第四纪研究  2016, Vol.36 Issue (5): 1055-1074   PDF    
新生代米兰科维奇旋回与天文地质年代表
吴怀春①,② , 房强①,② , 张世红 , 杨天水     
(① 中国地质大学(北京)生物地质与环境地质国家重点实验室, 北京 100083;
② 中国地质大学(北京)海洋学院, 北京 100083)
摘要: 高精度的新生代地质年代表对理解地球圈层的演化规律并最终实现预测其变化趋势有着重要意义。近年来,天文旋回理论逐渐获得了广泛认可并应用于天文地质年代表的建立。通过识别沉积地层中的米兰科维奇旋回并调谐至天文参数曲线,可以获得连续的高分辨率地质年代标尺。目前,新生代地质年代表已完成天文年代的校准,为深入理解新生代地球演化历史提供了可靠的年代学约束;地球轨道力还是新生代一些重要生物、气候、环境与地质事件的可能驱动因素之一。本文将简要介绍旋回地层学的基础理论、新生代天文地质年代表的建立以及受天文轨道控制的重大气候、生物事件的研究现状及重要进展。
主题词地球轨道参数     米兰科维奇旋回     旋回地层学     新生代天文年代表    
中图分类号     P534.6;P539;P512.6                    文献标识码    A

新生代是地球历史中最新的一个地质时代,指约6600万年以前至今。在此期间,地球发生了一系列构造、生物演化和陨击等重大地质事件,并经历了多次重大的气候变化,从两极无冰的温室气候逐渐转变为现今两极终年有冰的冰室气候[123](图 1)。这些复杂的气候变化受多种时间尺度的作用力控制。在百万年时间尺度上,板块作用无疑是影响气候系统的重要因素[19]。大陆的地理和地形、海峡的位置和深度以及大气CO2浓度等边界条件的改变主要受板块作用影响,进而导致气候的缓慢变化。新生代的北大西洋裂谷火山作用、塔斯马尼亚海峡和德雷克海峡的形成和扩张[21]、印度-亚洲大陆的碰撞以及青藏高原的隆升[24]、大气CO2的急剧下降[25]等构造驱动的变化导致了全球气候系统的重大波动[26](图 1)。

图 1 新生代天文地质年代表和主要地质事件 地质年代据GTS2012[1];新生代天文年代经天文校准地层的文献来源为:1—Lourens等[2],2—Hilgen等[3],3—Hüsing等[4],4—Hilgen等[5],5—Holburn等[6],6—Hüsing等[7],7—Billups等[8],8—Pälike等[9],9—Pälike等[10],10—Jovane等[11],11—Westerhold等[12],12—Westerhold和Rñhl[13],13—Lourens等[14],14—Westerhold等[15],15—Westerhold等[16],16—Kuiper等[17];405ka偏心率曲线据Laskar等[18];碳同位素和氧同位素结果据Zachos等[19];重大气候、构造、生物事件据Copeland[20]、 Lawver和Gahagan[21]、 Alroy等[22];陨击事件据Glass[23] Fig. 1 Cenozoic astronomical time scale and the main geological events

在万年时间尺度上,地球气候系统受地球轨道力的控制[2738]。地球轨道参数(偏心率、斜率和岁差)的(准)周期性变化控制着不同纬度和不同季节地球表面接收到的日照量[2729]。日照量的周期性变化导致气候的周期性变化,进而影响地球表层系统,因此地球轨道信号可以清晰地记录在对气候变化响应敏感的沉积系统中[317, 2833];通过识别米兰科维奇旋回,将轨道信号调谐至天文参数模型,可以获得连续的高分辨率地质年代格架[317, 3949]。米兰科维奇旋回提供的时间分辨率为2万年至40万年的天文年代标尺可以精确确定各种地质事件的年代和持续时间,是近年来地质年代学最重要的进展之一[4253]。2004年以来,国际地质年代表(GTS)已经将天文调谐作为标定地质年代的一种重要方法[50]。本文将简要介绍米兰科维奇旋回的基础理论、新生代天文地质年代表的研究现状以及重大气候和生物事件的地球轨道力驱动机制。

1 地球轨道参数及其天文模型

由于太阳系内行星之间、地球-月球之间的万有引力作用、地球自转和公转的轨迹会随着时间的推移缓慢变化,导致地球轨道参数发生周期性的变化。地球轨道参数主要包括偏心率、斜率和岁差[18, 27, 39]。下面简要介绍这3个地球轨道参数的定义和气候意义。

(1) 地球轨道偏心率(e)为地球绕太阳公转椭圆轨道的赤道半径与极半径之差与赤道半径之比(图 2),其值在0.00021~0.067之间周期性波动,现在为0.0167(图 3)。偏心率主要周期有95ka、99ka、124ka、131ka和405ka(图 4)。405ka的长偏心率周期由金星和木星轨道近日点之间的相互作用形成。由于木星质量极大,405ka的周期在地史时期比较稳定。偏心率决定着地球与太阳的距离:偏心率越小,地球绕太阳运动轨迹越趋近于圆形,季节变化越不明显;反之,偏心率越大,地球绕太阳运动轨迹越趋近于椭圆形,季节变化越明显[18, 28, 44]

图 2 地球轨道参数示意图(据Hinnov和Ogg[53]) Fig. 2 A sketch showing the Earth orbital parameters, after Hinnov and Ogg[53]

图 3 La2004天文模型提供的新生代地球轨道参数的变化(据Laskar等[18]) (a) 下部黑色曲线为0~66Ma偏心率时间序列,中部蓝色曲线为405ka偏心率滤波曲线,上部红色曲线为偏心率的调幅曲线,周期约为2.4Ma超长偏心率曲线;(b) 下部黑色曲线为0~66Ma斜率时间序列,上部红色曲线为周期约为1.2Ma的超长斜率曲线;(c) 0~66Ma岁差时间序列 Fig. 3 Variations of the Earth's astronomical parameters of Cenozoic according to the La2004 model, after Laskar et al.[18]

图 4 La2004天文模型[18]提供的0~66Ma地球轨道参数频谱分析 (a) 频谱分析结果,其中E、 e、 O和P分别代表长偏心率、短偏心率、斜率和岁差,数字的单位均为ka;(b) 滑动窗口分析结果白色和黄色剪头分别指示偏心率和斜率的天文调制现象,周期分别为约2.4Ma和1.2Ma Fig. 4 Power spectral analysis of the Earth's astronomical parameters over Cenozoic of the La2004 solution[18]

(2) 地轴斜率(ε)为地球绕太阳公转的轨道平面(黄道面)与赤道面的夹角(图 2),其值在22.5°~24.5°之间变化,现在斜率值为23.26°(图 3)。现在斜率的主要周期为41ka,还包括39ka、54ka和29ka的次要周期(图 4)。斜率决定着两极地区接收到的日照量:斜率越大,高纬度夏季日照量越多,冬季日照量越少,年气温差越大;反之,斜率越小,高纬度夏季日照量越少,冬季日照量越多,年气温差越小[18, 28, 44]

(3)岁差(ψ)是指地球自转轴的进动(图 2)。现在岁差的主周期约为24ka、22ka、19ka和17ka(图 4)。岁差决定了季节发生的时间:如果北半球夏至到达远日点,冬至位于近日点,那么冬季变短且温度升高,季节变化不明显;反之,如果北半球冬至位于远日点,而夏至到达近日点,那么冬季变长且温度降低,季节差异增大。岁差对中低纬度地区气候影响较大,对极地影响较小[18, 28, 44]

由于地史时期以来,地-月距离增大和潮汐耗散导致地球自转速度变慢,斜率和岁差周期是逐渐增加的[18, 39]。地轴斜率的周期增长了将近60 %,岁差周期增长的幅度比地轴斜率要小[39]。与偏心率不同的是,斜率和岁差旋回并不是完全受地球轨道作用力控制[44],地球自转和黄赤交角影响着地球进动率,进而影响地球斜率和岁差。因此,地球物理学原理也包含在斜率和岁差旋回之中[44]

地球轨道参数周期性变化的一个重要特征就是其振幅和频率的调制作用,即高频旋回会受到更低频旋回的控制(图 34)。天文调制作用最初由天文学家Laskar[54, 55]提出,后来由Hinnov[52]深入讨论了这个现象。最著名的天文调制作用是对偏心率和斜率的调制,周期分别为约2.4Ma和1.2Ma。约2.4Ma的超长偏心率周期来自短偏心率约95ka和99ka两个周期的作用,约1.2Ma的超长斜率周期来自于约41ka和39ka两个斜率周期的作用。由于行星运行轨道的混沌现象[54, 56],超长偏心率周期和超长斜率周期并不稳定,其中地球和火星的运行轨道相互作用会产生从2.4Ma的长偏心率周期变为1.2Ma的天文共振现象[18, 54]

天文学家建立的天文参数模型可用来计算地史时期的地球轨道参数[18, 39, 5458]。但是,由于太阳系的混沌现象[54, 56],地球轨道参数模型的计算每向前追溯10Ma,初始不确定性就要以10倍增长。因此,将天文参数模型从40Ma延伸至66Ma需要将万有引力模型进行两个数量级的优化,这是极为困难的。行星历表INPOP(Intégration Numérique Planétaire de l'Observatoire de Paris)的建立为这一问题的解决提供了可能[59]。基于INPOP建立的La2010天文参数模型提供了50Ma以来可靠的地球轨道参数演化模型[57];其后不久,Laskar等[58]基于高精度的行星历表INPOP10a[59]又建立了La2011天文参数模型。La2010和La2011均可应用于50Ma以来的偏心率天文调谐。

比较超长天文轨道周期的稳定性是判断不同行星历表计算得出的天文参数模型可靠性非常有效的一个方法[60]。对40~60Ma期间La2010[57]与La2011[58]天文模型的偏心率比较发现(图 5),La2010a、La2010b、La2010c和La2010d等4个方案[57]中超长偏心率周期的比较可以证明La2010对52Ma之前的天文轨道模型并不可靠(图 5a);而La2010a、La2010d与La2011超长偏心率曲线的比较(图 5b)显示,La2010d与La2011在54Ma以来的超长偏心率天文调幅曲线相似且十分稳定,这3个天文轨道参数模型提供的短偏心率曲线在50Ma之后几乎完全一致,证明了这两个方案的有效性。60Ma之前的天文理论曲线的建立几乎是不可能的[57]。因此,在沉积记录中寻找米兰科维奇旋回信号并对地球轨道周期进行准确估计是检验中生代的天文理论模型、计算古生代天文模型以及认识地质历史时期太阳系天文动力学演化特征的唯一途径[18, 44, 49, 57]

图 5 40~60Ma期间La2010[57]与La2011[58]天文模型的偏心率比较(据Westerhold等[60]修改) (a)La2010天文轨道参数模型提供的偏心率曲线[57],50Ma以前的偏心率天文调幅数据不确定性增加;(b)La2010a、 La2010d和La2011天文轨道参数模型提供的偏心率曲线[57, 58] Fig. 5 Comparisons between the eccentricity of La2010[57] and La2011[58] solutions from 40 to 60Ma, modified from Westerhold et al.[60]
2 新生代天文地质年代表

天文调谐是指将沉积或气候替代指标的旋回记录对比到岁差、斜率或偏心率天文目标曲线上,进而建立天文地质年代表[41, 43, 44, 46, 51, 53]。Hays等[29]首次将深海氧同位素记录与日照量变化进行对比,证明地质记录中的气候旋回性变化受地球轨道力控制。Imbrie等[61]将底栖有孔虫氧同位素数据调谐至780ka以来的轨道信号,建立了标准的氧同位素曲线(SPECMAP),并成为晚更新世以来深海氧同位素的对比模板。对于上新世之前的地层主要有两种调谐方法:中-晚新生代地层可使用天文学家建立的天文轨道模型作为目标曲线进行调谐;而年龄控制较差的更老地层,可根据不同频段的旋回个数建立具有相对时间概念的“浮动”天文年代标尺[43, 44, 53]。目前天文地质年代表已经覆盖了整个新生代(图 1),其中新近纪天文年代表调谐至岁差曲线,精度可达2万年。由于天文参数模型和初始年龄精度的限制,古近纪天文年代表可调谐至偏心率标准曲线,精度为10万年[43, 44, 51, 53]

调谐过程中首先要有通过其他年代学方法获得的年龄“锚点”,其次要准确分析古气候替代指标与地球轨道参数之间的相位关系[43, 51, 53]。对相位关系的不同解释可造成最多半个岁差周期的误差[51](图 6)。例如,北半球中纬度地区冰融水的陆源输入造成的远洋碳酸盐岩稀释作用在3月份达到峰值(图 6a),日照量减小将导致陆源输入减少,远洋碳酸钙沉积则相应增加。因此,在调谐过程中需要将日照量最小值对应碳酸钙的最大值(图 6b)。但如果认为夏季海洋生产力的变化是远洋碳酸盐岩旋回产生的原因(图 6c),则碳酸钙含量的最大值对应7月份日照量曲线的峰值(图 6d),由此就会导致约3ka的误差[51]

图 6 天文校准过程中可能出现的误差分析(据Hinnov和Hilgen[51]修改) (a) 北半球中纬度地区海洋沉积模型,海洋碳酸盐岩受早春(3月)冰川融化陆源输入稀释影响;(b) 北方3月份日照量控制春季陆源输入量,因此远洋碳酸钙最小值对应日照量最大值;(c) 将碳酸钙旋回错误的解释为受夏季(7月)海洋生产力控制,因此错误地将碳酸钙峰值对应7月份日照量最大值(d) Fig. 6 Example of seasonal uncertainty in astronomical calibration, modified from Hinnov and Hilgen[51]

天文调谐作为新生代定年的重要方法,对生物地层学、磁性地层学以及层序地层学等领域的研究有重要影响[43, 51, 53]。首先,精确天文地质年代的标定,可以将生物带的时间框架进行细化,并在精细对比的基础上,分析生物的起源、迁移和灭绝[49, 51, 62];其次,通过天文轨道调谐获得的年代标尺与磁性地层研究相结合,可应用于精确厘定古地磁极性转换界线的年代并建立天文极性年表(Astronomical Polarity Time Scale,简称APTS),这也是当前国际新生代磁性地层学的研究重点[63]。在天文年代学的推动下,高精度的天文极性年表有望取代传统的CK95地磁极性年表被广泛应用[63];最后,天文年代对海平面变化层序持续时间的精确标定为新生代全球海平面三级层序的地球轨道成因提供了有力的证据,是近年来层序地层学研究最为重要的进展之一[44, 53, 64]

2.1 第四纪天文地质年代表

20世纪中期,随着深海岩芯的提取,连续的第四纪沉积物开始应用于古气候研究[65]。大量古气候替代指标的应用、数据处理方法以及放射性同位素定年方法的发展[66]为天文轨道理论的证实和第四纪天文年代格架的建立奠定了重要基础[29, 61]。基于底栖有孔虫氧同位素变化趋势建立的海洋氧同位素阶段(Marine Isotope Stages,简称MIS)是划分和对比第四纪海相地层的重要方法[66, 67]。全球57个地区的底栖有孔虫氧同位素合成曲线(LR04)在调谐至北纬65°夏季日照量曲线后,为第四纪提供了精确的天文地质年代格架[68](图 7a)。

图 7 第四纪不同纬度地区受天文轨道作用力控制的古气候替代指标时间序列 (a) 全球海洋底栖有孔虫δ 18 O整合曲线[68, 69];(b) 俄罗斯东北部El'gygytgyn湖泊相Si/Ti时间序列[70];(c) 贝加尔湖泊相沉积中生物硅时间序列[71, 72];(d) 中国黄土高原黄土/古土壤磁化率时间序列[7476] Fig. 7 Astronomical forced paleoclimate proxy time series from different latitudes for the Quaternary period

第四纪不同纬度地区的陆相沉积中建立的天文地质年代格架可以和海洋氧同位素阶段良好对比[6875]。北极地区El'gygytgyn湖的沉积记录中生物硅和碎屑物质输入比值(Si/Ti)序列和海洋氧同位素中识别出来的冰川旋回可以较好对应,但前者100ka的旋回振幅较小[70](图 7b)。El'gygytgyn湖以南的贝加尔湖中的生物硅指标不仅可以与全球海洋氧同位素合成曲线良好对应,还记录了明显的100ka旋回信号[7173](图 7c)。在中纬度地区,我国著名的黄土高原记录了北半球陆相系统对全球气候变化的响应[7484]。将黄土高原中的风尘记录通过调谐建立天文地质年代格架,可以与海洋氧同位素阶段(MIS)进行精确对比[7476, 8184](图 7d)。低纬度地区的匈牙利Pannonian盆地中沉积物的磁化率和粒度分布序列可以与赤道东太平洋ODP677站的海洋氧同位素序列进行精确对比[85]

冰芯和洞穴沉积物中记录的第四纪气候变化也极为重要[8690]。南极地区的冰芯记录可以延伸至0.8Ma,覆盖了8个冰期/间冰期旋回[86]。氘(δD)作为研究中-高纬度地区温度的替代指标,可与海洋氧同位素序列记录紧密联系[87]。另外,冰芯中记录的大气CO2和CH4含量的变化与海相记录对应良好[8789]。我国著名的三宝/葫芦洞石笋中δ 18 O序列也记录了岁差旋回对东亚季风系统的控制[90]。这些受天文轨道信号控制的沉积记录为第四纪天文地质年代格架的建立提供了有力的保障。

2.2 新近纪天文地质年代表

20世纪90年代,旋回地层学研究和天文地质年代格架的建立已经逐渐延伸至中新世,其中地中海地区露头剖面和深海钻井中沉积旋回记录的研究为新近纪天文年代表的建立提供重要依据[9194]。进入21世纪后,逐步完成了新近纪天文年代表的建立[2, 95]

基于地中海地区露头剖面建立的天文年代标尺已经延伸至中新世,皮亚琴察阶、赞克勒阶以及托尔托纳阶的全球界线层型剖面点(GSSP)均位于地中海地区[9698]。希腊Ptolemais盆地上新世褐煤/泥灰岩层束的形成受岁差旋回控制,可以与地中海地区海相沉积记录进行高精度对比[99]。Hüsing等[100]利用La2004轨道方案将塞拉瓦莱阶/托尔托纳阶界线年龄厘定为11.625Ma,对前人在意大利Monte Gibliscemi剖面[101]和Monte dei Corvi剖面[102]计算出的界线年龄进行了改进,并被GTS2012采用[1](图 1)。Hüsing等[7]利用多种古气候替代指标对意大利北部La Vedova剖面15.29~14.17Ma的地层进行天文调谐,完善了地中海地区中新世天文年代格架。地中海地区陆相露头剖面的研究主要集中于西班牙中新世的湖相沉积序列。通过对受岁差旋回控制的高频岩性旋回的识别,可以实现与海相沉积高精度对比[103105](图 8)。

图 8 中新世陆相与海相剖面磁性地层、旋回地层的高分辨率对比 陆相Prado剖面和陆相Cascante剖面据Abels等[103, 104],海相Monte dei Corvi剖面据Cleaveland等[102],北纬65°夏季日照量据Laskar等[18],天文地磁极性年表据Lourens等[2] Fig. 8 High-resolution magnetostratigraphic-and cyclostratigraphic correlations between Miocene continental and marine sections

全球ODP岩芯也为新近纪天文年代标尺的建立提供了重要保障[8, 106110]。Zeeden等[106]利用大西洋ODP926站中的沉积物颜色和磁化率序列保存的轨道信号建立了5.0~14.4Ma之间的天文年代标尺;位于南极东大陆的ODP1165站位中的冰碛沉积物记录了强烈的天文轨道信号,不仅可用于建立晚中新世高精度天文年代标尺,而且为受天文轨道信号控制的冰川活动提供了直接证据[107];利用南中国海ODP1146站和东太平洋ODP1237站中中新世Fe序列和氧同位素序列的天文调谐结果,可以建立12.7~16.7Ma的天文年代标尺[108];南大西洋DSDP522站位中沉积记录的天文调谐为渐新世/中新世的界线提供了22.92±0.04Ma的绝对年龄[109]。尽管偶有质疑[110],但这一年龄的可靠性已经逐渐被证实[8]

2.3 古近纪天文地质年代表

天文参数模型的不确定性导致古新世天文年代格架存在较大争议[60, 111, 112]。赤道太平洋ODP1218站的天文调谐结果为渐新世天文地质年代格架的建立和受天文轨道控制的全球碳循环的研究提供了有力保障[9](图 9)。亚平宁山脉附近深海相剖面的研究将天文地质年代格架的建立延伸至始新世-渐新世界线附近[113115],结合磁性地层学和层序地层学结果,可以实现海相和陆相地层的高分辨率的对比[116]

图 9 太平洋ODP1218站渐新世底栖有孔虫δ 18 O和δ13C序列旋回分析(据Pälike等[9]修改) (a) 天文极性年表;(b) 偏心率、斜率和岁差信号叠加曲线(ETP),数值均经过标准化处理;(c) 底栖有孔虫δ13 C时间序列;(d) 底栖有孔虫δ18O时间序列;(e) 天文轨道参数模型La2004(黑实线)、 δ13C时间序列(绿色虚线)和δ 18 O时间序列(红色点线)的405ka滤波结果;(f) 天文轨道参数模型La2004(黑色)、 δ18 O时间序列(红色)和δ13C时间序列(绿色)的短偏心率信号滤波结果(细线)及其天文调幅曲线(粗线);(g) 天文轨道参数模型La2004中的斜率信号(细线)及其天文调幅曲线(粗线);(f)和(g)中数字的单位为Ma Fig. 9 Cyclostratigraphy analysis of the Oligocene Pacific benthic δ18 O和δ13C data from ODP Site 1128, modified from Pälike et al.[9]

北美始新世绿河组湖泊相沉积中记录着明显的岁差信号[117],并形成了受偏心率调制的层束和层束组[118]。元素地球化学数据和遗迹化石的定量分析为在西班牙中新世Ainsa盆地深海浊流沉积中天文地质年代格架的建立提供了重要的途径[119121]。中始新世天文地质年代格架的建立进展较为缓慢[122]。意大利中部Contessa剖面的天文调谐结果为卢泰特阶/巴顿阶界线提供了41.23Ma的绝对年龄[9]。利用相同的方法,伊普里斯阶/卢泰特阶界线的绝对年龄被厘定为47.76Ma[123],比GTS2004[50]提供的年龄早250ka。最近,Westerhold等[12, 124]根据大西洋ODP1260、ODP702和ODP1263站位沉积记录中保存的405ka长偏心率旋回调谐结果建立了始新世41~48Ma之间的天文年代标尺(图 1),标志着新生代天文调谐工作的完成。

美国Bighorn盆地晚古新世-早始新世河流相沉积地层中保存了受岁差旋回控制的高频岩性旋回[125, 126],并可以与海相地层进行高分辨率对比[127, 128]。大西洋ODP1258和ODP1262站位提供的古新世-中始新世Fe序列调谐结果中识别出的2.4Ma的超长偏心率周期[60](图 10)与La2010d的偏心率模型非常吻合[57]。西班牙北部Zumaia剖面的研究也为早古新世天文地质年代格架的建立提供了良好的素材,Dinarès-Turell[129, 130]分别利用La2004和La2011天文参数模型为丹麦阶/塞兰特阶界线提供了61.641±0.04Ma和61.607±0.04Ma的高精度天文地质年代。

图 10 经405ka天文校准的ODP1258站(浅蓝)和ODP1262站(深蓝)古新世-始新世Fe时间序列(据Westerhold等[60]修改) (a) La2011天文轨道模型提供的47~60Ma偏心率曲线[58],其中黑色曲线为短偏心率,绿色曲线为长偏心率,红色曲线为超长偏心率;(b) 天文校准后Fe时间序列的短偏心率天文调幅曲线;(c) 天文校准后Fe时间序列(PETM代表古新世-始新世极热事件)灰色阴影强调超长偏心率的最低值 Fig. 10 405ka-Eccentricity calibrated Fe intensity data from ODP sites 1258(light blue) and 1262(deep blue), modified from Westerhold et al.[60]

白垩纪/古近纪(K/Pg)界线年龄一直是新生代研究的重点。放射性同位素定年为K/Pg界线提供了65.5Ma的绝对年龄[131, 132],并被GTS2004采纳[50]。Zumaia剖面中高频岩性旋回的天文轨调谐结果提供了约65.8Ma的界线年龄[133];Westerhold等[16]根据天文调谐结果,为K/Pg年龄提供了两种方案,即65.280±0.010Ma或65.680±0.010Ma;Kuiper等[17]结合40 Ar/39 Ar年龄和天文轨道定年方法,将经典的Zumaia剖面中K/Pg界线年龄厘定为约65.95Ma,并被GTS2012所采用[134],该年龄与20世纪90年代初40 Ar/39 Ar年龄十分吻合[135, 136]。但2012年Westerhold等[60]使用La2011天文参数模型中超长偏心率周期对界线年龄计算为65.25±0.06Ma;2013年Renne等[112]提供的界线年龄为66±0.07Ma,与Kuiper等[17]十分相似,并认为Westerhold等[60]的结果是由于对两个405ka偏心率周期标定误差导致的。约66Ma的界线年龄也得到了其他地区K/Pg界线年龄研究的支持[130, 137]

3 地球轨道力与新生代重大地质事件 3.1 气候变化事件 3.1.1 中更新世气候转型

地球轨道参数周期性变化控制气候的旋回,进而驱动冰川的消长[2729]。上新世-早更新世全球冰量和海平面变化主要受41ka周期的斜率旋回控制[68, 138],这与Milankovitch[27]预测的十分吻合。更新世冰期的结束时间与斜率的最大值也刚好对应[139];而岁差信号的缺失,或是由于岁差对南、北半球高纬度地区的反相控制作用,使海洋系统中出现岁差信号的相互抵消[140]。岁差信号相互抵消后,斜率控制的夏季能量总和驱动冰川的消长[141];另外,南大洋大量海冰的存在使海洋作用力受到抑制,岁差驱动的冰川消长并不明显[142]

在中更新世,冰川的消长由41ka的斜率驱动转变为100ka的短偏心率周期驱动,这次冰川消长的主周期变化称之为“中更新世气候转型”[143],对此次气候转型的机制一直是古气候学的研究热点。大气CO2下降的阈值响应[143, 144]、北半球和/或南半球冰川演化机制的变化[145147],以及与深水的冷却作用、温跃层深度、海冰分布、大气环流的反馈作用相关的控制机制都可能解释这次气候转型事件[148150]。对于受100ka周期驱动的冰期旋回的争论颇多[151158],由于受偏心率控制的日照量变化极小,通常认为100ka的旋回是来自于对岁差的天文调制作用[151153],气候系统的演化在1.2Ma时或被长偏心率旋回同步,进而通过调频等作用增强了100ka短偏心率旋回的振幅[154]。但斜率的天文调制曲线也出现了明显的100ka周期,并与更新世冰盖的最大和最小期对应良好[155157]。受地球轨道倾角调制的宇宙尘埃通量变化也可能是产生100ka旋回的原因[158]

中更新世气候转型在中-高纬度地区和(亚)热带气候条件下均有记录[24, 157, 159166]。但是,多数记录着中更新世气候转型的(亚)热带气候指标,如底栖生物δ 18 O,海平面温度和高度等均受高纬度冰川控制[29, 61, 140, 167169];而低纬度地区主要受日照量旋回控制的季风气候[170]和南半球热带雨林群落的更替[171]等则没有体现出此次气候转型的特征。这些证据均表明中更新世气候转型主要表现为高纬度气候过程。

3.1.2 渐新世变冷事件

始新世/渐新世之交(EOT,约34Ma)发生了全球气候变冷事件(Eocene-Oligocene Glacial Maximum, 简称EOGM)(见图 1),全球表面平均降温约4℃[172, 173],深海温度降低约2℃[174]。此次气候变冷事件导致南极大陆冰盖出现,标志着地球气候系统开始逐渐进入冰室[19, 175177]。该事件伴随着全球气温骤降[178184]、海平面快速下降[185187]、大气CO2浓度明显降低[188, 189]、碳酸盐补偿深度加深[190, 191]和全球性生物演替[192196]等重要气候和生物事件。EOGM气候变冷事件持续时间不超过500ka[184, 190, 197, 198]

地球轨道力可能是导致渐新世变冷事件EOGM的重要因素之一[19, 190, 199203]。渐新世变冷事件对应岁差和斜率的低振幅期,两者重合可导致地球季节性减小,夏冰消融受到抑制,冬冰快速积累[190]。这个观点也得到古气候模拟结果的支持[9, 199]。根据δ 18 O变化的趋势,EOGM变冷事件主要分为EOT-1和Oi-1先后两个阶段,前者伴随着少量冰川的出现,后者反映了南极地区大量陆冰的扩张[185, 186],均对应了天文轨道参数的低振幅期[200, 201](图 9);另外,中新世南极冰川扩张和全球气候变冷事件(Mi-1)也支持天文轨道信号低振幅期导致全球气候变冷的观点[202, 203]

3.1.3 古新世/始新世之交变暖事件

古新世末-始新世初全球发生了一次突然的变暖事件,即PETM(Paleocene-Eocene Thermal Maximum)(图 1图 10)。全球海洋和陆地温度升高了4~8℃[204, 205]。PETM事件在地质记录中表现为快速且大幅度的碳同位素负漂(-2 ‰~-6 ‰),同时伴随着全球碳酸钙补偿深度变浅[206]、大洋缺氧[207]、陆地与海洋生物面貌的更替[208210]等事件。岁差旋回的约束为PETM事件提供了精度为2万年的精确时间标尺[14, 15, 125, 204, 211, 212]

天文调谐结果显示这些碳同位素负漂事件的发生与地球轨道偏心率最大值在时间上是一致的[14]。偏心率的增大使日-地距离在近日点和远日点时期的差距增大导致季节性增强[14, 27, 28]。极热的夏季表层水和中层水加热并达到甲烷水合物分解阈值,触发甲烷释放[14]。Westerhold等[15]也支持这一事件的天文轨道驱动机制,但提出PETM事件并不是对应长偏心率的最大或最小值,而是对应短偏心率的最大值时期。由于随着全球温度的升高,碳释放的热力阈值更容易被跨越[213, 214],导致早始新世还发生了多个幅度较小的碳同位素负漂事件(如,ETM2和ETM3)[15, 127, 215217]。它们在时间上均与短偏心率的最大值对应,可能均受天文轨道力控制[218]

3.2 生物演化事件

Gould[219]将生物演化分为3个级别,第一级别为生态变化,第二级别为百万年尺度种级别的起源和灭绝,第三级别为千万年尺度的重大生物集群灭绝事件;Bennett[220]在此基础上增加了与米兰科维奇旋回相关的万年尺度的生物演化。受米兰科维奇旋回控制的栖息地性质的变化是生物群演化的主要驱动力[221],生物纬向多样性梯度的形成也或受米兰科维奇旋回控制[222]

海洋生物分布在不同深度的海水之中,它们主要受光照条件、海水深度、盐度和营养盐供给等条件控制,这些条件都可能与米兰科维奇旋回控制的气候波动密切相关[223]。日本海2Ma以来的浮游有孔虫组合分类结构周期性的变化和米兰科维奇旋回密切相关[224]。天文轨道旋回控制的冰川周期性消长导致陆架环境周期性的暴露,从而影响了高纬度地区海洋生物的进化过程[225]

米兰科维奇旋回对于陆相生物的演化也起到了至关重要的作用[62, 226, 227]。天文轨道旋回控制着上新世植物群落优势种的变化,但第四纪的植物对轨道旋回作用力的响应却更为复杂,会出现成种作用、进化停滞或是绝灭等不同的响应机制[226]。啮齿类哺乳动物的起源、绝灭和更替或受2.4Ma和1.2Ma的超长天文轨道周期控制[62]。这些百万年级别的周期来自于万年级别米兰科维奇旋回天文调制作用,反映了天文轨道控制的长周期气候变化(图 23)。超长斜率周期的最低值会引发冰川扩张、气候变冷,导致陆相生物的食物缺乏、栖息地被破坏,进而出现绝灭、迁徙和演化谱系分离[62]。受米兰科维奇旋回控制季节性变化在到达某个节点后,啮齿类个体会迅速减小并导致绝灭[227]

由于季节性的强弱变化会影响早期人类的觅食习惯和分布特征,所以天文轨道旋回在一定程度上也控制着早期人类的演化[228];另外,众多学者认为受天文轨道控制的季风引起的潮湿/干燥气候交替是上新世-更新世非洲早期人类演化的重要驱动力之一[229, 230]

4 结语

50 Ma以来的地球轨道参数模型已经非常精准,为新生代天文年代学研究提供了重要的依据。结合放射性同位素年代学、磁性地层学以及生物地层学等分析手段提供的“年龄”锚点,高精度的新生代天文年代标尺已经建立,并有助于实现海相与陆相地层的高精度对比。地球表层系统的各个组成要素是相互作用的,只有将这些因素视为一个整体,在同一高精度时间框架内进行研究才能深刻理解地质作用的过程和结果。大量高分辨率海相和陆相连续的地质记录为新生代天文地质年代的建立奠定了重要基础,为人们认识全球气候变化、建立气候模型提供了经典范例,并且提供了重大气候和生物等事件发生的天文轨道力驱动机制。

我国新生代研究具有得天独厚的条件。南海是西太平洋区域沉积速率较高的地区,对全球性地质事件十分敏感,是进行海陆地质对比研究的桥梁和纽带[231235];我国黄土高原特有的巨厚连续的风尘堆积,保存了过去2000多万年以来的陆相沉积记录,为东亚气候变化的研究提供了天然的实验室[67, 74, 76, 79, 80, 236, 237];作为“世界第三极”的青藏高原,由于特殊的地理位置、海拔高度及其隆升对全球变化的影响,一直是科学家最感兴趣的研究对象[238, 239]。统一的、高精度的天文年代标尺的建立,对认识东亚季风气候的起源和演变、青藏高原隆升的气候效应、第四纪冰期与间冰期转型等一系列属我国区域独特、且在全球地位重大的重要科学问题具有重要意义。

致谢: 感谢邓成龙研究员和审稿专家建设性的修改意见。

参考文献(References)
1 Gradstein F M, Ogg J G, Schmitz M D, et al. The Geologic Time Scale 2012. Amsterdam: Elsevier, 2012 : 1 ~1144. (0)
2 Lourens L J, Hilgen F, Shackleton N J et al. The Neogene period. In:Gradstein F, Ogg J, Smith A eds. A Geologic Time Scale 2004. Cambridge:Cambridge University Press, 2004. 400~440 (0)
3 Hilgen F J, Kuiper K F, Krijgsman W, et al. Astronomical tuning as the basis for high resolution chronostratigraphy:The intricate history of the Messinian salinity crisis. Stratigraphy,2007, 4 (2~3) : 231~238. (0)
4 Hüsing S K, Kuiper K F, Link W, et al. The upper Tortonian-lower Messinian at Monte dei Corvi(Northern Italy):Completing a Mediterranean reference section for the Tortonian Stage. Earth and Planetary Science Letters,2009, 282 (1) : 140~157. (0)
5 Hilgen F J, Aziz H A, Krijgsman W, et al. Integrated stratigraphy and astronomical tuning of the Serravallian and lower Tortonian at Monte dei Corvi(Middle-Upper Miocene, Northern Italy). Palaeogeography, Palaeoclimatology, Palaeoecology,2003, 199 (3~4) : 229~264. (0)
6 Holbourn A, Kuhnt W, Schulz M, et al. Orbitally-paced climate evolution during the Middle Miocene "Monterey" carbon-isotope excursion. Earth and Planetary Science Letters,2007, 261 (3) : 534~550. (0)
7 Hüsing S K, Cascella A, Hilgen F J, et al. Astrochronology of the Mediterranean Langhian between 15.29 and 14.17Ma. Earth and Planetary Science Letters,2010, 290 (3~4) : 254~269. (0)
8 Billups K, Pälike H, Channell J, et al. Astronomic calibration of the Late Oligocene through Early Miocene geomagnetic polarity time scale. Earth and Planetary Science Letters,2004, 224 (1~2) : 33~44. (0)
9 Pälike H, Norris R D, Herrle J O, et al. The heartbeat of the Oligocene climate system. Science,2006, 314 (5807) : 1894~1898. doi:10.1126/science.1133822 (0)
10 Pälike H, Shackleton N J, R hl U, et al. Astronomical forcing in Late Eocene marine sediments. Earth and Planetary Science Letters,2001, 193 (3~4) : 589~602. (0)
11 Jovane L, Sprovieri M, Coccioni R, et al. Astronomical calibration of the Middle Eocene Contessa Highway section(Gubbio, Italy). Earth and Planetary Science Letters,2010, 298 (1) : 77~88. (0)
12 Westerhold T, R hl U, Frederichs T, et al. Astronomical calibration of the geological timescale:Closing the Middle Eocene gap. Climate of the Past,2015, 11 (9) : 1181~1195. doi:10.5194/cp-11-1181-2015 (0)
13 Westerhold T, R hl U. High resolution cyclostratigraphy of the Early Eocene a new insights into the origin of the Cenozoic cooling trend. Climate of the Past,2009, 5 (3) : 309~327. doi:10.5194/cp-5-309-2009 (0)
14 Lourens L J, Sluijs A, Kroon D, et al. Astronomical pacing of Late Palaeocene to Early Eocene global warming events. Nature,2005, 435 (7045) : 1083~1087. doi:10.1038/nature03814 (0)
15 Westerhold T, Röhl U, Laskar J, et al. On the duration of magnetochrons C24r and C25n and the timing of Early Eocene global warming events:Implications from the Ocean Drilling Program Leg 208 Walvis Ridge depth transect. Paleoceanography,2007, 22 (2) : 99~123. (0)
16 Westerhold T, R hl U, Raffi I, et al. Astronomical calibration of the Paleocene time. Palaeogeography, Palaeoclimatology, Palaeoecology,2008, 257 (4) : 377~403. doi:10.1016/j.palaeo.2007.09.016 (0)
17 Kuiper K F, Deino A, Hilgen F J, et al. Synchronizing rock clocks of Earth history. Science,2008, 320 (5875) : 500~504. doi:10.1126/science.1154339 (0)
18 Laskar J, Robutel P, Joutel F, et al. A long-term numerical solution for the insolation quantities of the Earth. Astronomy and Astrophysics,2004, 428 (1) : 101~106. (0)
19 Zachos J, Pagani M, Sloan L, et al. Trends, rhythms, and aberrations in global climate 65Ma to present. Science,2001, 292 (5517) : 686~693. doi:10.1126/science.1059412 (0)
20 Copeland P. The When and Where of the Growth of the Himalaya and the Tibetan Plateau. New York: Springer, 1997 : 19 ~40. (0)
21 Lawver L A, Gahagan L M. Opening of Drake passage and its impact on Cenozoic ocean circulation. In:Crowley T J, Burke K C eds. Tectonic Boundary Conditions for Climate Reconstructions. Oxford Monographs on Geology and Geophysics 39. New York:Oxford University Press, 1998. 212~223 (0)
22 Alroy J, Koch P L, Zachos J C. Global climate change and North American mammalian evolution. Paleobiology,2000, 26 (4) : 259~288. (0)
23 Glass B P. Introduction to Planetary Geology. Cambridge: Cambridge University Press, 1982 : 1 ~477. (0)
24 Ruddiman W F, Kutzbach J E. Forcing of Late Cenozoic Northern Hemisphere climate by plateau uplift in Southern Asia and the American West. Journal of Geophysical Research Atmospheres,1989, 94 (D15) : 409~427. (0)
25 Pearson P N, Palmer M R. Atmospheric carbon dioxide concentrations over the past 60 million years. Nature,2000, 406 (6797) : 695~699. doi:10.1038/35021000 (0)
26 Raymo M E, Ruddiman W F. Tectonic forcing of Late Cenozoic climate. Nature,1992, 359 (6391) : 117~122. doi:10.1038/359117a0 (0)
27 Milankovitch M. Canon of Insolation and the Ice-age Problem(Beograd:Koniglich Serbische Akademie, 1941)English Translation by the Israel Program for Scientific Translations. Washington D C: Published for the US Department of Commerce and the National Science Foundation, 1969 . (0)
28 Berger A. Milankovitch theory and climate. Reviews of Geophysics,1988, 26 (4) : 624~657. doi:10.1029/RG026i004p00624 (0)
29 Hays J D, Imbrie J, Shackleton N J. Variations in the Earth's orbit:Pacemaker of the ice ages. Science,1976, 194 (4270) : 1121~1132. doi:10.1126/science.194.4270.1121 (0)
30 Wu H C, Zhang S H, Feng Q L, et al. Milankovitch and sub-Milankovitch cycles of the Early Triassic Daye Formation, South China and their geochronological and paleoclimatic implications. Gondwana Research,2012, 22 (2) : 748~759. doi:10.1016/j.gr.2011.12.003 (0)
31 Wu H C, Zhang S H, Jiang G Q, et al. Astrochronology for the Early Cretaceous Jehol Biota in Northeastern China. Palaeogeography, Palaeoclimatology, Palaeoecology,2013, 385 : 221~228. doi:10.1016/j.palaeo.2013.05.017 (0)
32 Fang Q, Wu H C, Linda H A, et al. Geologic evidence for chaotic behavior of the planets and its constraints on the third-order eustatic sequences at the end of the Late Paleozoic Ice Age. Palaeogeography, Palaeoclimatology, Palaeoecology,2015, 440 : 848~859. doi:10.1016/j.palaeo.2015.10.014 (0)
33 Fang Q, Wu H C, Linda H A, et al. A record of astronomically forced climate change in a Late Ordovician(Sandbian)deep marine sequence, Ordos Basin, North China. Sedimentary Geology,2016, 341 : 163~174. doi:10.1016/j.sedgeo.2016.06.002 (0)
34 丁仲礼. 米兰科维奇冰期旋回理论:挑战与机遇. 第四纪研究,2006, 26 (5) : 710~717.
Ding Zhongli. The Milankovitch theory of Pleistocene glacial cycles:Challenges and chances. Quaternary Sciences,2006, 26 (5) : 710~717. (0)
35 汪品先. 低纬过程的轨道驱动. 第四纪研究,2006, 26 (5) : 694~701.
Wang Pinxian. Orbital forcing of the low-latitude processes. Quaternary Sciences,2006, 26 (5) : 694~701. (0)
36 汪品先, 李前裕, 田军, 等. 从南海看第四纪大洋碳储库的长周期循环. 第四纪研究,2015, 35 (6) : 1297~1319.
Wang Pinxian, Li Qianyu, Tian Jun, et al. Long-term cycles in carbon reservoir of the Quaternary ocean:A perspective from the South China Sea. Quaternary Sciences,2015, 35 (6) : 1297~1319. (0)
37 马小林, 田军. 15Ma以来海陆记录的轨道-构造尺度东亚季风的演化以及西北内陆的干旱化. 第四纪研究,2015, 35 (6) : 1320~1330.
Ma Xiaolin, Tian Jun. East Asian monsoon evolution and aridification of Northwest China viewed from land and sea on the tectonic-orbital time scale since 15Ma. Quaternary Sciences,2015, 35 (6) : 1320~1330. (0)
38 刘植, 黄少鹏. 不同时间尺度下的大气CO2浓度与气候变化. 第四纪研究,2015, 35 (6) : 1458~1470.
Liu Zhi, Huang Shaopeng. Multiple time scales of variations of atmospheric CO2 concentration and global climate. Quaternary Sciences,2015, 35 (6) : 1458~1470. (0)
39 Berger A, Loutre M F. Astronomical forcing through geological time. In:De Boer P L, Smith D G eds. Orbital Forcing and Cyclic Sequences. Oxford:The Alden Press, 1994. 15~24 (0)
40 陈代钊. 旋回地层:一个正在发展中的理论. 第四纪研究,2000, 20 (2) : 186~195.
Chen Daizhao. Cyclostratigraphy:A developing theory. Quaternary Sciences,2000, 20 (2) : 186~195. (0)
41 徐道一. 天文地质年代表与旋回地层学研究进展. 地层学杂志,2005, 29 (s1) : 635~640.
Xu Daoyi. Astro-geologic time scale and the advancements of cyclostratigraphy. Journal of Stratigraphy,2005, 29 (s1) : 635~640. (0)
42 龚一鸣, 杜远生, 童金南, 等. 旋回地层学:地层学解读时间的第三里程碑. 地球科学——中国地质大学学报,2008, 33 (4) : 443~457.
Gong Yiming, Du Yuansheng, Tong Jinnan, et al. Cyclostratigraphy:The Third Milestone of Stratigraphy in Understanding Time. Earth Science——Journal of China University of Geosciences,2008, 33 (4) : 443~457. doi:10.3799/dqkx.2008.059 (0)
43 吴怀春, 张世红, 冯庆来, 等. 旋回地层学理论基础、研究进展和展望. 地球科学——中国地质大学学报,2011, 36 (3) : 409~428.
Wu Huaichun, Zhang Shihong, Feng Qinglai, et al. Theoretical basis, research advancement and prospects of cyclostratigraphy. Earth Science——Journal of China University of Geosciences,2011, 36 (3) : 409~428. (0)
44 Hinnov L A. Cyclostratigraphy and its revolutionizing applications in the Earth and planetary sciences. Geological Society of America Bulletin,2013, 125 (12~15) : 1703~1734. (0)
45 黄春菊. 旋回地层学和天文年代学及其在中生代的研究现状. 地学前缘,2014, 21 (2) : 48~66.
Huang Chunju. The current status of cyclostratigraphy and astrochronology in the Mesozoic. Earth Science Frontiers,2014, 21 (2) : 48~66. (0)
46 吴怀春, 王成善, 张世红, 等. "地时"(Earthtime)研究计划:"深时"(Deep Time)记录的定年精度与时间分辨率. 现代地质,2011, 25 (3) : 419~428.
Wu Huaichun, Wang Chengshan, Zhang Shihong, et al. "Earthtime" project:Dating precision and temporal resolution in the "Deep Time" record. Geoscience,2011, 25 (3) : 419~428. (0)
47 Wu H C, Zhang S H, Jiang G Q, et al. Astrochronology of the Early Turonian-Early Campanian terrestrial succession in Songliao Basin, Northeastern China and its implication for the long-period behavior of the Solar System. Palaeogeography, Palaeoclimatology, Palaeoecology,2013, 385 : 55~70. doi:10.1016/j.palaeo.2012.09.004 (0)
48 Wu H C, Zhang S H, Hinnov L A, et al. Cyclostratigraphy and orbital tuning of the terrestrial Upper Santonian-Lower Danian in Songliao Basin, Northeastern China. Earth and Planetary Science Letters,2014, 407 : 82~95. doi:10.1016/j.epsl.2014.09.038 (0)
49 Wu H C, Zhang S H, Hinnov L A, et al. Time-calibrated Milankovitch cycles for the Late Permian. Nature Communications,2013, 4 (9) : 2452~2452. (0)
50 Gradstein F M, Ogg J G, Smith A G. A Geologic Time Scale 2004. Cambridge: Cambridge University Press, 2004 : 1 ~589. (0)
51 Hinnov L A, Hilgen F J. Cyclostratigraphy and astrochronology. In:Gradstein F M, Ogg J G, Schmitz M et al.eds. The Geologic Time Scale 2012. Amsterdam:Elsevier, 2012. 63~83 (0)
52 Hinnov L A. New perspectives on orbitally forced stratigraphy. Annual Review of Earth and Planetary Sciences,2003, 28 (1) : 419~475. (0)
53 Hinnov L A, Ogg J G. Cyclostratigraphy and the astronomical time scale. Stratigraphy,2007, 4 (2~3) : 239~251. (0)
54 Laskar J. The chaotic motion of the solar system:A numerical estimate of the size of the chaotic zones. Icarus,1990, 88 (2) : 266~291. doi:10.1016/0019-1035(90)90084-M (0)
55 Laskar J, Joutel F, Boudin F. Orbital, precessional, and insolation quantities for the Earth from -20 Myr to+10 Myr. Astronomy and Astrophysics,1993, 270 (1~2) : 522~533. (0)
56 Laskar J. The limits of Earth orbital calculations for geological time-scale use. Philosophical Transactions of the Royal Society B: Biological Sciences,1999, 357 (1757) : 1735~1759. doi:10.1098/rsta.1999.0399 (0)
57 Laskar J, Fienga A, Gastineau M, et al. La2010:A new orbital solution for the long term motion of the Earth. Astronomy and Astrophysics,2011, 532 : A89. doi:10.1051/0004-6361/201116836 (0)
58 Laskar J, Gastineau M, Delisle J B, et al. Strong chaos induced by close encounters with Ceres and Vesta. Astronomy and Astrophysics,2011, 532 : L4. doi:10.1051/0004-6361/201117504 (0)
59 Fienga A, Laskar J, Kuchynka P, et al. The INPOP 10a planetary ephemeris and its applications in fundamental physics. Celestial Mechanics and Dynamical Astronomy,2011, 111 (3) : 363~385. doi:10.1007/s10569-011-9377-8 (0)
60 Westerhold T, R hl U, Laskar J. Time scale controversy:Accurate orbital calibration of the Early Paleogene. Geochemistry, Geophysics, Geosystems,2012, 13 (6) : 96~109. (0)
61 Imbrie J, Hays J D, Martinson D G et al. The orbital theory of Pleistocene climate:Support from a revised chronology of the marine delta 18O record. In:Berger A, Imbrie J, Hays H et al.eds. Milankovitch and Climate:Understanding the Response to Astronomical Forcing. Dordrecht:D. Reidel Publishing Company, 1984. 269~305 (0)
62 van Dam J A, Abdul A H, Alvarez Sierra M A, et al. Long-period astronomical forcing of mammal turnover. Nature,2006, 443 (7112) : 687~691. doi:10.1038/nature05163 (0)
63 Ogg J G. Geomagnetic polarity time scale. In:Gradstein F M, Ogg J G, Schmitz M et al.eds. The Geologic Time Scale 2012. Amsterdam:Elsevier, 2012. 85~113 (0)
64 Boulila S, Galbrun B, Miller K G, et al. On the origin of Cenozoic and Mesozoic "third-order" eustatic sequences. Earth-Science Reviews,2011, 109 (3) : 94~112. (0)
65 Emiliani C. Pleistocene temperatures. Journal of Geology,1955, 63 (1) : 538~578. (0)
66 Imbrie J, Imbrie K P. Ice ages:Solving the mystery. Geographical Review,1970, 44 (70) : 141~144. (0)
67 刘东生, 施雅风, 王汝建, 等. 以气候变化为标志的中国第四纪地层对比表. 第四纪研究,2000, 20 (2) : 108~128.
Liu Tungsheng, Shi Yafeng, Wang Rujian, et al. Table of Chinese Quaternary stratigraphic correlation remarked with climate change. Quaternary Sciences,2000, 20 (2) : 108~128. (0)
68 Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography,2005, 20 (2) : 1~16. (0)
69 Shackleton N J. The 100, 000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science,2000, 289 (5486) : 1897~1902. doi:10.1126/science.289.5486.1897 (0)
70 Melles M, Brigham-Grette J, Glushkova O Y, et al. Sedimentary geochemistry of core PG1351 from Lake El'gygytgyn——A sensitive record of climate variability in the east Siberian Arctic during the past three glacial-interglacial cycles. Journal of Paleolimnology,2007, 37 (1) : 89~104. (0)
71 Prokopenko A A, Hinnov L A, Williams D F, et al. Orbital forcing of continental climate during the Pleistocene:A complete astronomically tuned climatic record from Lake Baikal, SE Siberia. Quaternary Science Reviews,2006, 25 (23~24) : 3431~3457. (0)
72 Prokopenko A A, Khursevich G K. Plio-Pleistocene transition in the continental record from Lake Baikal:Diatom biostratigraphy and age model. Quaternary International,2010, 219 (1~2) : 26~36. (0)
73 Williams D F, Peck J, Karabanov E B, et al. Lake Baikal record of continental climate response to orbital insolation during the past 5 million years. Science,1997, 278 (5340) : 1114~1117. doi:10.1126/science.278.5340.1114 (0)
74 An Z S, Liu T, Lu Y, et al. The long-term paleomonsoon variation recorded by the loess-paleosol sequence in Central China. Quaternary International,1990, 7~8 : 91~95. (0)
75 Ding Z L, Liu T, Rutter N W, et al. Ice-volume forcing of East Asian winter monsoon variations in the past 800, 000 years. Quaternary Research,1995, 44 (2) : 149~159. doi:10.1006/qres.1995.1059 (0)
76 Ding Z L, Derbyshire E, Yang S L, et al. Stacked 2.6Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ18O record. Paleoceanography,2002, 17 (3) : 5-1~5-21. doi:10.1029/2001PA000725 (0)
77 Ding Z L, Derbyshire E, Yang S L, et al. Stepwise expansion of desert environment across Northern China in the past 3.5Ma and implications for monsoon evolution. Earth and Planetary Science Letters,2005, 237 (1~2) : 45~55. (0)
78 Porter S C, An Z. Correlation between climate events in the North Atlantic and China during the Last Glaciation. Nature,1995, 375 (375) : 305~308. (0)
79 Guo Z T, Biscaye P, Wei L, et al. Summer monsoon variations over the last 1.2Ma from the weathering of loess-soil sequences in China. Geophysical Research Letters,2000, 27 (12) : 1751~1754. doi:10.1029/1999GL008419 (0)
80 Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature,2002, 416 (6877) : 159~163. doi:10.1038/416159a (0)
81 Sun Y, Clemens S C, An Z, et al. Astronomical timescale and palaeoclimatic implication of stacked 3.6 Myr monsoon records from the Chinese Loess Plateau. Quaternary Science Reviews,2006, 25 (1~2) : 33~48. (0)
82 Shi P, Yang T, Tian Q, et al. Loess record of climatic changes during MIS. Quaternary International,2013, 296 : 149~159. doi:10.1016/j.quaint.2012.08.2102 (0)
83 Ding Z L, Yu Z, Rutter N W, et al. Towards an orbital time scale for Chinese loess deposits. Quaternary Science Reviews,1994, 13 (1) : 39~70. doi:10.1016/0277-3791(94)90124-4 (0)
84 Heslop D, Langereis C G, Dekkers M J. A new astronomical timescale for the loess deposits of Northern China. Earth and Planetary Science Letters,2000, 184 (1) : 125~139. doi:10.1016/S0012-821X(00)00324-1 (0)
85 Nádor A, Lantos M, Tóth-Makk Á, et al. Milankovitch-scale multi-proxy records from fluvial sediments of the last 2.6Ma, Pannonian Basin, Hungary. Quaternary Science Reviews,2003, 22 (20) : 2157~2175. doi:10.1016/S0277-3791(03)00134-3 (0)
86 Augustin L, Barbante C, Barnes P R F, et al. Eight glacial cycles from an Antarctic ice core. Nature,2004, 429 (6992) : 623~628. doi:10.1038/nature02599 (0)
87 Loulergue L, Schilt A, Spahni R et al. Orbital and millennial-scale features of atmospheric CH4 over the past 800, 000 years. Nature, 453(7193):383~386 http://dx.doi.org/10.1038/nature06950 (0)
88 Siegenthaler U, Stocker T F, Monnin E, et al. Stable carbon cycle-climate relationship during the Late Pleistocene. Science,2005, 310 (5752) : 1313~1317. doi:10.1126/science.1120130 (0)
89 Lüthi D, Le Floch M, Bereiter B, et al. High-resolution carbon dioxide concentration record 650, 000-800, 000 years before present. Nature,2008, 453 (7193) : 379~382. doi:10.1038/nature06949 (0)
90 Wang Y, Cheng H, Edwards R L, et al. Millennial-and orbital-scale changes in the East Asian monsoon over the past 224, 000 years. Nature,2008, 451 (7182) : 1090~1093. doi:10.1038/nature06692 (0)
91 Hilgen F J. Astronomical calibration of Gauss to Matuyama sapropels in the Mediterranean and implication for the geomagnetic polarity time scale. Earth and Planetary Science Letters,1999, 104 (2) : 226~244. (0)
92 Hilgen F J. Extension of the astronomically calibrated(polarity)time scale to the Miocene/Pliocene boundary. Earth and Planetary Science Letters,1991, 107 (2) : 349~368. doi:10.1016/0012-821X(91)90082-S (0)
93 Hilgen F J, Krijgsman W, Langereis C G, et al. Extending the astronomical(polarity)time scale into the Miocene. Earth and Planetary Science Letters,1995, 136 (3~4) : 495~510. (0)
94 Laurens L J, Hilgen F J, Zachariasse W J, et al. Evaluation of the Pliocene to Early Pleistocene astronomical time scale. Paleoceanography,1996, 11 (4) : 391~413. doi:10.1029/96PA01125 (0)
95 Hilgen F J, Lourens L J, Dam J A V. The Neogene period. In:Gradstein F, Ogg J, Schmitz M et al.eds. The Geological Time Scale 2012. Amsterdam:Elsevier, 2012. 923~978 (0)
96 Castradori D, Rio D, Hilgen F J, et al. The global standard stratotype-section and point(GSSP)of the Piacenzian stage(Middle Pliocene). Episodes,1998, 21 (2) : 88~93. (0)
97 Couvering J A V, Castradori D, Cita M B, et al. The base of the Zanclean stage and of the Pliocene series. Episodes,2000, 23 (3) : 179~187. (0)
98 Hilgen F, Aziz H A, Bice D, et al. The global boundary stratotype section and point(GSSP)of the Tortonian stage(Upper Miocene)at Monte Dei Corvi. Episodes,2005, 28 (1) : 6~17. (0)
99 Steenbrink J, Vugt N V, Hilgen F J, et al. Sedimentary cycles and volcanic ash beds in the Lower Pliocene lacustrine succession of Ptolemais(NW Greece):Discrepancy between 40Ar/39Ar and astronomical ages. Palaeogeography, Palaeoclimatology, Palaeoecology,1999, 152 (3~4) : 283~303. (0)
100 Hüsing S K, Hilgen F J, Aziz H A, et al. Completing the Neogene geological time scale between 8.5 and 12.5Ma. Earth and Planetary Science Letters,2007, 253 (3~4) : 340~358. (0)
101 Hilgen F J, Krijgsman W, Raffi I, et al. Integrated stratigraphy and astronomical calibration of the Serravallian/Tortonian boundary section at Monte Gibliscemi (Sicily, Italy). Marine Micropaleontology,2000, 38 (3) : 181~211. (0)
102 Cleaveland L C, Jensen J, Goese S, et al. Cyclostratigraphic analysis of pelagic carbonates at Monte dei Corvi(Ancona, Italy)and astronomical correlation of the Serravallian-Tortonian boundary. Geology,2000, 30 (10) : 931~934. (0)
103 Abels H A, Aziz H A, Calvo J P, et al. Shallow lacustrine carbonate microfacies document orbitally paced lake-level history in the Miocene Teruel Basin(North-East Spain). Sedimentology,2009, 56 (2) : 399~419. doi:10.1111/sed.2009.56.issue-2 (0)
104 Abels H A, Aziz H A, Ventra D, et al. Orbital climate forcing in mudflat to marginal lacustrine deposits in the Miocene Teruel Basin(Northeast Spain). Journal of Sedimentary Research,2009, 79 (11~12) : 831~847. (0)
105 Aziz H A, Dam J V, Hilgen F J, et al. Astronomical forcing in Upper Miocene continental sequences:Implications for the geomagnetic polarity time scale. Earth and Planetary Science Letters,2004, 222 (1) : 243~258. doi:10.1016/j.epsl.2004.02.018 (0)
106 Zeeden C, Hilgen F, Westerhold T, et al. Revised Miocene splice, astronomical tuning and calcareous plankton biochronology of ODPSite 926 between 5 and 14.4Ma. Palaeogeography, Palaeoclimatology, Palaeoecology,2012, 369 (1) : 430~451. (0)
107 Gruetzner J, Rebesco M A, Cooper A K, et al. Evidence for orbitally controlled size variations of the East Antarctic Ice Sheet during the Late Miocene. Geology,2003, 31 (9) : 777~780. doi:10.1130/G19574.1 (0)
108 Holbourn A, Kuhnt W, Schulz M, et al. Orbitally-paced climate evolution during the Middle Miocene "Monterey" carbon-isotope excursion. Earth and Planetary Science Letters,2007, 261 (3) : 534~550. (0)
109 Shackleton N J, Hall M A, Raffi I, et al. Astronomical calibration age for the Oligocene-Miocene boundary. Geology,2000, 28 (5) : 447~450. doi:10.1130/0091-7613(2000)28<447:ACAFTO>2.0.CO;2 (0)
110 Wilson G S, Lavelle M, McIntosh W C, et al. Integrated chronostratigraphic calibration of the Oligocene-Miocene boundary at 24.0±0.1Ma from the CRP-2A drill core, Ross Sea, Antarctica. Geology,2002, 30 (11) : 1043~1046. doi:10.1130/0091-7613(2002)030<1043:ICCOTO>2.0.CO;2 (0)
111 Hilgen F J, Kuiper K F, Lourens L J. Evaluation of the astronomical time scale for the Paleocene and Earliest Eocene. Earth and Planetary Science Letters,2010, 300 (1~2) : 139~151. (0)
112 Renne P R, Deino A L, Hilgen F J, et al. Time scales of critical events around the Cretaceous-Paleogene boundary. Science,2013, 339 (6120) : 684~687. doi:10.1126/science.1230492 (0)
113 Jovane L, Florindo F, Sprovieri M, et al. Astronomic calibration of the Late Eocene/Early Oligocene Massignano section(Central Italy). Geochemistry, Geophysics, Geosystems,2006, 7 (7) : Q07012. (0)
114 Brown R E, Koeberl C, Montanari A, et al. Evidence for a change in Milankovitch forcing caused by extraterrestrial events at Massignano, Italy, Eocene-Oligocene boundary GSSP. Geological Society of America Special Papers,2009, 452 (452) : 119~137. (0)
115 Hyland E, Murphy B, Varela P, et al. Integrated stratigraphic and astrochronologic calibration of the Eocene-Oligocene transition in the Monte Cagnero section(northeastern Apennines, Italy):A potential parastratotype for the Massignano global stratotype section and point(GSSP). Geological Society of America Special Papers,2009, 452 (19) : 303~322. (0)
116 Gale A S, Huggett J M, Pälike H, et al. Correlation of Eocene-Oligocene marine and continental records:Orbital cyclicity, magnetostratigraphy and sequence stratigraphy of the Solent Group, Isle of Wight, UK. Journal of the Geological Society,2006, 163 (4) : 401~415. (0)
117 Fischer A G, Roberts L T. Cyclicity in the Green River Formation(lacustrine Eocene)of Wyoming. Journal of Sedimentary Research,1991, 61 (7) : 1146~1154. (0)
118 Machlus M L, Olsen P E, Christie-Blick N, et al. Spectral analysis of the Lower Eocene Wilkins Peak Member, Green River Formation, Wyoming:Support for Milankovitch cyclicity. Earth and Planetary Science Letters,2008, 268 (1~2) : 64~75. (0)
119 Heard T G, Pickering K T, Robinson S A. Milankovitch forcing of bioturbation intensity in deep-marine thin-bedded siliciclastic turbidites. Earth and Planetary Science Letters,2008, 272 (1) : 130~138. (0)
120 Cantalejo B, Pickering K T. Climate forcing of fine-grained deep-marine systems in an active tectonic setting:Middle Eocene, Ainsa Basin, Spanish Pyrenees. Palaeogeography, Palaeoclimatology, Palaeoecology,2014, 410 : 351~371. doi:10.1016/j.palaeo.2014.06.005 (0)
121 Cantalejo B, Pickering K T. Orbital forcing as principal driver for fine-grained deep-marine siliciclastic sedimentation, Middle-Eocene Ainsa Basin, Spanish Pyrenees. Palaeogeography, Palaeoclimatology, Palaeoecology,2015, 421 : 24~47. doi:10.1016/j.palaeo.2015.01.008 (0)
122 Pälike H, Hilgen F. Rock clock synchronization. Nature Geoscience,2008, 1 (5) : 282~282. doi:10.1038/ngeo197 (0)
123 Payros A, Dinarès-Turell J, Bernaola G, et al. On the age of the Early/Middle Eocene boundary and other related events:Cyclostratigraphic refinements from the Pyrenean Otsakar section and the Lutetian GSSP. Geological Magazine,2011, 148 (3) : 442~460. doi:10.1017/S0016756810000890 (0)
124 Westerhold T, R hl U. Orbital pacing of Eocene climate during the Middle Eocene Climate Optimum and the chron C19r event:Missing link found in the Tropical Western Atlantic. Geochemistry, Geophysics, Geosystems,2013, 14 (11) : 4811~4825. doi:10.1002/ggge.20293 (0)
125 Aziz H A, Hilgen F J, Luijk G M V, et al. Astronomical climate control on paleosol stacking patterns in the Upper Paleocene-Lower Eocene Willwood Formation, Bighorn Basin, Wyoming. Geology,2008, 36 (7) : 531~534. doi:10.1130/G24734A.1 (0)
126 Abels H A, Kraus M J, Gingerich P D. Precession-scale cyclicity in the fluvial Lower Eocene Willwood Formation of the Bighorn Basin, Wyoming(USA). Sedimentology,2013, 60 (6) : 1467~1483. (0)
127 Stap L, Sluijs A, Thomas E, et al. Patterns and magnitude of deep sea carbonate dissolution during Eocene Thermal Maximum 2 and H2, Walvis Ridge, Southeastern Atlantic Ocean. Paleoceanography,2009, 24 (1) : 496~510. (0)
128 Abels H A, Clyde W C, Gingerich P D, et al. Terrestrial carbon isotope excursions and biotic change during Palaeogene hyperthermals. Nature Geoscience,2012, 5 (5) : 326~329. doi:10.1038/ngeo1427 (0)
129 Dinarès-Turell J, Stoykova K, Baceta J I, et al. High-resolution intra-and interbasinal correlation of the Danian-Selandian transition(Early Paleocene):The Bjala section(Bulgaria)and the Selandian GSSP at Zumaia(Spain). Palaeogeography, Palaeoclimatology, Palaeoecology,2010, 297 (2) : 511~533. doi:10.1016/j.palaeo.2010.09.004 (0)
130 Dinarès-Turell J, Westerhold T, Pujalte V, et al. Astronomical calibration of the Danian stage(Early Paleocene)revisited:Settling chronologies of sedimentary records across the Atlantic and Pacific Oceans. Earth and Planetary Science Letters,2014, 405 : 119~131. doi:10.1016/j.epsl.2014.08.027 (0)
131 Renne P R, Swisher C C, Deino A L, et al. Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating. Chemical Geology,1998, 145 (1~2) : 117~152. (0)
132 Hicks J F, Obradovich J D, Tauxe L. Magnetostratigraphy, isotopic age calibration and intercontinental correlation of the Red Bird section of the Pierre Shale, Niobrara County, Wyoming, USA. Cretaceous Research,1999, 20 (1) : 1~27. doi:10.1006/cres.1998.0133 (0)
133 Dinarès-Turell J, Baceta J I, Pujalte V, et al. Untangling the Palaeocene climatic rhythm:An astronomically calibrated Early Palaeocene magnetostratigraphy and biostratigraphy at Zumaia(Basque Basin, Northern Spain). Earth and Planetary Science Letters,2003, 216 (4) : 483~500. doi:10.1016/S0012-821X(03)00557-0 (0)
134 Vandenberghe N, Hilgen F J, Speijer R P. The Paleogene period. In:Gradstein F, Ogg J, Schmitz M t al.eds. The Geological Time Scale 2012. Amsterdam:Elsevier, 2012. 855~921 (0)
135 Izett G A, Dalrymple G B, Snee L W. 40Ar/39Ar age of Cretaceous-Tertiary boundary tektites from Haiti. Science,1991, 252 (5012) : 1539~1542. doi:10.1126/science.252.5012.1539 (0)
136 Swisher C C, Grajales-Nishimura J M, Montanari A, et al. Coeval 40Ar/39Ar ages of 65.0 million years ago from Chicxulub crater melt rock and Cretaceous-Tertiary boundary tektites. Science,1992, 257 (5072) : 954~958. doi:10.1126/science.257.5072.954 (0)
137 Hilgen F J, Abels H A, Kuiper K F, et al. Towards a stable astronomical time scale for the Paleocene:Aligning Shatsky Rise with the Zumaia, Walvis Ridge ODP Site 1262 composite. Newsletters on Stratigraphy,2015, 48 (48) : 91~110. (0)
138 Miller K G, Wright J D, Browning J V, et al. High tide of the warm Pliocene:Implications of global sea level for Antarctic deglaciation. Geology,2012, 40 (5) : 407~410. doi:10.1130/G32869.1 (0)
139 Huybers P, Wunsch C. Obliquity pacing of the Late Pleistocene glacial terminations. Nature,2005, 434 (7032) : 491~494. doi:10.1038/nature03401 (0)
140 Ruddiman W F. Orbital insolation, ice volume, and greenhouse gases. Quaternary Science Reviews,2003, 22 (15~17) : 1597~1629. (0)
141 Huybers P. Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science,2006, 313 (5786) : 508~511. doi:10.1126/science.1125249 (0)
142 Patterson M O, McKay R, Naish T, et al. Orbital forcing of the East Antarctic ice sheet during the Pliocene and Early Pleistocene. Nature Geoscience,2014, 7 (11) : 841~847. doi:10.1038/ngeo2273 (0)
143 Berger W H, Jansen E. Mid-Pleistocene climate shift:The Nansen connection. In:Johannessen O, Muench R, Overland J eds. The Polar Oceans and Their Role in Shaping the Global Environment. Washington:American Geophysical Union, 1994. 295~311 (0)
144 Raymo M E, Oppo D W, Curry W. The Mid-Pleistocene climate transition:A deep sea carbon isotope perspective. Paleoceanography,1997, 12 (4) : 546~559. doi:10.1029/97PA01019 (0)
145 Clark P U, Pollard D. Origin of the Middle Pleistocene transition by ice sheet erosion of regolith. Paleoceanography,1998, 13 (3) : 1~9. (0)
146 Raymo M E, Lisiecki L E, Nisancioglu K H. Plio-Pleistocene ice volume, Antarctic climate, and the global δ18O record. Science,2006, 313 (5786) : 492~495. doi:10.1126/science.1123296 (0)
147 Crowley T J, Hyde W T. Transient nature of Late Pleistocene climate variability. Nature,2008, 456 (7219) : 226~230. doi:10.1038/nature07365 (0)
148 Tziperman E, Gildor H. On the Mid-Pleistocene transition to 100-ky glacial cycles and the asymmetry between glaciation and deglaciation times. Paleoceanography,2003, 18 (1) : 1~8. (0)
149 Mcclymont E L, Rosell-Mele' A. Links between the onset of modern Walker Circulation and the Mid-Pleistocene climate transition. Geology,2005, 33 (5) : 389~392. doi:10.1130/G21292.1 (0)
150 Lee S Y, Poulsen C J. Sea ice control of Plio-Pleistocene tropical Pacific climate evolution. Earth and Planetary Science Letters,2006, 248 (1~2) : 238~247. (0)
151 Lisiecki L E. Links between eccentricity forcing and the 100000-year glacial cycle. Nature Geoscience,2010, 3 (5) : 349~352. doi:10.1038/ngeo828 (0)
152 Meyers S R, Hinnov L A. Northern Hemisphere glaciation and the evolution of Plio-Pleistocene climate noise. Paleoceanography,2010, 25 (3) : 78~82. (0)
153 Imbrie J Z, Imbrie-Moore A, Lisiecki L E. A phase-space model for Pleistocene ice volume. Earth and Planetary Science Letters,2011, 307 (1) : 94~102. (0)
154 Rial J A, Oh J, Reischmann E. Synchronization of the climate system to eccentricity forcing and the 100000-year problem. Nature Geoscience,2013, 6 (4) : 289~293. doi:10.1038/ngeo1756 (0)
155 Liu H S. Frequency variations of the Earth's obliquity and the 100-kyr ice-age cycles. Nature,1992, 358 (6385) : 397~399. doi:10.1038/358397a0 (0)
156 Liu H S. A new view on the driving mechanism of Milankovitch glaciation cycles. Earth and Planetary Science Letters,1995, 131 (1) : 17~26. (0)
157 Liu H S. Insolation changes caused by combination of amplitude and frequency modulation of the obliquity. Journal of Geophysical Research:Solid Earth,1999, 104 (1042) : 25197~25206. (0)
158 Muller R A, MacDonald G J. Glacial cycles and astronomical forcing. Science,1997, 277 (5323) : 215~218. doi:10.1126/science.277.5323.215 (0)
159 Mudelsee M, Schulz M. The Mid-Pleistocene climate transition:Onset of 100ka cycle lags ice volume build-up by 280ka. Earth and Planetary Science Letters,1997, 151 (1~2) : 117~123. (0)
160 Liu Z H, Cleaveland L C, Herbert T D. Early onset and origin of 100-kyr cycles in Pleistocene tropical SST records. Earth and Planetary Science Letters,2008, 265 (3~4) : 703~715. (0)
161 Schmieder F, Dobeneck T V, Bleil U. The Mid-Pleistocene climate transition as documented in the deep South Atlantic Ocean:Initiation, interim state and terminal event. Earth and Planetary Science Letters,2000, 179 (179) : 539~549. (0)
162 Heslop D, Dekkers M J, Langereis C G. Timing and structure of the Mid-Pleistocene transition:Records from the loess deposits of Northern China. Palaeogeography, Palaeoclimatology, Palaeoecology,2002, 185 (1~2) : 133~143. (0)
163 Mildenhall D C, Hollis C J, Naish T R. Orbitally-influenced vegetation record of the Mid-Pleistocene climate transition, offshore Eastern New Zealand(ODP Leg 181, Site 1123). Marine Geology,2004, 205 (1~4) : 87~111. (0)
164 Medina-Elizalde M, Lea D W. The Mid-Pleistocene transition in the tropical Pacific. Science,2005, 310 (5750) : 1009~1012. doi:10.1126/science.1115933 (0)
165 Clark P U, Archer D, Pollard D, et al. The Middle Pleistocene transition:Characteristics, mechanisms, and implications for long-term changes in atmospheric pCO2. Quaternary Science Reviews,2006, 25 (23~24) : 3150~3184. (0)
166 Martínez-Garcia A, Rosell-Melé A, Jaccard S L, et al. Southern Ocean dust-climate coupling over the past four million years. Nature,2011, 476 (7360) : 312~315. doi:10.1038/nature10310 (0)
167 Ruddiman W F. What is the timing of orbital-scale monsoon changes?. Quaternary Science Reviews,2006, 25 (7) : 657~658. (0)
168 Ruddiman W F. Orbital changes and climate. Quaternary Science Reviews,2006, 25 (24~24) : 3092~3112. (0)
169 Liu Z H, Herbert T D. High-latitude influence on the eastern equatorial Pacific climate in the Early Pleistocene epoch. Nature,2004, 427 (6976) : 720~723. doi:10.1038/nature02338 (0)
170 Ao H, Dekkers M J, Qin L, et al. An updated astronomical timescale for the Plio-Pleistocene deposits from South China Sea and new insights into Asian monsoon evolution. Quaternary Science Reviews,2011, 30 (13) : 1560~1575. (0)
171 Sniderman J M K, Pillans B, O'Sullivan P B, et al. Climate and vegetation in Southeastern Australia respond to southern hemisphere insolation forcing in the Late Pliocene-Early Pleistocene. Geology,2007, 35 (1) : 41~44. doi:10.1130/G23247A.1 (0)
172 Liu Z H, Pagani M, Zinniker D, et al. Global cooling during the Eocene-Oligocene climate transition. Science,2009, 323 (5918) : 1187~1190. doi:10.1126/science.1166368 (0)
173 Hren M T, Sheldon N D, Grimes S T, et al. Terrestrial cooling in Northern Europe during the Eocene-Oligocene transition. Proceedings of the National Academy of Sciences of the United States of America,2013, 110 (19) : 7562~7567. doi:10.1073/pnas.1210930110 (0)
174 Pusz A E, Thunell R C, Miller K G. Deep water temperature, carbonate ion, and ice volume changes across the Eocene-Oligocene climate transition. Paleoceanography,2011, 26 (2) : 149~230. (0)
175 Miller K G, Fairbanks R G, Mountain G S. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography,1987, 2 (2) : 1~19. (0)
176 Miller K G, Wright J D, Fairbanks R G. Unlocking the Ice House:Oligocene-Miocene oxygen isotopes, eustasy, and margin erosion. Journal of Geophysical Research:Solid Earth,1991, 96 (B4) : 6829~6848. doi:10.1029/90JB02015 (0)
177 Zachos J C, Dickens G R, Zeebe R E. An Early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature,2008, 451 (7176) : 279~283. doi:10.1038/nature06588 (0)
178 Tripati A, Backman J, Elderfield H, et al. Eocene bipolar glaciation associated with global carbon cycle changes. Nature,2005, 436 (7049) : 341~346. doi:10.1038/nature03874 (0)
179 Dupont-Nivet G, Krijgsman W, Langereis C G, et al. Tibetan Plateau aridification linked to global cooling at the Eocene-Oligocene transition. Nature,2007, 445 (7128) : 635~638. doi:10.1038/nature05516 (0)
180 Zanazzi A, Kohn M J, MacFadden B J, et al. Large temperature drop across the Eocene-Oligocene transition in central North America. Nature,2007, 445 (7128) : 639~642. doi:10.1038/nature05551 (0)
181 Zanazzi A, Kohn M J, Terry D O. Biostratigraphy and paleoclimatology of the Eocene-Oligocene boundary section at Toadstool Park, northwestern Nebraska, USA. Geological Society of America, Special Papers,2009, 452 : 197~214. doi:10.1130/2009.2452(13) (0)
182 Lear C H, Bailey T R, Pearson P N, et al. Cooling and ice growth across the Eocene-Oligocene transition. Geology,2008, 36 (36) : 251~254. (0)
183 Schouten S, Eldrett J, Greenwood D R, et al. Onset of long-term cooling of Greenland near the Eocene-Oligocene boundary as revealed by branched tetraether lipids. Geology,2008, 36 (2) : 147~150. doi:10.1130/G24332A.1 (0)
184 Wade B S, Houben A J P, Quaijtaal W, et al. Multiproxy record of abrupt sea-surface cooling across the Eocene-Oligocene transition in the Gulf of Mexico. Geology,2012, 40 (2) : 159~162. doi:10.1130/G32577.1 (0)
185 Katz M E, Miller K G, Wright J D, et al. Stepwise transition from the Eocene greenhouse to the Oligocene icehouse. Nature Geoscience,2008, 1 (5) : 329~334. doi:10.1038/ngeo179 (0)
186 Miller K G, Wright J D, Katz M E, et al. Climate threshold at the Eocene-Oligocene transition:Antarctic ice sheet influence on ocean circulation. Geological Society of America, Special Papers,2009, 452 (1) : 169~178. (0)
187 Houben A J P, Mourik C A V, Montanari A, et al. The Eocene-Oligocene transition:Changes in sea level, temperature or both?. Palaeogeography, Palaeoclimatology, Palaeoecology,2012, 335~336 : 75~83. (0)
188 Pagani M, Zachos J C, Freeman K H, et al. Marked decline in atmospheric carbon dioxide concentrations during the Paleogene. Science,2005, 309 (5734) : 600~603. doi:10.1126/science.1110063 (0)
189 Pearson P N, Foster G L, Wade B S. Atmospheric carbon dioxide through the Eocene-Oligocene climate transition. Nature,2009, 461 (7267) : 1110~1113. doi:10.1038/nature08447 (0)
190 Coxall H K, Wilson P A, Pälike H, et al. Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature,2005, 433 (7021) : 53~57. doi:10.1038/nature03135 (0)
191 Pälike H, Lyle M W, Nishi H, et al. A Cenozoic record of the equatorial Pacific carbonate compensation depth. Nature,2012, 488 (7413) : 609~614. doi:10.1038/nature11360 (0)
192 Meng J, McKenna M C. Faunal turnovers of Palaeogene mammals from the Mongolian Plateau. Nature,1998, 394 (394) : 364~367. (0)
193 Hansen T A, Kelley P H, Haasl D M. Paleoecological patterns in molluscan extinctions and recoveries:Comparison of the Cretaceous-Paleogene and Eocene-Oligocene extinctions in North America. Palaeogeography, Palaeoclimatology, Palaeoecology,2004, 214 (3) : 233~242. doi:10.1016/S0031-0182(04)00423-7 (0)
194 Retallack G J, Orr W N, Prothero D R, et al. Eocene-Oligocene extinction and paleoclimatic change near Eugene, Oregon. Geological Society of America Bulletin,2004, 116 (7) : 817~839. doi:10.1130/B25281.1 (0)
195 Pearson P N, McMillan I K, Wade B S, et al. Extinction and environmental change across the Eocene-Oligocene boundary in Tanzania. Geology,2011, 12 (1) : 179~182. (0)
196 Zhang R, Kravchinsky V A, Yue L. Link between global cooling and mammalian transformation across the Eocene-Oligocene boundary in the continental interior of Asia. International Journal of Earth Sciences,2012, 101 (8) : 2193~2200. doi:10.1007/s00531-012-0776-1 (0)
197 Miller K G, Browning J V, Aubry M P, et al. Eocene-Oligocene global climate and sea-level changes:St. Stephens Quarry, Alabama. Geological Society of America Bulletin,2008, 120 (1) : 34~53. (0)
198 Coxall H K, Wilson P A. Early Oligocene glaciation and productivity in the eastern equatorial Pacific:Insights into global carbon cycling. Paleoceanography,2011, 26 (2) : PA2221. (0)
199 DeConto R M, Pollard D. Rapid Cenozoic glaciation of Antarctica induced by declining atmospheric CO2. Nature,2003, 421 (6920) : 245~249. doi:10.1038/nature01290 (0)
200 Wade B S, Pälike H. Oligocene climate dynamics. Paleoceanography,2004, 19 (4) : 980~985. (0)
201 Ladant J B, Donnadieu Y, Lefebvre V, et al. The respective role of atmospheric carbon dioxide and orbital parameters on ice sheet evolution at the Eocene-Oligocene transition. Paleoceanography,2014, 29 (8) : 810~823. doi:10.1002/palo.v29.8 (0)
202 Zachos J C, Shackleton N J, Revenaugh J S, et al. Climate response to orbital forcing across the Oligocene-Miocene boundary. Science,2001, 292 (5515) : 274~278. doi:10.1126/science.1058288 (0)
203 Mourik A A, Bijkerk J F, Cascella A, et al. Astronomical tuning of the La Vedova High Cliff Section(Ancona, Italy)——Implications of the Middle Miocene climate transition for Mediterranean sapropel formation. Earth and Planetary Science Letters,2010, 297 (1) : 249~261. (0)
204 Norris R D, R hl U. Carbon cycling and chronology of climate warming during the Palaeocene/Eocene transition. Nature,1999, 401 (6755) : 775~778. doi:10.1038/44545 (0)
205 Tripati A, Elderfield H. Deep-sea temperature and circulation changes at the Paleocene-Eocene Thermal Maximum. Science,2005, 308 (5730) : 1894~1898. doi:10.1126/science.1109202 (0)
206 Zachos J C, Ursula R H, Schellenberg S A, et al. Rapid acidification of the ocean during the Paleocene-Eocene Thermal Maximum. Science,2005, 308 (5728) : 1611~1615. doi:10.1126/science.1109004 (0)
207 Nicolo M J, Dickens G R, Hollis C J. South Pacific intermediate water oxygen depletion at the onset of the Paleocene-Eocene Thermal Maximum as depicted in New Zealand margin sections. Paleoceanography,2010, 25 (4) : 389~400. (0)
208 Kaiho K, Arinobu T, Ishiwatari R, et al. Latest Paleocene benthic foraminiferal extinction and environmental changes at Tawanui, New Zealand. Paleoceanography,1996, 11 (4) : 447~465. doi:10.1029/96PA01021 (0)
209 Gingerich P D. Mammalian responses to climate change at the Paleocene-Eocene boundary:Polecat Bench record in the northern Bighorn Basin, Wyoming. Geological Society of America, Special Papers,2003, 369 : 463~478. (0)
210 Smith T, Rose K D, Gingerich P D. Rapid Asia-Europe-North America geographic dispersal of Earliest Eocene primate Teilhardina during the Paleocene-Eocene Thermal Maximum. Proceedings of the National Academy of Sciences of the United States of America,2006, 103 (30) : 11223~11227. doi:10.1073/pnas.0511296103 (0)
211 R hl U, Bralower T J, Norris R D, et al. New chronology for the Late Paleocene Thermal Maximum and its environmental implications. Geology,2000, 28 (10) : 927~930. doi:10.1130/0091-7613(2000)28<927:NCFTLP>2.0.CO;2 (0)
212 R hl U, Westerhold T, Bralower T J, et al. On the duration of the Paleocene-Eocene Thermal Maximum(PETM). Geochemistry, Geophysics, Geosystems,2007, 8 (12) : 229~247. (0)
213 Lunt D J, Ridgwell A, Sluijs A, et al. A model for orbital pacing of methane hydrate destabilization during the Palaeogene. Nature Geoscience,2011, 4 (11) : 775~778. doi:10.1038/ngeo1266 (0)
214 Komar N, Zeebe R E, Dickens G R. Understanding long-term carbon cycle trends:The Late Paleocene through the Early Eocene. Paleoceanography,2013, 28 (4) : 650~662. doi:10.1002/palo.20060 (0)
215 Cramer B S, Wright J D, Kent D V, et al. Orbital climate forcing of δ13C excursions in the Late Paleocene-Early Eocene(chrons C24n~C25n). Paleoceanography,2003, 18 (4) : 21~21. (0)
216 Nicolo M J, Dickens G R, Hollis C J, et al. Multiple Early Eocene hyperthermals:Their sedimentary expression on the New Zealand continental margin and in the deep sea. Geology,2007, 35 (8) : 699~702. doi:10.1130/G23648A.1 (0)
217 Stap L, Lourens L J, Thomas E, et al. High-resolution deep-sea carbon and oxygen isotope records of Eocene Thermal Maximum 2 and H2. Geology,2010, 38 (7) : 607~610. doi:10.1130/G30777.1 (0)
218 Zachos J C, McCarren H, Murphy B, et al. Tempo and scale of Late Paleocene and Early Eocene carbon isotope cycles:Implications for the origin of hyperthermals. Earth and Planetary Science Letters,2010, 299 (1) : 242~249. (0)
219 Gould S J. The paradox of the first tier:An agenda for paleobiology. Paleobiology,1985, 11 (1) : 2~12. doi:10.1017/S0094837300011350 (0)
220 Bennett K D. Milankovitch cycles and their effects on species in ecological and evolutionary time. Paleobiology,1990, 16 (16) : 11~21. (0)
221 Dynesius M, Jansson R. Evolutionary consequences of changes in species' geographical distributions driven by Milankovitch climate oscillations. Proceedings of the National Academy of Sciences of the United States of America,2000, 97 (16) : 9115~9120. doi:10.1073/pnas.97.16.9115 (0)
222 Jansson R, Dynesius M. The fate of clades in a world of recurrent climatic change:Milankovitch oscillations and evolution. Annual Review of Ecology and Systematics,2002, 33 (1) : 741~777. doi:10.1146/annurev.ecolsys.33.010802.150520 (0)
223 Strasser A, Hilgen F J, Heckel P H. Cyclostratigraphy——Concepts, definitions, and applications. Newsletters on Stratigraphy,2006, 42 (2) : 75~114. doi:10.1127/0078-0421/2006/0042-0075 (0)
224 Pletnev S P, Sukhanov V V. Dynamics of planktonic foraminiferal community in the Sea of Japan during the last 2 My. Oceanology,2006, 46 (5) : 652~659. doi:10.1134/S0001437006050055 (0)
225 Clarke A, Crame J A. Evolutionary dynamics at high latitudes:Speciation and extinction in polar marine faunas. Philosophical Transactions of the Royal Society of London B: Biological Sciences,2010, 365 (1588) : 3655~3666. (0)
226 Willis K J, Niklas K J. The role of Quaternary environmental change in plant macroevolution:The exception or the rule?. Philosophical Transactions of the Royal Society of London B: Biological Sciences,2004, 359 (1442) : 159~172. doi:10.1098/rstb.2003.1387 (0)
227 Troost T A, van Dam J A, Kooi B W, et al. Seasonality, climate cycles and body size evolution. Mathematical Modelling of Natural Phenomena,2009, 4 (4) : 135~155. (0)
228 Brockman D K, Schaik V, Carel P eds. Seasonality in Primates:Studies of Living and Extinct Human and Non-Human Primates. Cambridge: Cambridge University Press, 2005 : 521 ~543. (0)
229 DeMenocal P B. African climate change and faunal evolution during the Pliocene-Pleistocene. Earth and Planetary Science Letters,2004, 220 (1~2) : 3~24. (0)
230 Maslin M A, Trauth M H. Plio-Pleistocene East African pulsed climate variability and its influence on early human evolution. In:Grine F E, Fleagle J G, Leakey R E eds. The First Humans-Origin and Early Evolution of the Genus Homo. Berlin:Springer Netherlands, 2009. 151~158 (0)
231 Wang Pingxian, Jian Zhimin, Zhao Quanhong, et al. Evolution of the South China Sea and monsoon history revealed in deep-sea records. Chinese Science Bulletin,2003, 48 (23) : 2549~2661. doi:10.1360/03wd0156 (0)
232 Tian J, Zhao Q H, Wang P X, et al. Astronomically modulated Neogene sediment records from the South China Sea. Paleoceanography,2008, 23 (3) : 137~149. (0)
233 黄恩清. 中更新世以来东亚冬季风海陆记录对比. 第四纪研究,2015, 35 (6) : 1331~1341.
Huang Enqing. A comparison of the East Asian winter monsoon reconstructions from terrestrial and marine sedimentary records since the Mid-Pleistocene. Quaternary Sciences,2015, 35 (6) : 1331~1341. (0)
234 李小洁, 梁莲姬, 吴枫, 等. 南海北部沉积物常量元素变化、碳酸盐旋回及其古环境意义. 第四纪研究,2015, 35 (2) : 411~421.
Li Xiaojie, Liang Lianji, Wu Feng, et al. Variations of major elements and carbonate cycle of the northern South China Sea sediment and their paleoenvironment significance. Quaternary Sciences,2015, 35 (2) : 411~421. (0)
235 王世朋, 李永祥, 付少英, 等. 南海北部陆坡GHE24L柱样沉积物磁性特征及其环境意义. 第四纪研究,2014, 34 (3) : 516~527.
Wang Shipeng, Li Yongxiang, Fu Shaoying, et al. Environmental changes as recorded by mineral magnetic properties of sediments from the core GHE24L, South China Sea. Quaternary Sciences,2014, 34 (3) : 516~527. (0)
236 陆浩, 贾佳, 夏敦胜, 等. 黄土高原记录的MIS6.5期东亚夏季风信号及其古气候意义. 第四纪研究,2015, 35 (6) : 1402~1411.
Lu Hao, Jia Jia, Xia Dunsheng, et al. East Asian summer monsoon evolution during MIS 6.5 record in Chinese Loess Plateau and its implications. Quaternary Sciences,2015, 35 (6) : 1402~1411. (0)
237 何同, 刘连文, 陈旸, 等. 晚中新世-上新世黄土高原佳县红粘土剖面碳同位素记录与C4植被演化. 第四纪研究,2015, 35 (4) : 791~800.
He Tong, Liu Lianwen, Chen Yang, et al. Carbon isotope record of authigenic calcite from the northern Chinese Loess Plateau:Implications for C4 vegetation evolution during Late Miocene Pliocene. Quaternary Sciences,2015, 35 (4) : 791~800. (0)
238 Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences,2000, 28 (1) : 211~280. doi:10.1146/annurev.earth.28.1.211 (0)
239 Wang C, Zhao X, Liu Z, et al. Constraints on the early uplift history of the Tibetan Plateau. Proceedings of the National Academy of Sciencesof the United States of America,2008, 105 (13) : 4987~4992. doi:10.1073/pnas.0703595105 (0)
Cenozoic Milankovitch cycles and astronomical time scale
Wu Huaichun①,②, Fang Qiang①,②, Zhang Shihong, Yang Tianshui     
(① State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences(Beijing), Beijing 100083;
School of Ocean Sciences, China University of Geosciences(Beijing), Beijing 100083)

Abstract

The Cenozoic era is the current and most recent of the Earth history.A series of major geological events of the tectonics, life evolutions and climate change happened during the Cenozoic.High-resolution Cenozoic geological time scale plays an important role in understanding the evolution of the Cenozoic Earth systems and predicting its trends.Recently, the theory of astronomical cycles has been applied to establish astronomical time scale.The high-resolution geological time scale can be constructed by identifying the Milankovitch cycles in sedimentary strata, and tuning these cycles to the astronomical solutions.A composite, continuous Cenozoic astronomical time scale can provide reliable geochronology constraints for better understanding the Cenozoic Earth's evolution.It is also reported that orbital forcing was one of the main driving mechanisms of some biological, climate, environment and geological events in the Cenozoic.This paper briefly introduces the theoretical basis of cyclostratigraphy, construction of the Cenozoic astronomical time scale, and the research progresses of orbital forced climate and biological events.In China, high-resolution astronomical time scales will contribute greatly to improve our understanding of some critical and global scientific questions, such as the origin and evolution of East Asian monsoon, climate effect of the Tibetan Plateau uplift, and Quaternary glacial and interglacial transition.
Key words: Earth orbital parameters     Milankovitch cycles     cyclostratigraphy     Cenozoic astronomical time scale