significance of Bg10 borehole in northern coast of Bohai Bay. Acta Geologica Sinica, 2014, 88(2): 285-298.
37
李华梅, 王俊达. 渤海湾北岸平原钻孔岩芯的古地磁研究. 地球化学, 1983, 12(2): 196-204.
Li Huamei, Wang Junda. Palaeomagneticst study on drill core from northern Bohai coastal plain. Geochimica, 1983, 12(2): 196-204.
38
胥勤勉, 袁桂邦, 张金起等. 渤海湾沿岸晚第四纪地层划分及地质意义. 地质学报, 2011, 85(8): 1352-1367.
Xu Qinmian, Yuan Guibang, Zhang Jinqi et al. Stratigraphic division of the Late Quaternary strata along the coast of Bohai Bay and its geological significance. Acta Geologica Sinica, 2011, 85(8): 1352-1367.
39
McManus J. Grain size determination and interpretation. In:Tucker M ed. Techniques in Sedimentology. Oxford:Backwell, 1988, 63-85.
40
方小敏, 奚晓霞, 李吉均等. 中国西部晚中新世气候变干事件的发现及其意义. 科学通报, 1997, 42(23): 2521-2524.
Fang Xiaomin, Xi Xiaoxia, Li Jijun et al. Discovery of the Late Miocene climate change and its significance in Western China. Chinese Science Bulletin, 1997, 42(23): 2521-2524. DOI:10.3321/j.issn:0023-074X.1997.23.013
41
王乃昂, 李吉均, 曹继秀等. 青士湖近6000年来沉积气候记录研究:兼论四五世纪气候回暖. 地理科学, 1999, 19(2): 119-124.
Wang Nai'ang, Li Jijun, Cao Jixiu et al. A preliminary research on the climatic records of lacustrine deposits of Qingshi Lake in the last 6000 years. Scientia Geographica Sinica, 1999, 19(2): 119-124.
42
吴艳宏, 李世杰. 湖泊沉积物色度在短尺度古气候研究中的应用. 地球科学进展, 2004, 19(5): 789-792.
Wu Yanhong, Li Shijie. Significance of lake sediment color for short time scale climate variation. Advances in Earth Science, 2004, 19(5): 789-792.
43
徐丽, 苗运法, 方小敏等. 青藏高原东北部西宁盆地中始新世-渐新世沉积物颜色与气候变化. 兰州大学学报(自然科学版), 2009, 45(1): 12-19.
Xu Li, Miao Yunfa, Fang Xiaomin et al. Middle Eocene-Oligocene climatic changes recorded by sedimentary colors in the Xining Basin, in northeastern Tibetan Plateau, NW China. Journal of Lanzhou University(Edition of Natural Science), 2009, 45(1): 12-19.
44
沈吉, 张恩楼, 夏威岚等. 青海湖近千年来气候环境变化的湖泊沉积记录. 第四纪研究, 2001, 21(6): 508-513.
Shen Ji, Zhang Enlou, Xia Weilan et al. Records from lake sediments of the Qinghai Lake to mirror climatic and environmental changes of the past about 1000 years. Quaternary Sciences, 2001, 21(6): 508-513.
45
Yang S L, Ding Z L. Color reflectance of Chinese loess and its implications for climate gradient changes during the last two glacial-interglacial cycles. Geophysical Research Letters, 2003, 30(20): 61-64.
46
Jiang H C, Ding Z L, Xiong S F. Magnetostratigraphy of the Neogene Sikouzi section at Guyuan, Ningxia, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2007, 243: 223-234. DOI:10.1016/j.palaeo.2006.07.016
47
徐杰, 马宗晋, 陈国光等. 根据周围山地第四纪地貌特征估计渤海第四纪构造活动幕的发生时间. 第四纪研究, 2005, 25(6): 700-710.
Xu Jie, Ma Zongjin, Chen Guoguang et al. Estimating times of Quaternary tectonic episodes in the Bohai Sea based on geomorphic features of surrounding mountainous areas. Quaternary Sciences, 2005, 25(6): 700-710.
48
王苏民, 吴锡浩, 张振克等. 三门古湖沉积记录的环境变迁与黄河贯通东流研究. 中国科学(D辑), 2001, 31(9): 760-768.
Wang Sumin, Wu Xihao, Zhang Zhenke et al. Sedimentary records of environmental evolution in the Sanmen Lake basin and the Yellow River running through the Sanmenxia Gorge eastward into the sea. Science in China(Series D), 2001, 31(9): 760-768.
49
袁宝印, 同号文, 温锐林等. 泥河湾古湖的形成机制及其与早期古人类生存环境的关系. 地质力学学报, 2009, 15(1): 77-87.
Yuan Baoyin, Tong Haowe, Wen Ruilin et al. The formation mechanism of the Nihewan paleolake and its relationship with living environment for early ancient humen. Journal of Geomechanics, 2009, 15(1): 77-87.
50
吴忱, 马永红, 张秀清等. 华北山地地形面地文期与地貌发育史. 石家庄: 河北科学技术出版社, 1999, 78-138.
Wu Chen, Ma Yonghong, Zhang Xiuqing et al. Topographic Surface, Physiographic Period and Geomorphic Evolution of Mountain Area in the North China. Shijiazhuang: Science and Technology Press of Hebei Province, 1999, 78-138.
51
高善明. 第四纪以来滦河中下游水系变迁. 地理集刊, 1987, 18: 52-63.
Gao Shanming. Changes of the water system in the middle lower branches of the Luanhe River since Quaternary time. Journal of Geograph, 1987, 18: 52-63.
52
Ding Z L, Derbyshire E, Yang S L. Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea delta δ 18O record. Paleoceanography, 2002, 17(3): 1003. DOI:10.1029/2001PA000725
53
Cai Maotang, Wei Mingjian, Yang Yibo. Long-term cooling/drying record of North China since the Middle Pleistocene from geochemical evidence of a 150m deep drill core, Beijing Plain, China. Quaternary International, 2014, 349: 419-427. DOI:10.1016/j.quaint.2014.07.037
SEDIMENTARY ENVIRONMENT EVOLUTION OF BOREHOLE TZ02 IN THE NORTHERN BOHAI BAY DURING LATE CENOZOIC
Gao Feng①,②, Xu Qinmian②,①, Yuan Guibang②,①, Yang Jilong, Fan Youliang①,②, Liu Wenda①,②, Zhao Jianjun     
(① School of Geology and Geomatics, Tianjin Chengjian University, Tianjin 300384;
Tianjin Center, China Geological Survey, Tianjin 300170)

Abstract

Northern Bohai Bay is located within the northern Huanghua Depression, which has a number of secondary tectonic units. The Cenozoic strata of the Huanghua depression are over 6000m thick:ca.3100m for the Paleogene, ca.2400m for the Neogene, and 330~490m for the Quaternary. Borehole TZ02(39°19.7'N, 119°5.3'E) is located in the southern Laoting County of Tangshan, Hebei Province, and within the Laoting sag of the Huanghua Depression, and located at the natural levee of the abandoned channel for the Luanhe River. Borehole TZ02 has a length of 550m. Based on the luminance values and redness values of sediments, and combining the sedimentary characteristics and grain size characteristics, borehole TZ02 has been divided into six stratigraphic units, and the times of these units have been dated by detail magnetostratigraphic chronology. The bottom age of borehole TZ02 is ca.3.22Ma. From bottom to top, the six stratigraphic units have been identified:(1) The unit Ⅰ, whose age is 2.58~3.22Ma, with the depth of 439.5~550.0m, has been dominated by lacustrine facies-flood plain and lacustrine facies-meandering river facies. (2) The unit Ⅱ, whose age is 2.10~2.58Ma, with the depth of 357.4~439.5m, has been dominated by lacustrine facies-flood plain facies. (3) The unit Ⅲ, whose age is 1.33~2.10Ma, with the depth of 241.3~357.4m, has been dominated by lacustrine facies which interbedded a few sand bodies. (4) The unit Ⅳ, whose age is 0.62~1.33Ma, with the depth of 120.9~241.3m, has been dominated by lacustrine facies-flood plain and lacustrine facies-lacustrine sand bodies. (5) The unit Ⅴ, whose age is 0.01~0.62Ma, with the depth of 22.5~120.9m, has been dominated by lacustrine facies-lacustrine sand bodies and lacustrine facies-braided channel facies, and interbedded the thinner marine bed in the lower of lacustrine facies. (6) The unit Ⅵ, whose age is 0~0.01Ma, with the depth of 0~22.5m, has been dominated by marine facies-fluvial facies. Based on the sedimentary assemblage, there are four depositional phases:(1) The phase of infilling basin, whose age is 2.10~3.22Ma, has been dominated by lacustrine facies-flood plain and lacustrine facies-meandering river facies, and it belongs to the tectonic stable period. During this period, climate change is the main factor controlling sedimentary process, the lacustrine facies had been formed within the warm and humid climate, the flood plain and meandering river facies have been formed within the dry and cold climate. (2) The phase of basin initial development, whose age is 1.33~2.10Ma, has been dominated by the shallow lacustrine facies which interbedded a few sand bodies, and organic materials in lower part, and calcareous concretions in upper part, which indicate that the shallower water level is upward and the smaller sedimentation flux are the main characteristics of shallow lacustrine facie after the tectonic differentiation between mountain and basin. (3) The phase of basin expansion, whose age is 0.62~1.33Ma, has been dominated by the lacustrine facies with the more sand bodies, which indicate that the basin has expanded with the accelerated tectonic subsidence, and the sedimentation flux has increased by the fluvial erosion with the uplift mountain. While the round TZ02 is the center of the lake, the round BG10 is the edge of the lake with the action of the tectonic movements by NWW-orientated faults. (4) The phase of infilling basin, whose age is 0~0.62Ma, has been dominated by the lacustrine and marine facies. The round BG10 is the center of the lake, while the round TZ02 is the edge of the lake and receive the sediments of Luanhe River. The tectonic subsidence is the main controlling factor to form the lacustrine facies. The marine facies have been formed in the interglacial period, especially in super-interglacial period. The marine facies-fluvial facies of unit Ⅵ directly reflect the sea level changing of the Last Deglaciation.
Key words: northern coast of Bohai Bay     sedimentary facies     grain size     color index