第四纪研究  2016, Vol.36 Issue (4): 859-869   PDF    
柴达木盆地大红沟剖面新生代地层磁组构特征及构造意义
苏庆达 , 聂军胜 , JoelE.Saylor , BrianK.Horton , MeredithA.Bush , 陈文汉     
(①. 兰州大学资源环境学院, 西部环境教育部重点实验室, 兰州 730000;
②. Department of Earth and Atmospheric Sciences, University of Houston, Houston TX 77204-5007, USA;
③. Department of Geological Sciences and Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, TX 78712, USA;
④. Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, TX 78712, USA)
摘要: 研究表明柴达木盆地新生代沉积物磁化率各向异性能够有效地记录印度-欧亚板块碰撞的应力场方向,然而过去对该盆地磁组构研究主要集中在始新世下干柴沟组和中新世下油砂山组,因此不能有效界定应力场方向发生变化的年代。本文对柴达木盆地北缘大红沟剖面沉积岩进行了详细的磁组构分析,获得了新生代较高分辨率(平均6~10m)的磁化率各向异性数据。结果表明,下干柴沟组、上干柴沟组、下油砂山组和上油砂山组及狮子沟组磁面理发育较为明显,磁化率椭球体呈压扁状,具有较强的压扁效应;而路乐河组磁线理发育更为明显,可能记录了较强的构造作用力。路乐河组和下干柴沟组磁组构指示构造应力的方向为近南北向;上干柴沟组和下油砂山组磁组构指示应力的方向为东北-西南向。因此,柴达木盆地由南北向挤压转变为东北-西南向挤压发生在始新世下干柴沟组和渐新世上干柴沟组之间,指示青藏高原北部应力场发生了变化。我们将青藏高原北部应力场的转变归因于阿尔金断裂的左旋走滑,而中晚中新世应力的进一步加强可能与下地壳流或昆仑山断裂开始走滑也有关系。这一研究加深了对青藏高原北部变形机制的理解。
主题词柴达木盆地     磁化率各向异性     阿尔金断裂     青藏高原    
中图分类号     P534.61+2;P318.4;P546                    文献标识码    A

青藏高原的隆升过程和变形机制是地学研究的热点问题,理解其过程和机制不但能够加深对陆陆碰撞机制的理解,而且对于查明新生代气候变冷的驱动力、亚洲季风的形成演化以及大江大河的形成过程和机理具有重要作用[17]。然而,由于高原隆升机制和过程的复杂性,地学界至今对其驱动机制尚未完全达成一致意见。例如,对于青藏高原的隆升过程,一种观点认为高原由南向北逐步隆升[8, 9],另一种观点则认为高原隆升始于中部然后向南北两侧拓展[10];此外,还有观点认为印亚碰撞的应力在碰撞初期就传递到了青藏高原的北部地区[5, 11, 12]。因此,查清青藏高原北部新生代隆升时间和应力场变化过程对于理解高原的隆升机制至关重要。尽管存在分歧,近年来地学界普遍认为青藏高原北部存在两期构造运动[1318],早期变形方向与印亚碰撞方向一致为南北向,后期运动方向与阿尔金断裂左旋走滑方向一致为东北-西南向[16, 18]。然而,目前对于这两期构造运动的转变时间及驱动机制仍然有较大争论。例如,Lease等[16]根据高原北部东西向山脉和西北-东南向山脉形成时间的差别把构造运动转变的界限定为中中新世,并认为北东东-南西西向阿尔金断裂的走滑驱动了这一转变;而Yu等[18]根据柴达木盆地磁化率各向异性研究认为应力转变发生介于始新世和中新世之间,并将转变的原因归结为昆仑山断裂左旋走滑和昆仑山断层南部向东的下地壳流。对应力场转变时间和机制缺乏一致认识的一个主要原因在于高原北部能够记录应力场变化的连续记录的缺乏。因此,我们在前人工作的基础上对柴达木盆地北缘大红沟剖面连续的河湖相沉积进行了磁化率各向异性测试,以期恢复柴达木盆地新生代以来各时期构造应力的变化并探讨其可能的驱动机制。

Yu等[18]工作显示柴达木盆地磁化率各向异性能够有效地记录青藏高原北部地层形成时古应力场方向。以前的研究工作表明当构造挤压不强烈时,最大轴K1与构造应力的方向垂直,并沿着与构造力垂直的方向聚集,而中间轴K2与构造应力的方向平行,最小轴K3方向跟地层垂直。然而当构造挤压力比较强烈时,K2和K3都会发生偏离并且向构造力的方向集中[1921]。这为我们的工作提供了理论基础。

1 材料与方法 1.1 研究区地质概况

柴达木盆地位于青藏高原的北缘,总面积约为12×104km2。柴达木盆地被南部的东昆仑山系、西部的阿尔金山系、东北部的祁连山系三大山系所环绕,盆地内部平均海拔为2500~3000m[22]( 图 1)。构造上,主要受到5组区域性断裂的影响,它们分别是NW-NWW向祁连山-柴达木北缘断裂系统、NWW向东昆仑-柴达木南缘断裂系统、NE向阿尔金断裂系统、NNW向鄂拉山断裂系统和近东西向甘森-小柴旦断裂系统[5, 23, 24]。根据岩相和古生物特征,自下而上可以将柴达木盆地地层依次划分为路乐河组(古新世至早始新世)、下干柴沟组(中始新世至晚始新世)、上干柴沟组(渐新世)、下油砂山组(早中新世至中中新世)、上油砂山组(晚中新世)、狮子沟组(上新世)和七个泉组(早更新世)[18, 2528]

图 1 柴达木盆地大红沟剖面地质图[22] Fig. 1 Geological map of the northern Qaidam Basin and the Dahonggou section

大红沟剖面位于柴达木盆地的北缘,以背斜形式出露,是新生代沉积的代表性剖面。实测剖面起点坐标37°32′55″N,95°09′56″E,终点坐标37°28′42″N,95°07′57″E( 图 1),全长约6172m,横跨整个新生代,自下而上依次沉积路乐河组、下干柴沟组、上干柴沟组、下油砂山组、上油砂山组和狮子沟组[29]( 图 2)。路乐河组岩性以紫红色的砾岩夹中粗颗粒的成层砂岩、叠层状泥岩为主,为冲积扇-辫状河相沉积;下干柴沟组岩性以砂岩、细粉砂岩和泥岩为主,为曲流河沉积;上干柴沟组主要以灰绿色成层粉砂岩和棕色泥岩交替出现,为冲积平原-湖泊相沉积;下油砂山组主要以棕色叠层或层状泥岩和灰褐色块状砂岩、砾岩、混合颜色(灰白色至淡黄色)粉砂岩交替,为冲积扇-湖泊相沉积;上油砂山组岩性主要以夹黄色块状砾岩、砂砾岩,和棕色或黄色块状砂岩夹有黄色块状粉砂岩;狮子沟组岩性主要以黄灰色含砾砂岩为主,属于河流相沉积[22, 28, 29]。因此,柴达木盆地大红沟剖面连续的河湖相地层为研究青藏高原北部新生代以来构造应力变化及其驱动机制提供了极佳场所。

图 2 柴达木盆地大红沟剖面各向异性参数κm、L、F、P及T随深度变化图(数据为5点滑动平均的结果) Fig. 2 The variations of mean magnetic susceptibility(κm), lineation(L), foliation(F), degree of AMS(P)and shape parameter(T) with stratigraphy height of the Dahonggou section in the Qaidam Basin. The data were smoothed with 5-point running average
1.2 样品的采集与测定

利用汽油钻在大红沟剖面采集定向古地磁样品共1327块,平均采样间距3~5m。所采样品被加工成高度约为2.2cm的圆柱体定向样品,并按照6~10m的间距选取591块样品进行磁化率各向异性测试。

磁化率各向异性(Anisotropy of magnetic susceptibility, 简称AMS)测量使用卡帕桥MFK1A多频磁化率仪,其测量精度为2×10-8 SI,外场强度为200A/m,测试频率为976Hz,每个样品都进行了3个相互垂直方向的测量。磁化率各向异性椭球体由最小二乘法获得[30],所需磁化率各向异性参数可由Anisoft 4.2软件自动算出。磁化率各向异性磁组构参数的测量在中国科学院地球环境研究所环境磁学实验室完成。

2 分析结果 2.1 柴达木盆地大红沟剖面磁组构参数结果

磁化率各向异性(AMS)特征常用磁化率椭球体来表示,参数K1、K2和K3分别代表椭球体的最大轴、中间轴和最小轴。其常用的磁组构参数有磁线理(L)、磁面理(F)以及形状因子(T)和各向异性度(P)等。磁线理(L=K1/K2)反映沉积颗粒呈线状排列程度,而磁面理(F=K2/K3)反映颗粒呈面状分布的程度。椭球体的形状因子T=(2lnK2-lnK1-lnK3)/(lnK1-lnK3),其大小和变化一般反映了磁面理F和磁线理L的发育程度,更能表征磁化率椭球体的形状。当T=0时,磁面理和磁线理同等发育;当1 > T > 0时,磁面理发育为主;T=1时,仅有磁面理发育;0 > T >-1时,磁线理发育为主;T=-1时,仅有磁线理发育[3133]

研究表明磁化率在10-4~10-5 SI区间的样品的主要贡献矿物是顺磁性硅酸盐而非亚铁磁性矿物[34]。除个别异常样品外,样品平均体积磁化率值(κm)在3.33×10-5~60×10-5m3/kg区间分布,因此样品低频磁化率磁组构主要是顺磁性层状硅酸盐矿物贡献而非亚铁磁性矿物所贡献。

基于柴达木盆地大红沟剖面各组的划分[29],我们进一步分析与挖掘其磁组构参数所蕴含的可能的应力作用信息,其结果如下:

路乐河组(0~1100m),与其他各组相比,平均体积磁化率值(κm)稳定在较低的水平,均值约10.8×10-5m3/kg。形状因子T值远远低于其他各组,均值为0.029,指示该层段磁面理(F)和磁线理(L)近乎同等发育。磁线理L值较其他组稍高,均值为1.016,磁面理F均值为1.02,略低于其他各组(见表 1)。而且柴达木盆地大红沟剖面F-L及P-T图解指示,路乐河组时期,落于扁长状或者扁圆状区域内的样品点几乎是同等数量( 图 3)。

图 3 柴达木盆地大红沟剖面各组F-L及P-T图解 Fig. 3 Foliation(F)versus lineation(L)and degree of AMS(P)versus shape parameter(T)diagrams of each formation from the Dahonggou section in the Qaidam Basin

表 1 柴达木盆地大红沟剖面各组磁组构参数 Table 1 Anisotropy of magnetic susceptibility (AMS) parameters of the Dahonggou section

下干柴沟组(1100~3500m),平均体积磁化率值(κm)相对较高,均值约为23.7×10-5m3/kg。磁线理L值较其他组稍低,均值为1.012。磁面理F均值为1.033,略高于其他各组,且变化较大。形状因子T值远高于其他各组,且变化较大,均值为0.409。而且F-L及P-T图解中(图 3),绝大多数样品点落于扁圆状的区域内,仅有少数点落于扁长状的区域内。所有这些特征共同指示下干柴沟组磁面理F较为发育。

上干柴沟组(3500~4805m),此层位平均体积磁化率值(κm)是最高的,均值约为30.3×10-5m3/kg。形状因子T均值为0.262,变动较大。磁线理L值存在一定变化,均值为1.013。而磁面理F均值为1.026,相对较为稳定,明显大于磁线理。

下油砂山组(4805~5500m),平均体积磁化率值(κm)逐渐降低,均值约为18.2×10-5m3/kg。磁面理F值明显高于磁线理L值,均值分别为1.024和1.012。该层位形状因子T较大,均值为0.31。

上油砂山组和狮子沟组(5500~6172m),平均体积磁化率(κm)均值较低,约为17.0×10-5m3/kg。形状因子T均值为0.207,较其他组低,磁面理F较为发育。F-L及P-T图解中(图 3)绝大多数样品点落于扁圆状的区域内,同样指示这一点。

综上所述,下干柴沟组、上干柴沟组、下油砂山组和上油砂山组及狮子沟组磁组构参数指示这些时期磁面理F发育较为明显,磁化率椭球体呈压扁状,具有较强的压扁效应。而与其他组相比,路乐河组磁线理L发育更为明显,可能反应了较强的构造作用力。

2.2 柴达木盆地大红沟剖面新生代以来磁化率各向异性轴的方位特征

磁化率各向异性不仅受到构造变形的影响[18, 3542],而且受到岩性和沉积环境的影响[4348]。例如,路乐河组主要为粒径较大的砾石层,理论上可能会对磁组构产生影响。然而,最小轴K3明显偏离投影的中心位置并向南北方向集中且成带状分布( 图 4),根据Parés模型[35],这应该代表较强的构造作用力。此外,柴达木盆地大红沟剖面为河湖相沉积地层,河流必然对表层沉积物的颗粒排列有着重要影响。然而表层的细颗粒物质仅仅是矿物的边与其他矿物的面接触,磁组构没有被固定;而只有到较深层位矿物的面与面接触时,细颗粒物质磁组构才会固定。因此磁组构在构造变形区主要记录了构造应力的变化,而与水流的关系不大[34]。而且诸多研究证实磁组构对构造应力的变化极为敏感,即使是在没有明显构造变形痕迹的弱构造变形区依然能够感受并记录微弱的变形[18, 3542];另外,构造旋转同样会造成磁组构主轴方向的改变[4951]。诸多古地磁研究表明大红沟剖面附近第三纪没有发生垂直轴向旋转[5254]。因此我们认为构造旋转对于该研究剖面影响不大,柴达木盆地大红沟剖面磁组构主要记录的是青藏高原北部新生代以来构造应力的变化。

图 4 柴达木盆地大红沟剖面各组赤平投影图指示的应力方向 Fig. 4 The AMS projection data(dots)and principal stress directions(black lines with double arrows)inferred from the AMS data of each formation from the Dahonggou section in the Qaidam Basin. K1 and K3 are maximum and minimum axis of the AMS ellipsoid

路乐河组磁组构最大轴K1分布比较集中,最小轴K3明显偏离投影的中心位置并向南北方向集中且成带状分布,根据Parés模型[35],这应该代表较强的构造作用力。

下干柴沟组最小轴K3投影绝大多数位于赤平投影图的中心位置,只有少量的数据点偏离了层面的中心位置,说明当时沉积环境是比较稳定的。最大轴K1集中分布于赤平投影图的东西两侧,指示这一层段可能受到近南北向的应力作用。

上干柴沟组及下油砂山组最小轴K3投影绝大多数位于层面的中心位置,仅有少数点散落于其外。与下干柴沟组相比,上干柴沟组最大轴K1指示构造应力的方向发生了明显的向东偏转,为东北-西南向。

上油砂山组及狮子沟组磁组构数据比较散乱。虽然最小轴K3平均方向为东北-西南向,但是与路乐河组不同,没有明显的呈带状分布。因此,无法判断数据散乱是由构造应力变强还是粒径变粗造成的。

3 讨论

大红沟剖面磁化率各向异性结果表明,柴达木盆地始新世下干柴沟组构造挤压力的方向为近南北向,而渐新世上干柴沟组构造应力的方向为东北-西南向。其构造意义如下:

第一,印亚碰撞的应力场在碰撞初期就从南部传递到了北部边界并造成了盆地的变形和山地的隆升。如前所述,一类模型预测青藏高原是由南向北逐步隆升[8, 9]。这与大红沟剖面各向异性数据指示的高原北部在古新世已经受到南北向挤压的结果并不一致;另外,物源和古流向都指示路乐河组沉积物质来自于南部东昆仑山,说明东昆仑山在当时已经隆起[29]。值得指出的是,磁化率各向异性K3指示构造应力的方向为近南北向表明此时期祁连山-南山应该尚未隆起,否则西北-东南向的祁连山-南山将会导致磁化率各向异性K3方向为东北-西南向;而且如果祁连山-南山当时已经隆起,其位置更靠近剖面,那么祁连山-南山应当是研究剖面的主要物源;此外,研究认为祁连山-南山构造隆起的时间多强调在晚始新世及其以后[12, 5559]。柴达木盆地新生代变形历史研究表明[14],盆地自新生代以来(65~52Ma)就感受到印亚碰撞的应力;诸多早期研究表明印亚碰撞的应力场在初期就传递到了北部边界[6063],我们的结果支持这一观点。

第二,青藏高原北部由南北向挤压转变为东北-西南向挤压的时间是晚始新世-渐新世。地学界一致认为高原北部存在两期构造运动[1318],早期变形方向与印亚碰撞方向一致为南北向,后期运动方向与阿尔金断裂左旋走滑方向一致为东北-西南向[16, 18],然而过去研究强调转变的时间在中中新世[16, 18]。柴达木盆地大红沟的数据明确表明这一转变发生在晚始新世-渐新世。我们的磁化率各向异性数据在中中新世以后变为较为散乱,这可能对应于Lease等[16]观察到的青藏高原北部中中新世构造变形事件。大红沟磁组构数据显示这期变形在渐新世就已经开始并且在中中新世后得到进一步加强。因此,这期构造变形的时间应该界定在晚始新世-渐新世。这要求重新理解阿尔金断裂走滑、昆仑山断裂和下地壳流对青藏高原北部构造变形的意义。

Yu等[18]基于柴达木盆地各向异性数据提出青藏高原北部由南北向挤压转变为东北-西南向挤压发生在中中新世,并把这一转变归因于昆仑山断裂的左旋走滑和昆仑断裂南部向东的下地壳流。这个解释在没有上干柴沟组数据的情况下是完全合理的。然而我们的柴达木盆地新生代以来连续的磁化率各向异性数据表明这期转变发生在上、下干柴沟组之间,因此要求对原来的解释做出修改。因为阿尔金断裂左旋走滑的开始时间是在晚始新世-渐新世[56, 59, 6466],而昆仑山断裂的左旋走滑和下地壳流在中中新世后比较明显[55, 6768],所以我们将这期转变的主因归结为阿尔金断裂的左旋走滑。东北-西南向的阿尔金断层走滑造成了西北-东南向的祁连山-南山的隆升从而造成大红沟剖面主应力场方向为东北-西南向。

中中新世以来磁组构变得较为散乱,沉积物粒径变大,我们把这一现象归因为构造应力的进一步加强,这一解释跟前人研究的结论一致[6972]。如酒西盆地沉积通量的增大[6971]及酒泉盆地新生代磷灰石裂变径迹年龄[72]都指示中中新世祁连山存在构造隆升,且平衡剖面恢复表明酒泉盆地中新世到上新世构造缩短速率呈增大的趋势[71]。中中新世后期构造活动的加强可能跟昆仑山断裂左旋走滑和下地壳流活动有关。研究表明东昆仑-柴达木地体的地壳具有厚的上地壳和薄的下地壳,昆仑地体下地壳、上地幔中存在高-低速体,而在柴达木盆地上地幔没有热物质交流[7376]。基于此,薛灵文等[77]将中中新世或者晚中新世东昆仑活动断裂带晚期的张扭性活动归因于上地壳刚性变形和下地壳塑性流变。

4 结论

本文通过对柴达木盆地北缘大红沟剖面沉积岩磁组构特征的分析,可以得到如下结论:

(1)柴达木盆地北缘大红沟剖面岩石磁组构指示下干柴沟组、上干柴沟组、下油砂山组和上油砂山组及狮子沟组磁面理发育较为明显,磁化率椭球体呈压扁状,具有较强的压扁效应。而与其他组相比,路乐河组磁线理发育更为明显,可能记录了较强的构造作用力。

(2)路乐河组和下干柴沟组磁组构指示构造应力的方向为近南北向;上干柴沟组及下油砂山组磁组构指示构造应力的方向为东北-西南向。

(3)柴达木盆地北缘大红沟剖面岩石磁组构指示柴达木盆地构造应力方向发生了明显的转变,由下干柴沟组近乎南北向转变为上干柴沟组东北-西南向,转变时间为始新世和渐新世之间。

(4)青藏高原北部存在两期构造运动,而第二期运动始于渐新世且在中晚中新世得到进一步加强。青藏高原北部变形方向的变化与阿尔金断裂的左旋走滑有关,而中晚中新世构造应力的进一步加强可能与下地壳流和昆仑山断裂走滑开始也有关系。

致谢: 感谢审稿专家和编辑部老师提出的建设性修改意见。

参考文献(References)
1 Molnar P, England P, Martinod J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon. Reviews of Geophysics,1993, 31 (4) : 357~396. (0)
2 Molnar P, Tapponnier P. Cenozoic tectonics of Asia:Effects of a continental collision:Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. Science,1975, 189 (4201) : 419~426. (0)
3 An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature,2001, 411 (6833) : 62~66. (0)
4 Dupont-Nivet G, Krijgsman W, Langereis C G, et al. Tibetan Plateau aridification linked to global cooling at the Eocene-Oligocene transition. Nature,2007, 445 (7128) : 635~638. (0)
5 Yin A, Dang Y Q, Wang L C, et al. Cenozoic tectonic evolution of Qaidam Basin and its surrounding regions(Part1):The southern Qilian Shan-Nan Shan thrust belt and northern Qaidam Basin. Geological Society of America Bulletin,2008, 120 (7-8) : 813~846. (0)
6 Zheng H B, Clift P D, Wang P, et al. Pre-Miocene birth of the Yangtze River. Proceedings of the National Academy of Sciences of the United States of America,2013, 110 (19) : 7556~7561. (0)
7 Nie J S, Stevens T, Rittner M, et al. Loess Plateau storage of northeastern Tibetan Plateau-derived Yellow River sediment. Nature Communications,2015, 6 : 8511. doi: 10.1038/ncomms9511 (0)
8 Métivier F, Gaudemer Y, Tapponnier P, et al. Northeastward growth of the Tibet Plateau deduced from balanced reconstruction of two depositional areas:The Qaidam and Hexi Corridor basins, China. Tectonics,1998, 17 (6) : 823~842. (0)
9 Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau. Science,2001, 294 (5547) : 1671~1677. (0)
10 Wang C S, Zhao X X, Liu Z F, et al. Constraints on the early uplift history of the Tibetan Plateau. Proceedings of the National Academy of Sciences of the United States of America,2008, 105 (13) : 4987~4992. (0)
11 Horton B K, Dupont-Nivet, Zhou J Y, et al. Mesozoic-Cenozoic evolution of the Xining-Minhe and Dangchang basins, northeastern Tibetan Plateau:Magnetostratigraphic and biostratigraphic results. Journal of Geophysical Research-Solid Earth,2004, 109 (B4) : B04402. (0)
12 Clark M K, Farley K A, Zheng D W, et al. Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite(U-Th)/He ages. Earth and Planetary Science Letters,2010, 296 (1-2) : 78~88. (0)
13 Xia W C, Zhang N, Yuan X P, et al. Cenozoic Qaidam Basin, China:A stronger tectonic inversed, extensional rifted basin. AAPG Bulletin,2001, 85 (4) : 715~736. (0)
14 Zhou J X, Xu F Y, Wang T C, et al. Cenozoic deformation history of the Qaidam Basin, NW China:Results from cross-section restoration and implications for Qinghai-Tibet Plateau tectonics. Earth and Planetary Science Letters,2006, 243 (1-2) : 195~210. (0)
15 Wang Y D, Nie J S, Zhang T, et al. Cenozoic tectonic evolution in the western Qaidam Basin inferred from subsurface data. Geosciences Journal,2010, 14 (4) : 335~344. (0)
16 Lease R O, Burbank D W, Clark M K, et al. Middle Miocene reorganization of deformation along the northeastern Tibetan Plateau. Geology,2011, 39 (4) : 359~362. (0)
17 Yuan D Y, Ge W P, Chen Z W, et al. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics:A review of recent studies. Tectonics,2013, 32 (5) : 1358~1370. (0)
18 Yu X J, Huang B C, Guan S W, et al. Anisotropy of magnetic susceptibility of Eocene and Miocene sediments in the Qaidam Basin, Northwest China:Implication for Cenozoic tectonic transition and depocenter migration. Geochemistry, Geophysics, Geosystems,2014, 15 (6) : 2095~2108. (0)
19 Borradaile G J, Henry B. Tectonic applications of magnetic susceptibility and its anisotropy. Earth-Science Reviews,1997, 42 (1-2) : 49~93. (0)
20 Borradaile G J. Magnetic fabrics and petrofabrics:Their orientation distributions and anisotropies. Journal of Structural Geology,2001, 23 (10) : 1581~1596. (0)
21 Tang Z H, Huang B C, Dong X X, et al. Anisotropy of magnetic susceptibility of the Jingou River section:Implications for Late Cenozoic uplift of the Tian Shan. Geochemistry, Geophysics, Geosystems,2012, 13 (1) : Q03022. (0)
22 柯学, 季军良, 宋博文, 等. 柴达木盆地大红沟剖面新生代底层岩石磁学特征与环境演变. 地质通报,2013, 32 (1) : 111~119.
Ke Xue, Ji Junliang, Song Bowen, et al. The Cenozoic rock magnetic characteristics of the Dahonggou section in Qaidam Basin and the climate change. Geological Bulletin of China,2013, 32 (1) : 111~119. (0)
23 汤良杰, 金之钧, 戴俊生, 等. 柴达木盆地及相邻造山带区域断裂系统. 地球科学-中国地质大学学报,2002, 27 (6) : 676~682.
Tang Liangjie, Jin Zhijun, Dai Junsheng, et al. Regional fault systems of Qaidam Basin and adjacent orogenic belts. Earth Science-Journal of China University of Geosciences,2002, 27 (6) : 676~682. (0)
24 周杰斌, 石菲菲, 邹林, 等. 青海省德令哈北部宗务隆地区成矿特征与找矿远景分析. 地质与勘探,2011, 47 (2) : 197~203.
Zhou Jiebin, Shi Feifei, Zou Lin, et al. Metallogenic characteristics and ore-searching prospect of the Zongwulong area in northern Delingha, Qinghai Province. Geology and Exploration,2011, 47 (2) : 197~203. (0)
25 Fang X M, Zhang W L, Meng Q Q, et al. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth and Planetary Science Letters,2007, 258 (1-2) : 293~306. (0)
26 Sun Z C, Feng X J, Li D M, et al. Cenozoic Ostracoda and palaeoenvironments of the northeastern Tarim Basin, Western China. Palaeogeography, Palaeoclimatology, Palaeoecology,1999, 148 (1-3) : 37~50. (0)
27 Wang X M, Qiu Z D, Li Q, et al. Vertebrate paleontology, biostratigraphy, geochronology, and paleoenvironment of Qaidam Basin in northern Tibetan Plateau. Palaeogeography, Palaeoclimatology, Palaeoecology,2007, 254 (3-4) : 363~385. (0)
28 Lu H J, Xiong S F. Magnetostratigraphy of the Dahonggou section, northern Qaidam Basin and its bearing on Cenozoic tectonic evolution of the Qilian Shan and Altyn Tagh Fault. Earth and Planetary Science Letters,2009, 288 (3-4) : 539~550. (0)
29 Bush M A, Saylor J E, Horton B K, et al. Growth of the Qaidam Basin during Cenozoic exhumation in the northern Tibetan Plateau:Inferences from depositional patterns and multiproxy detrital provenance signatures. Lithosphere,2016, 8 (1) : 58~82. (0)
30 Jelinek V. Characterization of the magnetic fabric of rocks. Tectonophysics,1981, 79 (3-4) : T63~T67. (0)
31 Collinson D W. Methods in Rock Magnetism. London: Chapman and Hall, 1986 : 102 ~231. (0)
32 Tarling D, Hrouda F. Magnetic Anisotropy of Rocks. London: Chapman and Hall, 1993 : 217 . (0)
33 许峰宇, 王力波. 磁化率各向异性测量在沉积学中的应用. 沉积学报,1994, 12 (2) : 94~100.
Xu Fengyu, Wang Lipo. Measurement of anisotropy of magnetic susceptibility on Xiashu loess and it's implication to sedimentology. Acta Sedimentologica Sinica,1994, 12 (2) : 94~100. (0)
34 Parés J M. Sixty years of anisotropy of magnetic susceptibility in deformed sedimentary rocks. Frontiers in Earth Science,2015, 3 : 1~14. (0)
35 Parés J M, van der Pluijm B A, Dinarès-Turell J. Evolution of magnetic fabrics during incipient deformation of mudrocks(Pyrenees, Northern Spain). Tectonophysics,1999, 307 (1) : 1~14. (0)
36 Averbuch O, Lamotte D F D, Kissel C. Magnetic fabric as a structural indicator of the deformation path within a fold-thrust structure: A test case from the Corbières(NE Pyrenees, France). Journal of Structural Geology,1992, 14 (4) : 461~474. (0)
37 Collombat H, Rochette P, Vialon P. Magnetic fabric as a strain indicator in unconsolidated sediments of the Chile Triple Junction area. In:Lewis S D, Behrmann J H, Musgrave R J et al. eds. Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX:Ocean Drilling Program, 1995, 141 :29~49 (0)
38 Sagnotti L, Speranza F. Magnetic fabric analysis of the Plio-Pleistocene clayey units of the Sant'Arcangelo basin, Southern Italy. Physics of the Earth and Planetary Interiors,1993, 77 (s3-4) : 165~176. (0)
39 Aubourg C, Rochette P, Vialon P. Subtle stretching lineation revealed by magnetic fabric of Callovian-Oxfordian black shales(French Alps). Tectonophysics,1991, 185 (3-4) : 211~223. (0)
40 Sagnotti L, Winkler A, Montone P, et al. Magnetic anisotropy of Plio-Pleistocene sediments from the Adriatic margin of the northern Apennines(Italy):Implications for the time-space evolution of the stress field. Tectonophysics,1999, 311 (1-4) : 139~153. (0)
41 Borradaile G J, Jackson M. Changes in magnetic remanence during simulated deep sedimentary burial. Physics of the Earth and Planetary Interiors,1993, 77 (3-4) : 315~327. (0)
42 高新勃, 强小科, 赵辉, 等. 风成红粘土序列磁化率各向异性特征对区域应力变化的响应. 地球科学进展,2014, 29 (3) : 369~379.
Gao Xinbo, Qiang Xiaoke, Zhao Hui, et al. Anisotropy of magnetic susceptibility response to the regional stress variation in aeolian red clay sequence. Advances in Earth Science,2014, 29 (3) : 369~379. (0)
43 吴磊, 汉景泰. 藏南乌郁盆地渐新世地层岩石磁化率组构特征及磁组构类型识别的意义. 第四纪研究,2012, 32 (4) : 727~737.
Wu Lei, Han Jingtai. Magnetic fabrics of Oligocene strata in Oiyug Basin, southern Tibet and geologic significance of evaluation for magnetic fabric types. Quaternary Sciences,2012, 32 (4) : 727~737. (0)
44 刘秀铭, 郭晖, 刘植, 等. 甘肃临夏盆地红色地层磁组构特征与沉积环境分析. 第四纪研究,2012, 32 (4) : 615~625.
Liu Xiuming, Guo Hui, Liu Zhi, et al. Magnetic anisotropy of red stratum in Linxia basin and its environment of sedimentation. Quaternary Sciences,2012, 32 (4) : 615~625. (0)
45 张睿, 岳乐平, 弓虎军, 等. 黄土高原风成沉积物磁化率各向异性研究. 第四纪研究,2012, 32 (4) : 719~726.
Zhang Rui, Yue Leping, Gong Junhu, et al. Anisotropy of magnetic susceptibility of eolian sediments in the Chinese Loess Plateau. Quaternary Sciences,2012, 32 (4) : 719~726. (0)
46 杨小强, 苏志华, 阳杰, 等. 热带玛珥湖沉积物的磁组构特征及对湖水动力条件的指示. 第四纪研究,2012, 32 (4) : 795~802.
Yang Xiaoqiang, Su Zhihua, Yang Jie, et al. Magnetic fabrics of Maar lake sediments in tropical Southern China record hydro dynamic process. Quaternary Sciences,2012, 32 (4) : 795~802. (0)
47 Parés J M, Hassold N J C, Rea D K, et al. Paleocurrent directions from paleomagnetic reorientation of magnetic fabrics in deep-sea sediments at the Antarctic Peninsula Pacific margin(ODP Sites1095, 1101). Marine Geology,2007, 242 (4) : 261~269. (0)
48 Liu B Z, Saito Y, Yamazaki T, et al. Paleocurrent analysis for the Late Pleistocene-Holocene incised-valley fill of the Yangtze Delta, China by using anisotropy of magnetic susceptibility data. Marine Geology,2001, 176 (s1-4) : 175~189. (0)
49 Otofuji Y, Liu Y Y, Yokoyam M, et al. Tectonic deformation of the southwestern part of the Yangtze craton inferred from paleomagnetism. Earth and Planetary Science Letters,1998, 156 (1-2) : 47~60. (0)
50 Sato K, Liu Y Y, Zhu Z C, et al. Paleomagnetic study of Middle Cretaceous rocks from Yunlong, western Yunnan, China:Evidence of southward displacement of Indochina. Earth and Planetary Science Letters,1999, 165 (1) : 1~15. (0)
51 Tanaka K, Mu C L, Sato K, et al. Tectonic deformation around the eastern Himalayan syntaxis:Constraints from the Cretaceous palaeomagnetic data of the Shan-Thai Block. Geophysical Journal International,2008, 175 (2) : 713~728. (0)
52 Dupont-Nivet G, Butler R F, Yin A, et al. Paleomagnetism indicates no Neogene rotation of the Qaidam Basin in northern Tibet during Indo-Asian collision. Geology,2002, 30 (3) : 263~266. (0)
53 Dupont-Nivet G, Butler R F, Yin A, et al. Paleomagnetism indicates no Neogene vertical axis rotations of the northeastern Tibetan Plateau. Journal of Geophysical Research: Solid Earth,2003, 108 (B8) : 2386. (0)
54 Yu X J, Fu S T, Guan S W, et al. Paleomagnetism of Eocene and Miocene sediments from the Qaidam Basin:Implication for no integral rotation since the Eocene and a rigid Qaidam block. Geochemistry, Geophysics, Geosystems,2014, 15 (6) : 2109~2127. (0)
55 Jolivet M, Brunel M, Seward D, et al. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan Plateau:Fission-track constraints. Tectonophysics,2001, 343 (s1-2) : 111~134. (0)
56 Yin A, Rumelhart P E, Butler R, et al. Tectonic history of the Altyn Tagh fault system in northern Tibet inferred from Cenozoic sedimentation. Geological Society of America Bulletin,2002, 114 (10) : 1257~1295. (0)
57 Dai Shuang, Fang Xiaomin, Song Chunhui, et al. Early tectonic uplift of the northern Tibetan Plateau. Chinese Science Bulletin,2005, 50 (15) : 1642~1652. (0)
58 Guo Z J, Lu J M, Zhang Z C. Cenozoic exhumation and thrusting in the northern Qilian Shan, northeastern margin of the Tibetan Plateau:Constraints from sedimentological and apatite fission-track data. Environmental Research Letters,2009, 83 (3) : 562~579. (0)
59 Fang X M, Liu D L, Song C H, et al. Oligocene slow and Miocene-Quaternary rapid deformation and uplift of the Yumu Shan and North Qilian Shan:Evidence from high-resolution magnetostratigraphy and tectonosedimentology. Geological Society, London, Special Publications,2013, 373 (1) : 149~171. (0)
60 Yin A, Harrison T M. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences,2000, 28 : 211~280. (0)
61 Harrison T M, Copeland P, Kidd W S F, et al. Raising Tibet. Science,1992, 255 (5052) : 1663~1670. (0)
62 Zhao W L, Morgan W J. Uplift of Tibetan Plateau. Tectonics,1985, 4 (4) : 359~369. (0)
63 Yin A, Harrison T M, Murphy M A, et al. Tertiary deformation history of southeastern and southwestern Tibet during the Indo-Asian collision. Geological Society of America Bulletin,1999, 111 (11) : 1644~1664. (0)
64 Yue Y J, Ritts B D, Graham S A. Initiation and long-term slip history of the Altyn Tagh fault. International Geology Review,2001, 43 (12) : 1087~1093. (0)
65 Sun Z M, Yang Z Y, Pei J L, et al. Magnetostratigraphy of Paleogene sediments from northern Qaidam Basin, China:Implications for tectonic uplift and block rotation in northern Tibetan Plateau. Earth and Planetary Science Letters,2005, 237 (3-4) : 635~646. (0)
66 Zhuang G S, Hourigan J K, Ritts B D, et al. Cenozoic multiple-phase tectonic evolution of the northern Tibetan Plateau:Constraints from sedimentary records from Qaidam Basin, Hexi Corridor, and Subei Basin, Northwest China. American Journal of Science,2011, 311 (2) : 116~152. (0)
67 Beaumont C, Jamieson R A, Nguyen M H et al. Crustal channel flows:1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogen. Journal of Geophysical Research, 2004, 109 :B06406 (0)
68 Fu B H, Awata Y. Displacement and timing of left-lateral faulting in the Kunlun Fault Zone, northern Tibet, inferred from geologic and geomorphic features. Journal of Asian Earth Sciences,2007, 29 (2-3) : 253~265. (0)
69 赵志军, 方小敏, 李吉均, 等. 酒泉砾石层的古地磁年代与青藏高原隆升. 科学通报,2001, 46 (14) : 1208~1212.
Zhao Zhijun, Fang Xiaomin, Li Jijun, et al. Paleomagnetic dating of the Jiuquan gravel in the Hexi Corridor:Implication on the Mid-Pleistocene uplift of the Qinghai-Tibetan Plateau. Chinese Science Bulletin,2001, 46 (14) : 1208~1212. (0)
70 宋春晖. 青藏高原北缘新生代沉积演化与高原构造隆升过程 . 兰州: 兰州大学博士论文, 2006 : 77 ~80.
Song Chunhui. Tectonic Uplift and Cenozoic Sedimentary Evolution in the Northern Margin of the Tibetan Plateau. Lanzhou: The Ph.D Thesis of Lanzhou University, 2006 : 77 ~80. (0)
71 马丽芳, 鲍晶, 应红, 等. 祁连山北缘酒西盆地新生代沉积通量变化对周缘山体构造隆升-风化剥蚀历史的响应. 沉积学报,2016, 34 (1) : 49~57.
Ma Lifang, Bao Jing, Ying Hong, et al. The response of sediment flux of Jiuxi Basin in the northern boundary of Qilian to the tectonic uplift and weathering-denudation history. Acta Sedimentologica Sinica,2016, 34 (1) : 49~57. (0)
72 彭杨伟, 高军平, 彭杨宏. 酒泉盆地新生代磷灰石裂变径迹年龄及其意义. 甘肃科技,2010, 26 (10) : 36~38.
Peng Yangwei, Gao Junping, Peng Yanghong. Apatite fission track ages and significance of Jiuquan Basin Cenozoic. Gansu Science and Technology,2010, 26 (10) : 36~38. (0)
73 魏文博, 金胜, 叶高峰, 等. 藏北高原地壳及上地幔导电性结构-超宽频带大地电磁测深研究结果. 地球物理学报,2006, 49 (4) : 1215~1225.
Wei Wenbo, Jin Sheng, Ye Gaofeng, et al. Conductivity structure of crust and upper mantle beneath the northern Tibetan Plateau:Results of super wide band magnetotelluric sounding. Chinese Journal Geophysics,2006, 49 (4) : 1215~1225. (0)
74 薛光琦, 赵文津, 宿和平, 等. 藏北低速体存在的地震学证据-INDEPTH4宽频地震结果. 地球学报,2011, 32 (3) : 331~335.
Xue Guangqi, Zhao Wenjin, Su Heping, et al. Seismological evidence for the existence of the low-velocity body in northern Tibet:A result from INDEPTH-IV based broad-band seismological study. Acta Geoscientia Sinica,2011, 32 (3) : 331~335. (0)
75 Karplus M S, Zhao W, Klemperer S L, et al. Injection of Tibetan crust beneath the south Qaidam Basin:Evidence from INDEPTH IV wide-angle seismic data. Journal of Geophysical Research: Solid Earth,2011, 116 (B7) : 86~94. (0)
76 谢成良, 叶高峰, 魏文博, 等. 藏北高原主要断裂带电性结构特征. 地球物理学报,2012, 55 (12) : 3991~4002.
Xie Chengliang, Ye Gaofeng, Wei Wenbo, et al. Electrical features of the main faults beneath northern Tibetan Plateau. Chinese Journal Geophysics,2012, 55 (12) : 3991~4002. (0)
77 薛灵文, 王刚, 李正友, 等. 东昆仑西大滩盆地晚新生代构造地貌简析. 第四纪研究,2016, 36 (2) : 420~432.
Xue Lingwen, Wang Gang, Li Zhengyou, et al. Late Cenozoic tectonic landform analysis of Xidatan Basin, eastern Kunlun. Quaternary Sciences,2016, 36 (2) : 420~432. (0)
An anisotropy of magnetic susceptibility study of the Cenozoic Dahonggou section in northern Qaidam Basin and its tectonic implications
Su Qingda, Nie Junsheng, Joel E. Saylor, Brian K. Horton, Meredith A. Bush, Chen Wenhan     
(①. Key Laboratory of Western China's Environmental Systems, Ministry of Education, College of Earth Environmental Sciences, Lanzhou University, Lanzhou 730000;
②. Department of Earth and Atmospheric Sciences, University of Houston, Houston TX 77204-5007, USA;
③. Department of Geological Sciences and Institute for Geophysics, Jackson School of Geosciences, University of Texas at Austin, Austin, TX 78712, USA;
④. Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, TX 78712, USA)

Abstract

Anisotropy of magnetic susceptibility (AMS) of sediments is very sensitive to paleostress directions. Past studies demonstrate that AMS effectively records paleostress even where large-scale deformation structures are absent. Particularly, when deformation is weak, the intermediate AMS ellipsoid axis (K2) is parallel to the compression direction and the minimum ellipsoid axis (K3) is perpendicular to bedding. With increasing deformation, K3 begins to scatter away from the bedding pole, and results in a girdle oriented parallel to the maximum compressive strain. Past studies also demonstrate that it is the paramagnetic silicate minerals instead of ferrimagnetic minerals that control the magnetic fabrics of sediments. Here we present the results of strain analyses based on AMS results from a 6172m-thick Paleogene-Pliocene Dahonggou stratigraphic section (37°32'55"N, 95°09'56"E to 37°28'42"N, 95°07'57"E) in the northern Qaidam Basin to reconstruct the stress history within the northern Qaidam Basin. The Qaidam Basin is surrounded by the Altyn Shan to the west, the Qilian Shan to the east, and the Kunlun Shan to the south, and sits at an average elevation of 2500~3000m above sea level. The internally drained Qaidam Basin covers an area of more than 120000km2 and is a key region to test models about various uplift mechanisms of the Tibetan Plateau. The Dahongou section is divided into six formations: the Paleocene-Early Eocene Lulehe Formation, the Middle-Late Eocene Xiaganchaigou Formation, the Oligocene Shangganchaigou Formation, the Early Miocene Xiayoushashan Formation, the Late Miocene Shangyoushashan Formation, and the Pliocene Shizigou Formation. A total of 1327 oriented cylinder samples were collected with Portable Rock Core Drills at an average interval of 3~5m and were cut to a height of about 2.2cm in the laboratory. We measured AMS of 591 samples at an average interval of 6~10m using a MFK 1A with an automated sample handling system. The AMS data from the Paleocene Lulehe Formation are scattered with a low shape parameter (T) and foliation (F); the scattered data are likely because of the coarse grain size or strong stress field. However, the K3 has a girdle-shape distribution along the N-S direction, suggesting that a strong stress field was the dominant factor controlling AMS. The AMS data are better grouped for the Middle-Upper Eocene Xiaganchaigou Formation, the Oligocene Shangganchaigou Formation, and the Upper Miocene Shangyoushashan Formation, with K3 clustering around the center of the projection plane. However, the K1 direction changed upsection from mainly N-S to NE-SW. The AMS data from the Upper Miocene Shangyoushashan and Pliocene Shizhigou Formations are also consistent with NE-SW compression. However, the data are scattered and grain sizes are coarser than the Xiaganchaigou and the Shangganchaigou formations. Thus, we can not determine whether the scattered data result from the coarse grain size or strengthened stress field. Our data show a change in AMS orientations between the Middle-Upper Eocene Xiaganchaigou Formation and the Oligocene Shangganchaigou Formation. We interpret the shift in AMS orientations as a reorientation of the stress field during the Late Eocene-Oligocene. This timing is synchronous with the movement of the left-lateral Altyn Tagh Fault, but significantly earlier than the movement of the left-lateral Kunlun Fault. We argue that left-lateral movement of the Altyn Tagh Fault promoted shortening and exhumation in the NW-trending Qilian Shan and Nanshan Mountains, thereby changing the paleostress orientation in the Qaidam Basin. The intensified compression indicated by the northeast-tilted K3 axis in Upper Miocene and younger strata might be related to further movement of the Altyn Tagh Fault, initial movement of the left-lateral Kunlun Fault, or lower crustal flow. In summary, the AMS data reveal that the northern Tibetan Plateau experienced two phases of fault-induced movements and the transition occurred during the Late Eocene-Oligocene. The second phase was intensified after Middle Miocene time. Determination of the timing of this kinematic transition allows us to identify movement of the Altyn Tagh Fault as the ultimate forcing for this important shift in deformation patterns.
Key words: Qaidam Basin     anisotropy of magnetic susceptibility (AMS)     the left-lateral Altyn Tagh Fault     Tibetan Plateau