第四纪研究  2017, Vol.37 Issue (6): 1348-1356   PDF    
浙江望东垟亚高山沼泽泥炭磁性特征及其环境意义
周云鹏, 胡忠行, 张曼, 刘日林, 龚亚玲, 叶玮, 张卫国     
(① 浙江师范大学地理与环境科学学院, 金华 321004;
② 浙江省景宁畲族自治县望东垟高山湿地自然保护区管理局, 景宁 323500;
③ 华东师范大学河口海岸学国家重点实验室, 上海 200062)
摘要:对采自浙江景宁望东垟亚高山湿地自然保护区的沼泽泥炭柱样(WDY-2),进行了磁学、粒度参数和腐殖化度分析,结合AMS 14C测年数据,探讨了中国东部亚高山沼泽泥炭磁性特征的环境指示意义。结果表明:1)WDY-2柱样沉积物总体以粘土质粉砂为优势组分,磁性特征由亚铁磁性矿物主导,同时存在不完整反铁磁性矿物的贡献,磁性矿物主要富集在粘土粒级中。2)磁学参数SIRM能间接反映研究区域流水搬运能力强弱。气候暖湿时,沉积物以粉砂为主,SIRM较低;气候相对冷干时,沉积物粘土含量高,SIRM较高。3)综合沉积物粒度、腐殖化度以及SIRM的垂向变化特征,重建了WDY-2泥炭剖面记录的7.6cal.ka B.P.以来的环境变化历史:7.6~3.6cal.ka B.P.,季风降水增加,对应全新世大暖期,期间存在明显气候波动;3.6~1.2cal.ka B.P.,气候转向冷干;1.2~0.9cal.ka B.P.,气候暖湿,对应中世纪暖期(MWP),尤其在1.1cal.ka B.P.左右达到了暖湿组合的鼎盛期;0.9~0.4cal.ka B.P.,季风降水减弱,以冷干气候为主,但也存在暖湿阶段,对应小冰期(LIA);0.4cal.ka B.P.以来,气候回暖,降水增加,趋近现代气候环境。
主题词泥炭沉积     磁性特征     环境变化     浙江景宁县望东垟    
中图分类号     P318;P941.78;P534.63+2                     文献标识码    A

沼泽湿地演变受人类活动、气候变化等影响,赋存了大量的环境变化信息。通过对沼泽泥炭沉积的研究,可以探索沼泽形成过程及动力学机制,进而反演古气候变化历史[1]

沉积物的磁性特征直接反映磁性矿物的含量、类型和颗粒大小等信息,这些因子往往是沉积物物源、搬运和沉积动力以及沉积后次生变化等综合作用的结果,进而间接反映了气候变化与人类活动的信息[2]。以沼泽泥炭为载体,利用环境磁学指标,前人在指示大气颗粒物污染方面做了较多的研究工作[3~5]。在指示气候变化方面,何报寅等[6]对神农架大九湖泥炭的研究发现,χlf/Fe可以较好地反映近2600年的气候变化信息;Xiao等[7]对东北哈尼泥炭的研究则表明,磁化率可以很好地指示晚全新世以来的气候变化。

本文拟通过浙江望东垟亚高山沼泽泥炭的磁性特征,并结合其他环境代用指标,探讨中国东部亚高山沼泽泥炭磁学指标在古气候重建中的意义。

1 研究区域和方法 1.1 概况

望东垟亚高山沼泽湿地(27°40′00″~27°44′19″N,119°34′28″~119°38′54″E)位于浙江省景宁畲族自治县,海拔1300m,总面积为40hm2,是华东地区发育较好的高海拔山地森林沼泽,生物多样性丰富,生长着以江南桤木(Alnus trabeculosa)为主要树种的亚高山湿地生态系统,沼泽内部则广泛生长禾本科植物。研究区域位于洞宫山脉中段,为华夏陆台华南地层区,主要出露地层有前震旦系变质岩、侏罗系火山岩、白垩系沉积岩和第四系松散沉积物,地质构造上位于江山-绍兴断裂带东南部的“浙闽隆起区”。地貌类型属于现代山地地貌,在海拔1000~1500m发育多级夷平面,其中海拔1500m左右的高夷平面上则分布着华东地区少有的高海拔沼泽湿地,沼泽盆地四周皆被低山环绕,周围没有河流汇入[8](图 1)。研究区地处亚热带季风气候区,气候温暖湿润,水热资源丰富,年内月平均气温变化范围为12.0~21.8℃,年平均降水量1870mm[9]

图 1 WDY-2柱样取样点地理位置(a)和沼泽概况(b) Fig. 1 Sampling site of core WDY-2 (a) and photo of peatland (b)

野外用PVC管在望东垟(27°40′58″N,119°38′15″E;海拔高度1300m)获得1根122cm长柱样,编号为WDY-2,剖面岩性描述见表 1

表 1 WDY-2泥炭剖面岩性特征 Table 1 Lithological characteristics of core WDY-2
1.2 样品采集、研究方法和剖面年龄

实验室内按2cm间隔切割取样,共获得样品61个,40℃低温烘干后,进行磁学、粒度、腐殖化度和AMS 14C年代的测量研究。首先按次序进行磁化率、非磁滞剩磁和等温剩磁测量,并计算退磁参数和比值参数[10, 11],根据上述磁测结果,选取典型样品测量磁化率随温度变化曲线(χ-T曲线);粒度分析采用库尔特激光粒度仪(Coulter-100Q)进行;腐殖化度测量采用碱提取溶液吸光度法[12, 13],数据以吸光度的百分率(Abs%)形式给出。

以上实验完成于华东师范大学河口海岸学国家重点实验室。

选取WDY-2剖面埋深18~20cm、68~70cm、98~100cm以及120~122cm的样品在美国BETA实验室(Beta Analytic Inc)进行AMS 14C年代测定,测试对象为泥炭。

根据测定结果(表 2),结合年代-深度模式,计算了WDY-2泥炭柱样的沉积速率(图 2)。结果表明,在19~0cm和69~19cm之间沉积速率最快,分别达到0.048和0.046cm/a,在121~99cm之间最慢,为0.006cm/a,平均约0.028cm/a,达到高分辨率研究的要求。由4个测年数据计算得到的沉积速率,按照深度-年代模式进行内插,计算每个样品的校正年龄,从而构建整个剖面的年代序列。由于沼泽湿地目前仍在沉积,故可假定柱样表层的年龄为零,剖面底部122cm深度的推算年龄大约为7.6cal.ka B.P.,该孔主要为全新世中晚期以来沉积。

表 2 WDY-2柱样测年数据及日历年校正结果 Table 2 AMS 14C age of core WDY-2

图 2 WDY-2泥炭柱样年代-深度模式及沉积速率 Fig. 2 Age-depth curves and accumulation rates of core WDY-2
2 结果与分析 2.1 粒度特征

沉积物的粒度特征是物源、搬运营力、堆积过程、区域沉积背景和气候环境变化的综合反映[14~18]。WDY-2剖面粒度分析表明,沉积物砂(>63μm)平均含量16.6%,粉砂(4~63μm)为第一众数组,介于41.7% ~72.4%之间,平均值为58.3%,粘土( < 4μm)为次众数组,平均含量25.1%,属于粘土质粉砂。根据WDY-2粒度垂向变化特征(图 3),自下而上可将其分为4层:

图 3 WDY-2柱样沉积物粒度组成垂向分布 Fig. 3 Vertical variations of particle size compositions of core WDY-2

层①:深度122~106cm,物质组成以粉砂质砂为主,具有明显的垂向波动。

层②:深度106~58cm,相比层①,该层粒度较细,物质组成较均匀。自底部向上,粘土和砂含量呈波动增加趋势,粉砂含量则相反。

层③:深度58~8cm,该层粒度较层②略粗,垂向变化大。根据物质组成含量的变化,可分为3个亚层:③-a(58~43cm),粘土含量相比层②显著降低,粉砂含量处于全剖面高值,砂含量随深度减小呈下降趋势;③-b(43~20cm),粘土含量处于全剖面高值,粉砂含量则相反,砂含量较③-a上升;③-c(20~8cm),随深度减小,粘土、砂含量下降,粉砂含量则呈上升趋势。

层④:深度8~0cm,自底部向上,粘土、粉砂含量降低,砂含量上升,颗粒变粗,物质组成与层①相似。

2.2 磁性特征 2.2.1 热磁特征

热磁测量是鉴定样品中磁性矿物种类的有效方法[19]。热磁曲线(图 4)显示了600℃左右的居里温度,与磁铁矿居里温度(580℃)较为接近,表明磁铁矿是WDY-2柱样的主要磁性矿物[20]。其中,图 4a加热曲线在300~450℃之间呈现稍许下凹,反映了磁赤铁矿向赤铁矿的转化[21]图 4d加热曲线在500℃左右形成一个高峰,可能指示了类似菱铁矿之类的还原产物的存在[22]

图 4 WDY-2柱样典型样品的χ-T曲线(粗线代表加热曲线) Fig. 4 Thermomagnetic curves of typical samples of core WDY-2. Bold lines represent heating curves
2.2.2 垂向变化

WDY-2柱样沉积物磁性参数随深度存在不同变化,自下而上可分为4层(图 5):

图 5 WDY-2柱样沉积物磁性特征的垂向变化 Fig. 5 Vertical variations of magnetic properties of core WDY-2

层①(122~106cm):S-100mT和S-300mT反映不完整反铁磁性矿物(如赤铁矿、针铁矿)和亚铁磁性矿物(如磁铁矿)的相对比例,它们的值随着不完整反铁磁性矿物比例的增加而下降[19]。该层S-300mT接近饱和,表明亚铁磁性矿物主导了沉积物磁性特征。磁性参数χ和SIRM一般指示沉积物中磁性矿物含量,但SIRM不受顺磁性和抗磁性矿物的影响,主要反映亚铁磁性矿物的含量[19]χARM对单畴(SD)亚铁磁性颗粒十分敏感,SD颗粒的亚铁磁性矿物χARM显著高于多畴(MD)或超顺磁(SP)颗粒[22]。自该层底部向上至116cm,χ、SIRM和χARM上升,后下降保持稳定低值。χfd%对SP颗粒较为敏感,反映其对磁化率的贡献[19]χfd%在该层低于5%,说明SP颗粒亚铁磁性矿物含量较低。HIRM通常反映了样品不完整反铁磁性矿物的含量[19]。该层HIRM表现为全剖面最低值,且垂向变化稳定。χARM/χ常被用以指示磁性矿物颗粒的大小,χARM/SIRM指示意义与χARM/χ类似,但不受SP晶粒的影响[22]。该层χARM/χχARM/SIRM随深度变化略有波动,但变化不大。

层②(106~58cm):磁性参数χχfd%、χARM和SIRM在该层变化趋势比较相似,在94cm处略有波动,后随深度变浅无明显变化。χARM/SIRM、χARM/χ、HIRM、S-100mT和S-300mT与层①相似,垂向变化稳定。

层③(58~8cm):该层磁性参数垂向变化大,可进一步分为3个亚层:③-a(58~43cm),χARM/χχARM/SIRM、S-100mT和S-300mT变化趋势类似,随深度减小总体呈下降趋势;χARM和SIRM随深度减小迅速下降,后稍有波动;HIRM总体与层②趋势一致;χfd%在该层底部出现全剖面最高值,后随深度减小迅速下降;χ略有波动。③-b(43~20cm),χARM/χχARM/SIRM、S-100mT和S-300mT处于全剖面低值;SIRM和HIRM略有波动,总体处于剖面高值,其中HIRM为全剖面最高;χARM随深度变浅先减小后上升;χ较③-a略有上升。③-c(20~8cm),χχARMχARM/SIRM、S-100mT和S-300mT随深度减小呈上升趋势,HIRM随深度减小则呈下降趋势,其余各项参数垂向变化不大。

层④(8~0cm):自底部向上χ迅速增加,达到剖面最大值,而SIRM、HIRM、χARM/χ呈下降趋势,χARM/SIRM、S-100mT和S-300mT呈明显增加趋势。

3 讨论 3.1 代用指标的解释

前人对我国湿润区的沼泽、湖泊沉积研究表明[23~28],降水是影响沼泽、湖泊沉积物粒度的重要因素。湿润期或夏季风强盛期,降水增多,水动力增强,水流剥蚀、搬运、沉积的颗粒粒径相对较粗,而在干旱期或冬季风强盛期,降水减少,流水搬运能力减弱,沉积物颗粒粒径也相应变细。

泥炭腐殖化度是描述泥炭分解程度的指标[29]。由于区域气候环境本底差异的存在,腐殖化度对气候变化的指示意义并无固定模式。研究者[30, 31]对欧洲平原泥炭腐殖化度的研究认为,相对干燥的气候条件会促进泥炭的分解,腐殖化度高;相反,当气候较湿润时,泥炭的还原过程会强于分解过程,腐殖化度较低。对中国哈尼泥炭[7]以及千亩田、大九湖泥炭[32]的研究发现,腐殖化度也显示了相同的指示意义。而对邻近研究区的福建北部仙山泥炭的研究则发现[33, 34],较高的腐殖化度,指示气候较暖湿,反之则指示气候较冷干。其他研究者[29, 35]对青藏高原若尔盖地区红原泥炭的研究也体现了这一规律。这一解释的机制是,暖湿条件下,植被生长状况较好,可以有较多的植物残体参与腐解,与此同时,泥炭中微生物的分解能力提高,因此泥炭腐殖化度上升;而在冷干气候条件下,植被生长状况较差,微生物分解作用下降,泥炭腐殖化度下降。

相关分析表明,腐殖化度与粘土组分呈显著负相关关系,与粉砂组分呈显著正相关关系(表 3)。由于较高的粘土含量对应冷干气候条件,而较高的粉砂含量对应暖湿气候条件,因此本研究区样品较高的腐殖化度指示气候较暖湿,较低的腐殖化度则指示气候相对冷干。

表 3 WDY-2柱样磁学参数、粒度组成和腐殖化度的相关分析结果 Table 3 Pearson correlation coefficients between magnetic parameters, particle size and humification of core WDY-2
3.2 亚热带地区高山泥炭沉积物磁性特征的古气候意义

物源和粒度是磁性矿物发生变化的重要因素[36~41]。结合望东垟沼泽湿地所处的地形地貌环境特点考虑,WDY-2柱样的物源主要为周边风化壳,可以认为物源是相对稳定的。

WDY-2剖面磁性特征与粒度组成的相关关系表明(表 3),SIRM、HIRM与 < 4μm呈显著正相关,S-100mT和S-300mT与 < 4μm呈显著负相关,表明亚铁磁性矿物和不完整反铁磁性矿物主要富集在粘土粒级中。S-100mT和S-300mT与4~63μm粒级组呈显著正相关,说明亚铁磁性矿物比例在粉砂中较高,而在粘土中较低。各项磁学参数与>63μm粒级组均呈弱的相关性,表明砂粒级组分对磁性特征的影响不大,这可能与其总体含量较少有关。这表明,较高的SIRM与HIRM值指示了干冷的气候条件,即气候相对干冷时,流水搬运能力减弱,进入沼泽的沉积物颗粒较细,因而SIRM与HIRM较高;而气候相对暖湿时,流水搬运能力增强,进入沼泽的沉积物颗粒较粗,因而SIRM与HIRM较低。本研究中,SIRM与粒度、腐殖化度的垂向变化趋势对应很好,而在剖面54cm以下部分,HIRM的变化趋势并不明显,这可能说明磁铁矿相比赤铁矿等不完整反铁磁性矿物,能更灵敏地反映该区域的沉积动力变化。因此,在望东垟地区,SIRM是能更好反映环境变化信息的磁学指标。

一般而言,χARM与沉积物中的粘土组分有很好的正相关性,但在本研究中,二者之间不存在显著的相关性,这可能与SD颗粒较细,容易遭受还原溶解有关[42, 43]

3.3 WDY-2磁性特征记录的7600cal.a B.P.以来的气候变化

对比分析WDY-2泥炭沉积物粒度、腐殖化度与SIRM的垂向变化特征,大致可将研究区域的气候变化划分为如下5个阶段(图 6a6b):

图 6 WDY-2泥炭磁学参数(a)与粒度、腐殖化度(b)记录对比 Fig. 6 Comparison between magnetic parameters (a) and other indicators of climate change (b) of core WDY-2

(Ⅰ)7.6~3.6cal.ka B.P.(122~95cm),该阶段SIRM总体处于低值,粘土含量向上呈下降趋势,粉砂含量则相反,腐殖化度总体处于高值,且均存在较明显的垂向波动。尤其在118~112cm段,SIRM和粘土含量出现峰值,而粉砂含量与腐殖化度出现谷值,表明气候短暂冷干化。就全阶段而言,季风降水增加,对应全新世大暖期(Holocene Megathermal),期间存在较明显的气候波动,这也与前人研究一致[44~46]

(Ⅱ)3.6~1.2cal.ka B.P.(95~58cm),该阶段SIRM高于阶段Ⅰ,粘土呈上升趋势,而粉砂与腐殖化度则呈下降趋势,说明气候向冷干发展。

(Ⅲ) 1.2~0.9cal.ka B.P.(58~43cm),该阶段SIRM与粘土含量处于全剖面低值,粉砂含量与腐殖化度则相反,表明气候暖湿,尤其在1.1cal.ka B. P.左右达到了暖湿组合的鼎盛期。对应中世纪暖期(Medieval Warm Period, 简称MWP)[47, 48]

(Ⅳ) 0.9~0.4cal.ka B.P.(43~20cm),该阶段SIRM总体高于阶段Ⅲ,但存在明显波动,粘土含量处于全剖面高值,粉砂含量与腐殖化度则处于全剖面低值。总体来看,此阶段季风降水减弱,以冷干气候为主,对应小冰期(Little Ice Age, 简称LIA),期间出现的气候波动,也与前人研究一致[49]

(Ⅴ)0.4cal.ka B.P.以来(20~0cm),该阶段SIRM与粘土含量向上呈下降趋势,腐殖化度和粉砂含量向上总体呈上升趋势,6~0cm段粉砂含量虽然下降,而砂含量上升,指示该阶段气候回暖,降水增加,趋近现代气候环境。

可以发现,WDY-2剖面腐殖化度、粒度与SIRM指标反映的气候变化趋势基本对应,与望东垟亚高山湿地的孢粉分析结果[50]也基本吻合,孢粉分析结果指示了全新世早、中期温暖湿润气候,可与本文阶段Ⅰ对应,全新世中、晚期温暖偏干气候以及全新世晚期温凉偏干气候,则与本文Ⅱ、Ⅲ、Ⅳ阶段的气候总体偏干的特点吻合。

4 结论

(1) WDY-2柱样沉积物粉砂组分(4~63μm)平均含量为58.3%,为第一众数组,粘土组分( < 4μm)平均含量25.1%,为次众数组,砂组分(>63μm)平均含量16.6%,总体以粘土质粉砂为优势组分。磁学分析表明,沉积物磁性特征由亚铁磁性矿物主导,在柱样上部存在不完整反铁磁性矿物的显著贡献;SIRM、HIRM与 < 4μm组分呈显著正相关,S-100mT、S-300mT与 < 4μm组分呈显著负相关,表明亚铁磁性矿物和不完整反铁磁性矿物主要富集在粘土粒级中。

(2) SIRM能较好地指示环境变化,干冷气候条件下,流水搬运能力减弱,进入沼泽的沉积物颗粒较细,因而SIRM较高;气候相对暖湿时,流水搬运能力增强,进入沼泽的沉积物颗粒较粗,因而SIRM较低。

(3) WDY-2泥炭剖面粒度、腐殖化度与SIRM指标反映了7.6cal.ka B.P.以来的如下环境变化:7.6~3.6cal.ka B.P.,季风降水增加,对应全新世大暖期,期间存在明显气候波动;3.6~1.2cal.ka B.P.,气候转向冷干;1.2~0.9cal.ka B.P.,气候暖湿,对应MWP,尤其在1.1cal.ka B.P.左右达到了暖湿组合的鼎盛期;0.9~0.4cal.ka B.P.,季风降水减弱,以冷干气候为主,但也存在暖湿阶段,对应LIA;0.4cal.ka B.P.以来,气候回暖,降水增加,趋近现代气候环境。

致谢 感谢李文博士在数据分析过程中给予的有益建议,感谢审稿专家和编辑部老师建设性的修改意见;对野外采样及实验工作的所有参与者提供的帮助在此一并表示谢意。

参考文献(References)
1
王国平, 刘景双, 汤洁. 沼泽沉积与环境演变研究进展. 地球科学进展, 2005, 20(3): 304-311.
Wang Guoping, Liu Jingshuang, Tang Jie. Advance in marsh sedimentation and environmental change study. Advances in Earth Science, 2005, 20(3): 304-311.
2
张卫国, 俞立中, 许羽. 环境磁学研究的简介. 地球物理学进展, 1995, 10(3): 95-105.
Zhang Weiguo, Yu Lizhong, Xu Yu. Brief reviews on environmental magnetism. Progress in Geophysics, 1995, 10(3): 95-105.
3
Strzyszcz Z, Magiera T. Record of industrial pollution in polish ombrotrophic peat bogs. Physics & Chemistry of the Earth, Part A:Solid Earth & Geodesy, 2001, 26 (11~12):859~866
4
Oldfield F, Thompson R. History of particulate atmospheric pollution from magnetic measurements in dated Finnish peat profiles. Ambio, 1981, 10(4): 185-188.
5
Mighall T M, Foster I D L, Crew P et al. Using mineral magnetism to characterise ironworking and to detect its evidence in peat bogs. Journal of Archaeological Science, 2009, 36(1): 130-139. DOI:10.1016/j.jas.2008.07.015
6
何报寅, 张穗, 蔡述明. 近2600年神农架大九湖泥炭的气候变化记录. 海洋地质与第四纪地质, 2003, 23(2): 109-115.
He Baoyin, Zhang Sui, Cai Shuming. Climatic changes recorded in peat from the Dajiu Lake basin in Shennongjia since the last 2600 years. Marine Geology & Ouaternary Geology, 2003, 23(2): 109-115.
7
Xiao H, Cheng S G, Mao X M et al. Characteristics of peat humification, magnetic susceptibility and trace elements of Hani peatland, Northeastern China:Paleoclimatic implications. Atmospheric Science Letters, 2017(18): 140-150.
8
梅中海, 刘日林, 郑盛珠等. 景宁县望东垟高山湿地保护浅议. 绿色科技, 2015(4): 26-27.
Mei Zhonghai, Liu Rilin, Zheng Shengzhu et al. A discussion on the protection of Wangdongyang alpine wetland in Jingning County. Journal of Green Science and Technology, 2015(4): 26-27.
9
陈征海, 刘安兴, 李根有等. 浙江天然湿地类型研究. 浙江大学学报(农业与生命科学版), 2002, 28(2): 156-160.
Chen Zhenghai, Liu Anxing, Li Genyou et al. Investigation on classification of natural wetlands in Zhejiang Province. Journal of Zhejiang University (Agriculture and Life Sciences), 2002, 28(2): 156-160.
10
Yu L Z, Oldfield F. A multivariate mixing model for identifying sediment source from magnetic measurements. Quaternary Research, 1989, 32(2): 168-181. DOI:10.1016/0033-5894(89)90073-2
11
吉茹, 胡忠行, 张卫国等. 浙江金衢盆地界首红土剖面磁性特征及环境意义. 第四纪研究, 2015, 35(4): 1020-1029.
Ji Ru, Hu Zhongxing, Zhang Weiguo et al. Magnetic properties of the Jieshou red clay sequence in the Jinhua-Quzhou Basin, Southeastern China and its paleoenvironmental implications. Quaternary Sciences, 2015, 35(4): 1020-1029.
12
Blackford J J, Chambers F M. Proxy climate record for the last 1000 years from Irish blanket peat and a possible link to solar variability. Earth and Planetary Science Letters, 1995, 133(1-2): 145-150. DOI:10.1016/0012-821X(95)00072-K
13
赵红艳, 李鸿凯, 韩毅等. 长白山西侧哈尼沼泽表面湿度的多指标记录及其可能的驱动因素. 第四纪研究, 2014, 34(2): 434-442.
Zhao Hongyan, Li Hongkai, Han Yi et al. A multi-proxy record of surface wetness in Hani mire of west Changbaishan Mountain and its possible drivers. Quaternary Sciences, 2014, 34(2): 434-442.
14
Pye K, Tsoar H. The mechanics and geological implications of dust transport and deposition in deserts with particular reference to loess formation and dune sand diagenesis in the northern Negev, Israel. Geological Society London Special Publications, 1987, 35(1): 139-156. DOI:10.1144/GSL.SP.1987.035.01.10
15
姜韬, 曾志刚, 南青云等. 全新世以来冲绳海槽北部S9孔粒度变化特征及其古气候响应. 第四纪研究, 2015, 35(2): 307-318.
Jiang Tao, Zeng Zhigang, Nan Qingyun et al. The grain size characteristics of the core S9 sediments in the northern Okinawa Trough and their paleoclimate response since Holocene. Quaternary Sciences, 2015, 35(2): 307-318. DOI:10.11928/j.issn.1001-7410.2015.02.06
16
涂路遥, 周鑫, 刘毅等. 近海泥质沉积物敏感粒径作为冬季风强度指标的再研究:与器测数据的对比. 第四纪研究, 2015, 35(6): 1393-1400.
Tu Luyao, Zhou Xin, Liu Yi et al. Re-analysis of sensitive grain size of coastal muddy sediments as proxy of winter monsoon strength:Comparison with instrumental data. Quaternary Sciences, 2015, 35(6): 1393-1400.
17
刘世昊, 丰爱平, 李培英等. 现代黄河三角洲地区晚更新世以来高分辨率沉积粒度特征及动力沉积环境演化. 第四纪研究, 2015, 35(2): 291-306.
Liu Shihao, Feng Aiping, Li Peiying et al. High-resolution grain size distribution and evolution of the sediment-dynamic environment in the modern Yellow River delta since the Latest Pleistocene. Quaternary Sciences, 2015, 35(2): 291-306. DOI:10.11928/j.issn.1001-7410.2015.02.05
18
李超, 杨石岭, 李阳阳等. 河南卢氏盆地张家村组粒度特征与沉积环境研究. 第四纪研究, 2016, 36(6): 1428-1435.
Li Chao, Yang Shiling, Li Yangyang et al. Grain size characteristics and sedimentary environment of the Zhangjiacun Formation in the Lushi Basin, Henan Province. Quaternary Sciences, 2016, 36(6): 1428-1435.
19
Thompson R, Oldfield F. Environmental Magnetism. London:Allen & Unwin, 1986. 1~227
20
Dunlop D, Özdemir Ö, Fuller M D. Rock magnetism:Fundamentals and frontiers. Eos Transactions American Geophysical Union, 1998, 79(31): 376-376. DOI:10.1029/98EO00290
21
卢升高. 中国南方红土环境磁学. 第四纪研究, 2007, 27(6): 1016-1022.
Lu Shenggao. Environmental magnetism of Quaternary red earth in Southern China. Quaternary Sciences, 2007, 27(6): 1016-1022.
22
Maher B A. Magnetic properties of some synthetic sub-micron magnetites. Geophysical Journal International, 1988, 94(1): 83-96. DOI:10.1111/gji.1988.94.issue-1
23
孙永传, 李蕙生. 碎屑岩沉积相和沉积环境. 北京: 地质出版社, 1986, 1-280.
Sun Yongchuan, Li Huisheng. Clastic Sedimentary Facies and Sedimentary Environment. Beijing: Geological Publishing House, 1986, 1-280.
24
陈敬安, 万国江, 张峰等. 不同时间尺度下的湖泊沉积物环境记录——以沉积物粒度为例. 中国科学(D辑), 2003, 33(6): 563-568.
Chen Jing'an, Wan Guojiang, Zhang Feng et al. The record of lake sediments in different scales——Taking grain size for example. Science in China (Series D), 2003, 33(6): 563-568.
25
李楠楠, 介冬梅, 阳金秀等. 长白山西麓泥炭灰分粒度特征及其环境意义. 沉积学报, 2014, 32(5): 873-883.
Li Nannan, Jie Dongmei, Yang Jinxiu et al. Grain-size characteristics and environmental significance of peat ash in the west foothill of Changbai Mountain. Acta Sedimentologica Sinica, 2014, 32(5): 873-883.
26
范佳伟, 肖举乐, 温锐林等. 达里湖沉积粒度组分-湖面状况定量模型. 第四纪研究, 2016, 36(3): 612-622.
Fan Jiawei, Xiao Jule, Wen Ruilin et al. A model for the linkage between grain-size component in the Dali Lake sediments and lake level status. Quaternary Sciences, 2016, 36(3): 612-622.
27
郭超, 马玉贞, 刘杰瑞等. 过去2000年来西藏羊卓雍错沉积物粒度记录的气候变化. 第四纪研究, 2016, 36(2): 405-419.
Guo Chao, Ma Yuzhen, Liu Jierui et al. Climatic change recorded by grain size in the past about 2000 years from Yamzhog Yumco Lake, Tibet. Quaternary Sciences, 2016, 36(2): 405-419.
28
Zhang Z Q, Xing W, Lv X G. The grain-size depositional process in wetlands of the Sanjiang Plain and its links with the East Asian monsoon variations during the Holocene. Quaternary International, 2014, 349(6): 245-251.
29
王华, 洪业汤, 朱咏煊等. 青藏高原泥炭腐殖化度的古气候意义. 科学通报, 2004, 49(7): 686-691.
Wang Hua, Hong Yetang, Zhu Yongxuan et al. Humification degrees of peat in Qinghai-Xizang Plateau and palaeoclimate change. Chinese Science Bulletin, 2004, 49(7): 686-691.
30
Borgmark A. Holocene climate variability and periodicities in south-central Sweden, as interpreted from peat humification analysis. The Holocene, 2005, 15(3): 387-395. DOI:10.1191/0959683605hl816rp
31
Chambers F M, Barber K E, Maddy D et al. A 5500-year proxy-climate and vegetation record from blanket mire at Talla Moss, Borders, Scotland. The Holocene, 1997, 7(7): 391-399.
32
马春梅, 朱诚, 郑朝贵等. 中国东部山地泥炭高分辨率腐殖化度记录的晚冰期以来气候变化. 中国科学(D辑), 2008, 38(9): 1078-109l.
Ma Chunmei, Zhu Cheng, Zheng Chaogui et al. High-resolution humification records of climate changes since the Late-Glacial from the peat in Eastern China. Science in China (Series D), 2008, 38(9): 1078-1091.
33
胡凡根, 李志忠, 靳建辉等. 福建仙山泥炭腐殖化度记录的1500年来气候变化. 地球环境学报, 2012, 3(1): 712-720.
Hu Fangen, Li Zhizhong, Jin Jianhui et al. The past 1500 years climate change recorded in peat humification at Xianshan in northern of Fujian Province. Journal of Earth Environment, 2012, 3(1): 712-720.
34
张辉. 近1500a来福建北部山地泥炭记录的气候环境演变研究. 福州: 福建师范大学硕士学位论文, 2013. 33~38
Zhang Hui. The Study of Climate Recorded since Nearly 1500a B.P. from A Peat Core Located in Northern Mountain Area of Fujian Province. Fuzhou:The Master's Thesis of Fujian Normal University, 2013. 33~38
35
王华, 洪业汤, 朱咏煊等. 红原泥炭腐殖化度记录的全新世气候变化. 地质地球化学, 2003, 31(2): 51-56.
Wang Hua, Hong Yetang, Zhu Yongxuan et al. The peat humification records of Holocene climate change in Hongyuan region. Geology-Geochemistry, 2003, 31(2): 51-56.
36
胡忠行, 张卫国, 董辰寅等. 东海内陆架沉积物磁性特征对早期成岩作用的响应. 第四纪研究, 2012, 32(4): 670-678.
Hu Zhongxing, Zhang Weiguo, Dong Chenyin et al. Influence of early diagenesis on magnetic properties of inner shelf deposits of the East China Sea. Quaternary Sciences, 2012, 32(4): 670-678.
37
侯顺民, 刘秀铭, 吕镔等. 土耳其Nallihan黄土-古土壤岩石磁学特征及其环境意义. 第四纪研究, 2015, 35(4): 1006-1019.
Hou Shunmin, Liu Xiuming, Lü Bin et al. Rock magnetic properties of loess in Nallihan, Turkey and its enviromental significances. Quaternary Sciences, 2015, 35(4): 1006-1019.
38
吕镔, 刘秀铭, 赵国永等. 亚热带地区花岗岩风化壳上发育红土的磁性矿物转化机制——基于非磁学指标和岩石磁学的综合分析. 第四纪研究, 2016, 36(2): 367-378.
Lü Bin, Liu Xiuming, Zhao Guoyong et al. Mechanism of magnetic minerals transformation of subtropical red soils derived from granite weathering crust:Comprehensive analysis base on non-magnetic indicators and rock magnetism. Quaternary Sciences, 2016, 36(2): 367-378.
39
温昌辉, 刘秀铭, 王涛等. 澳大利亚中部Alice Spring红色表土磁学特征分析. 第四纪研究, 2015, 35(4): 1041-1050.
Wen Changhui, Liu Xiuming, Wang Tao et al. Magnetic analysis of red topsoil in Alice Spring, Central Australia. Quaternary Sciences, 2015, 35(4): 1041-1050.
40
Li W, Hu Z X, Zhang W G et al. Influence of provenance and hydrodynamic sorting on the magnetic properties and geochemistry of sediments of the Oujiang River, China. Marine Geology, 2017, 387: 1-11. DOI:10.1016/j.margeo.2017.03.002
41
王涛, 刘秀铭, 吕镔等. 新疆尼勒克黄土岩石磁学特征及变化机制研究. 第四纪研究, 2014, 34(3): 491-503.
Wang Tao, Liu Xiuming, Lü Bin et al. Study of rock magnetic properties and its variation mechanism of loess in Nileke, Xinjiang. Quaternary Sciences, 2014, 34(3): 491-503.
42
张俊辉, 夏敦胜, 张英等. 干旱区高山泥炭磁学特性研究. 地球物理学报, 2013, 56(6): 1974-1984.
Zhang Junhui, Xia Dunsheng, Zhang Ying et al. Magnetic investigation of peat sediments from the mountain in arid regions. Chinese Journal of Geophysics, 2013, 56(6): 1974-1984. DOI:10.6038/cjg20130619
43
胡鹏翔, 刘青松. 磁性矿物在成土过程中的生成转化机制及其气候意义. 第四纪研究, 2014, 34(3): 458-473.
Hu Pengxiang, Liu Qingsong. The production and transformation of magnetic minerals during pedogenesis and its paleoclimate significance. Quaternary Sciences, 2014, 34(3): 458-473.
44
孟玉婷, 王伟铭, 李保华等. 长江三角洲锦溪地区全新世气候适宜期孢粉组合及其环境意义. 古生物学报, 2014, 53(2): 201-209.
Meng Yuting, Wang Weiming, Li Baohua et al. Mid-Holocene palynological record of Jinxi area in the Yangtze River delta region and its environmental significance. Acta Palaeontologica Sinica, 2014, 53(2): 201-209.
45
章云霞, 叶玮, 马春梅等. 浙江北湖桥孔色度记录的早-中全新世环境变化. 第四纪研究, 2016, 36(5): 1331-1342.
Zhang Yunxia, Ye Wei, Ma Chunmei et al. Environment variabilities archived by color of the drill core Beihuqiao in Hangjiahu Plain during the Early-Mid Holocene, China. Quaternary Sciences, 2016, 36(5): 1331-1342.
46
施雅风, 孔昭宸, 王苏民等. 中国全新世大暖期的气候波动与重要事件. 中国科学:化学, 1992, 22(12): 1300-1308.
Shi Yafeng, Kong Zhaochen, Wang Sumin et al. The climatic fluctuations and important events of Holocene Megathermal in China. Science China:Chemistry, 1992, 22(12): 1300-1308.
47
史锋, 杨保, 赵森等. 全球过去千年典型暖期温度空间格局重建. 第四纪研究, 2014, 34(6): 1125-1135.
Shi Feng, Yang Bao, Zhao Sen et al. Spatial pattern reconstruction of typical centennial warm periods of global temperature over the past millennium. Quaternary Sciences, 2014, 34(6): 1125-1135.
48
满志敏, 杨煜达. 中世纪温暖期升温影响中国东部地区自然环境的文献证据. 第四纪研究, 2014, 34(6): 1197-1203.
Man Zhimin, Yang Yuda. The Medieval warming impacts on the natural environment in Eastern China as inferred from historical documents. Quaternary Sciences, 2014, 34(6): 1197-1203.
49
蒋文静, 赵侃, 陈仕涛等. 小冰期十年际尺度亚洲季风变化的四川黑竹沟洞石笋记录. 第四纪研究, 2017, 37(1): 118-129.
Jiang Wenjing, Zhao Kan, Chen Shitao et al. Decadal climate oscillations during the Little Ice Age of stalagmite record from Heizhugou Cave, Sichuan. Quaternary Sciences, 2017, 37(1): 118-129.
50
顾延生, 唐倩倩, 刘红叶等. 浙江景宁亚高山湿地群形成环境探究. 湿地科学, 2016, 14(3): 302-310.
Gu Yansheng, Tang Qianqian, Liu Hongye et al. Formation environment of the subalpine wetlands in Jingning She Autonomous County, Zhejiang Province. Wetland Science, 2016, 14(3): 302-310.
Magnetic properties of the Wangdongyang subalpine peatland in Zhejiang Province, Eastern China and its paleoenvironmental implications
Zhou Yunpeng, Hu Zhongxing, Zhang Man, Liu Rilin, Gong Yaling, Ye Wei, Zhang Weiguo     
(① College of Geography and Environmental Science, Zhejiang Normal University, Jinhua 321004;
Jingning Wangdongyang Nature Reserve for Alpine Wetland Administration of Zhejiang, Jingning 323500;
State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200062)

Abstract

Environmental magnetism is widely used to study environmental change by characterizing magnetic minerals including magnetic mineral assemblage and grain size. Peat deposition contains valuable paleoclimatic history information, yet environmental magnetic study of peat deposition is quite limited. A peat core WDY-2 (122cm in length) was obtained from Wangdongyang Subalpine Peatland (27°40'58"N, 119°38'15"E; altitude in 1300m a.s.l.), Zhejiang Province, China, which is surrounded by low hills with water supplied by atmospheric precipitation. Analyses of magnetic properties, granularity, humification and chronology were conducted on core WDY-2 to explore the environmental meaning of magnetic indexes of subalpine peatland in Eastern China. The results are as follows:(1) Particle-size analysis shows that the sediment of core WDY-2 is mainly composed of clayey silt, consisting on average of 58.3% silt, 25.1% clay, 16.6% sand. Magnetic analysis shows that magnetic properties of core WDY-2 are dominated by ferrimagnetic minerals, together with the contribution of antiferromagnetic minerals. Correlation analysis between magnetic parameters and particle-size shows that SIRM and HIRM are significantly correlated with clay, and S-100mT and S-300mT are negatively correlated with clay. It can be concluded that ferrimagnetic minerals and antiferromagnetic minerals are mainly associated with clay fraction. (2) The index SIRM of WDY-2 can indirectly indicate the strength of hydrodynamic forces. In dry-cold climate condition, there is higher clay content in the sediment that results in higher SIRM value. In contrast, more silt is transported to the peatland in a warm and moist climate that results in lower SIRM value. (3) Climatic changes since 7.6cal.ka B.P. were reconstructed based on the vertical variations of particle size, humification and SIRM values of WDY-2, that is:7.6~3.6cal.ka B.P., SIRM is low on the whole which indicates humid-warm climate of Holocene Megathermal, but there are some fluctuations in some phases; 3.6~1.2cal.ka B.P., SIRM is higher than the first phase, showing that the climate being cold and dry; 1.2~0.9cal.ka B.P., a lower SIRM indicates that monsoon rainfall increased dramatically and climate changed dry-cold to humid-warm. The chronology and the climatic characteristics corresponds to the Medieval Warm Period (MWP); 0.9~0.4cal.ka B.P., SIRM presents high level on the whole, but there are some fluctuations. It is suggested that the general trend of climate is dry-cold with some humid-warm stages. The climatic characteristics are roughly corresponding to the Little Ice Age (LIA).0.4cal.ka B.P. to present, SIRM presents declining trend which shows that climate becomes warm and humid in this stage.
Key words: peat deposition     magnetic properties     environmental changes     Wangdongyang wetland in Jingning County     Zhejiang Province