第四纪研究  2016, Vol.36 Issue (3): 747-757   PDF    
全新世北大西洋海面温度变化趋势:观测-模拟对比研究
焦腾腾 , 李佳瑞 , 陈婕 , 张肖剑 , 靳立亚     
( 兰州大学资源环境学院, 西部环境教育部重点实验室, 兰州 730000)
摘要: 本文利用Kiel Climate Model(KCM模式)对全新世气候的模拟结果及其与北大西洋表层海水温度(sea surface temperature, 简称SST)重建记录的对比, 探讨了全新世北大西洋SST的变化趋势。浮游植物的长链烯酮不饱和度显示低纬北大西洋SST在全新世期间有升高趋势, 而在中纬和高纬地区表现为显著的下降趋势, 尤其是在中纬北大西洋西部, 最大降温幅度达到7.9℃/9.5ka。浮游有孔虫壳体的镁钙比值显示中纬北大西洋东部及高纬北大西洋有增温趋势, 而在中纬北大西洋西部及低纬北大西洋则有降温趋势, 但变化幅度均比较小, 绝大部分在2℃/9.5ka以下。气候模拟结果显示全新世北大西洋SST变化呈现明显的"三核型"经向模态, 在冬春季以增温为主, 降温限于拉布拉多海东南部的北大西洋海域; 在夏秋季以降温为主, 增温限于低纬和高纬北大西洋海域。模拟与重建的对比显示, 中纬和低纬北大西洋的长链烯酮不饱和度指标以及低纬西部的镁钙比指标可能反映夏秋季海温, 中纬北大西洋东部的镁钙比指标可能反映冬春季海温, 而中纬西部和高纬的镁钙比指标可能对4个季节的SST都有所反映。
主题词全新世     北大西洋     海温     代用记录     气候模拟     季节信号    
中图分类号     P725.1,P532,P534.63+2,                    文献标识码    A

1 引言

太阳辐射变化是过去气候变化的主要驱动因素,夏季65°N太阳辐射的变化能够影响北极冰盖的进退, 从而控制全球气候的变化[15]。此外,地球气候系统的复杂反馈机制可以显著地影响地球的辐射平衡,放大(正反馈)或者缩小(负反馈)太阳辐射的强迫效应[6, 7]。其中,海洋反馈过程对气候变化有非常重要的影响,例如北大西洋冷事件, 是全新世气候突变形成的直接原因[810]。因此,研究全新世北大西洋的海温变化对理解全新世气候变化有非常重要的作用。

现代海温资料可以通过船舶、 浮标、 卫星等多种手段观测获得,距今已有350多年历史,为研究现代海洋和大气变化提供了非常重要的数据[11]。但对于研究过去更长时间尺度的气候变化,例如全新世1万年以来的气候变化,这些海温观测记录还远远不够,因此需要利用海洋沉积物中一些替代性指标来重建过去的海温变化[12, 13]。海洋沉积物中浮游植物的长链烯酮不饱和度、 浮游有孔虫壳体的镁钙比值(Mg/Ca)与海水温度密切相关,被广泛用来重建古海温[1420]。长链烯酮不饱和度是存在于沉积物中两种碳链长度均为37的长链烯酮(分别有2个和3个不饱和键)的相对丰度比(U37K′)。U37K′不受海水盐度、 碳酸盐溶解作用和沉积过程地质作用的影响,同时又与表层海水温度存在良好的线性关系,因而被广泛用于定量化重建古海洋表层海水温度(Sea Surface Temperature,简称SST)[13, 21, 22],但U37K′反映的是哪个季节的SST却很不明确[14, 23]。有孔虫壳体的Mg/Ca比值受到周围环境参数的影响,当海水温度升高时更多的Mg会置换碳酸盐中的Ca,使得Mg/Ca比值增加, 所以有孔虫壳体的Mg/Ca比值可以反演海水温度[2426]。但Mg/Ca比值还受到诸如有孔虫属种、 有孔虫繁殖季节性、 个体发育及大小、 壳体沉积过程中的溶解作用和海水盐度等的影响,使得利用Mg/Ca比反演的SST的准确性和季节指示意义都受到影响[25, 26]。目前已有大量利用这两个指标重建的古SST记录,并且其中大部分记录被集成到GHOST(global database for alkenone-derived Holocene SST records)数据库[27]和扩展的GHOST数据库(增加了Mg/Ca记录)[14],这进一步促进了人们对全新世全球和区域气候变化的理解。

不同代用记录重建的古海洋SST在一些区域里存在着一些矛盾和问题。例如,在北大西洋地区利用长链烯酮和Mg/Ca重建的古海洋SST在全新世期间呈现完全相反的变化趋势[14, 23, 28]; 利用长链烯酮重建的SST在低纬和中高纬地区也呈现完全相反的趋势[14]。这种相反的SST变化趋势与轨道参数改变引起的最大太阳辐射季节变化有关,因为太阳辐射季节变化可引起海水状态(如SST)的季节变化, 进而能够显著地改变浮游植物和浮游有孔虫的生长季节[14, 2830]。因此一种SST代用指标在不同海域可能指示不同季节的海水温度,而同一海域里的不同SST代用指标也反映不同季节的海水温度,即代用指标本身对海水状况非常敏感,利用它们重建的SST具有很大的不确定性[31, 32]。因此,充分认识代用指标的指示意义对于我们全面理解全新世北大西洋SST变化非常重要。 气候模式模拟结果与代用记录的对比可以有效减少地质记录指示意义的不确定性[2830, 3336]

本文根据一个全球大气-海洋-海冰耦合气候模式对全新世气候的模拟结果及其与古气候代用记录的对比,分析全新世北大西洋表层海温变化趋势及其可能的影响因素。

资料与方法 2.1 代用资料

为反映全新世北大西洋SST的变化,我们选用GHOST扩展数据库[14]中覆盖全新世大部分时段范围的39个海洋沉积记录(表 1), 其中27个是根据长链烯酮不饱和度指标的重建[3758], 其余12个是根据Mg/Ca的重建[42, 5968]

表 1 全新世北大西洋SST代用记录介绍 Table 1 Summary for proxy records of North Atlantic SSTs used in this study
2.2 数值模拟

气候数值模拟与重建结果的对比是减少重建结果不确定性的重要方法。 本文利用一个全球大气-海洋-海冰耦合的气候模式(Kiel Climate Model,简称KCM)对全新世(9.5~0ka B.P. )气候进行模拟[69, 70]。KCM模式[71]利用ECHAM5模式[72]作为大气模块,通过OASIS3耦合器[73]与海洋-海冰耦合模式NEMO[74]进行耦合。大气模式水平分辨率为T31(3.75°×3.75°),垂直分层共19层; 海洋模式水平分辨率是基于2°的墨卡托网格,赤道地区经向采用 0.5°的加密网格,平均分辨率为 1.3°×1.3°。

KCM模式对全新世的模拟包括早全新世(9.5ka B.P.,即H9K)的平衡态模拟和全新世整个时段(9.5~0ka B.P. )的瞬变模拟(HT)。轨道参数改变引起的太阳辐射变化是全新世气候变化的主要强迫因子[1],其他强迫因子(例如大陆冰盖和温室气体浓度)虽然对全新世气候变化有重要影响,但相对于太阳辐射强迫,这些因子的强迫作用非常小[29],因此,本文的数值模拟只考虑轨道参数改变[75]引起的太阳辐射变化(图 1)的影响。轨道参数数据来源于ftp://ftp.ncdc.noaa.gov/pub/data/paleo/insolation/orbit91,并均匀地插值到模拟的各个时间点(插值程序在http://www.astr.ucl.ac.be/index.php?page=AstronomicalInsolationForcing中下载)。首先,对9.5ka B.P. 在轨道参数的强迫下利用KCM模式积分1000年(H9K); 然后,从H9K试验模拟到最后一年的时间点开始,地球轨道参数从9.5ka B.P. 逐渐变化到0ka B.P.,完成整个全新世的瞬变过程积分试验。全新世整个时段瞬变模拟试验方案采用轨道参数变化的10倍加速技术[76]以节省积分时间。瞬变模拟试验中的温室气体含量采用与H9K试验相同值,均为工业革命前的水平,具体参数见表 2

表 2 KCM全新世模拟边界条件 Table 2 Boundary conditions of Holocene simulation experiment with KCM
图 1 全新世以来轨道参数变化(a)及其引起的不同季节 太阳辐射(W/m2 30°N) 相对于0ka B.P. 的变化(b) [75] Fig. 1 Changes in Earth's orbital parameters (a) and associated insolation changes (W/m2) at 30°N in different seasons (b) during the Holocene. Insolation changes are shown as deviations relative to 0ka B.P. [75]

3 结果分析 3.1 代用记录

图 2a表 1为利用长链烯酮的相对丰度比(U37K′)重建的全新世北大西洋SST变化趋势: 除赤道大西洋(0~15°N) 和地中海东部以外,北大西洋SST在全新世以来呈现显著的下降趋势,尤其在北美东岸的西北大西洋区域降温幅度超过6℃/9.5ka,最大达到7.9℃/9.5ka; 而在赤道大西洋地区(0~15°N),SST变化呈明显相反趋势,出现了0.7~1.5℃/9.5ka的增温现象。基于Mg/Ca重建的全新世北大西洋SST变化趋势(图 2b表 1)与U37K′重建的结果存在显著的差异: 在中纬北大西洋东部和高纬北大西洋是显著的增温趋势,增温幅度在0.7~4.0℃/9.5ka,最大的增温发生在伊比利亚半岛西海岸,达到4℃/9.5ka; 在中纬北大西洋西部和低纬北大西洋则显示略微的降温趋势,降温幅度在0.2~2.0℃/9.5ka,绝大部分在2℃/9.5ka以下。总体来说,Mg/Ca重建的全新世北大西洋SST变化趋势与U37K′重建的结果相反,同时其变化幅度显著小于U37K′的重建结果。

图 2 U37K′(a)和Mg/Ca(b)反映的全新世北大西洋表层海温线性变化趋势(℃/9.5ka) Fig. 2 Alkenone based (a) and Mg/Cabased (b) SST linear trends (℃/9.5ka) during the Holocene (9.5~0ka B.P.) over the North Atlantic

3.2 模拟结果

鉴于代用记录可能存在的季节指示偏差问题[14],我们利用模拟结果分析全新世年际和各个季节SST的变化趋势(图 3)。总体来说,全新世以来年平均SST(图 3a)的变化趋势表现为明显的“三核型”经向模态,在热带大西洋、 副热带大西洋东部以及高纬大西洋(50°~70°N) 有显著的增温趋势,最大增温发生在丹麦海峡,达到2℃/95ka; 在中高纬北大西洋(40°~55°N) 中西部区域有显著的降温趋势,最大降温出现在拉布拉多海东南部的北大西洋海域,达到2℃/9.5ka。从各季节变化来看,冬季(图 3b)SST变化趋势空间模态及变化幅度与春季(图 3c)相似,而夏季(图 3d)则与秋季(图 3e)相似。在冬季和春季,除拉布拉多海东南部的北大西洋海域出现最大达2.4℃/9.5ka左右的降温外,其余海域均出现显著的增温趋势; 而在夏季和秋季,除热带和高纬北大西洋出现增温外,其余均呈现显著的降温趋势,最大增温和降温幅度均为2℃/9.5ka左右。各个季节的SST变化趋势也存在“三核型”经向模态。4个季节中冬季变化趋势最大,春季次之,夏秋季最弱,但各个季节的SST趋势变化幅度相比代用指标要小得多。

图 3 KCM模拟的北大西洋年均(a)、 冬季(b)、 春季(c)、 夏季(d)和秋季(e)表层海温线性变化趋势(℃/9.5ka) Fig. 3 Simulated annual(a),winter(b),spring(c),summer(d), and autumn(e) SST linear trends during the Holocene(℃/9.5ka) over the North Atlantic.

3.3 模拟与代用指标记录的比较

通过对比分析图 2图 3可见,除高纬北大西洋外,U37K′记录与模拟的夏季和秋季SST变化趋势一致,尤其是最大降温都出现在临近北美东部的海域上,但模拟的SST变化(最大降温幅度在2℃/9.5ka左右)远低于代用记录重建的(超过6℃/9.5ka)降温幅度。在高纬北大西洋地区,模拟的4个季节的SST变化趋势与U37K′记录重建的均不一致,而与Mg/Ca记录重建的一致,都显示0~2℃/9.5ka的增温趋势。此外,中纬北大西洋西部的Mg/Ca记录与模拟的4个季节的SST变化趋势一致,都显示降温趋势。如果考虑伊比利亚半岛西海岸的Mg/Ca记录,中、 高纬北大西洋(30°N以北)的Mg/Ca记录与冬季和春季SST变化比较一致。而 30°N以南的北大西洋西部海域的Mg/Ca记录与夏季和秋季的模拟结果相对一致,而东部海域与模拟的4个季节均不一致。

4 讨论 4.1 太阳辐射外强迫对北大西洋海温的可能影响

太阳辐射变化被认为是驱动全新世北大西洋海温变化的一个十分重要的强迫因子[14, 77]。在冬季,北大西洋大部分海域出现增温的趋势(图 3b),响应于持续增加的北半球冬季太阳辐射变化(图 1b); 在夏季,北大西洋大部分海域出现降温的趋势(图 3d),响应于北半球夏季太阳辐射的持续减弱(图 1b)。Leduc等[14]认为北大西洋SST响应于太阳辐射变化,30°N以北的U37K′记录和 30°N以南的Mg/Ca记录可反映夏季SST变化,在全新世呈现下降的变化趋势,响应于持续减小的北半球夏季太阳辐射变化(图 1); 而 30°N以南的U37K′记录和 30°N以北的Mg/Ca记录可反映冬季SST变化,呈现上升的变化趋势,响应于持续增加的北半球冬季太阳辐射变化(图 1)。我们的KCM模拟结果部分印证了Leduc等[14]的结论,即U37K′记录了中纬度北大西洋夏季SST变化,而Mg/Ca记录了中、 高纬度北大西洋冬季SST和低纬度北大西洋西部海域的夏季SST变化。

KCM的模拟结果在验证Leduc等[14]的结论外,还发现北大西洋春季的SST的变化趋势空间模态及变化幅度与冬季基本一致(图 3b3c),而秋季的SST变化趋势空间模态及变化幅度则与夏季非常相似(图 3d3e)。春季太阳辐射的增加趋势小于冬季(图 1b),而秋季太阳辐射在全新世时段没有显著的变化趋势(图 1b),这表明北大西洋SST的持续性较强,冬季和夏季的海温信号可以分别延续到春季和秋季。这一模拟结果可以很好帮助我们理解代用指标如何记录不同季节的海温。对于浮游植物的U37K′记录指示意义的纬度差异,Leduc等[14]解释为可能与浮游植物的爆发生长季节有关; 另外,浮游植物爆发性生长的时间往往很短,在低纬地区(30°N以南),浮游藻类在较低的海温大量爆发,而在中高纬地区(30°N以北),浮游藻类在较高的海温大量爆发[78, 79]。因此,30°N以北的U37K′记录可能反映夏季SST,而 30°N以南的U37K′记录则可能反映冬季SST。然而对于浮游有孔虫壳体的Mg/Ca指标如何记录北大西洋中高纬地区(30°N以北)的SST,Leduc等[14]并没有做出合理的解释。因为以往的研究发现,在副热带和副极地北大西洋浮游有孔虫壳体的钙化过程主要发生在春季和夏季,而很少发生在冬季[31, 32, 80, 81],据此往往认为这个地区的Mg/Ca指标无法记录冬季SST。而我们的模拟结果(图 3b3e)发现太阳辐射外强迫对海温的影响具有穿透季节的效应,浮游有孔虫壳体的Mg/Ca指标可以记录北大西洋中高纬的春季SST,从而反映这个地区的冬季SST变化。

4.2 气候系统内部反馈过程对北大西洋SST的可能影响

北大西洋SST的变化在空间上存在显著的差异,年际和4个季节(春、 夏、 秋、 冬)SST的变化趋势均在空间上呈现“三核型”经向模态。不管哪个季节,SST在赤道大西洋和高纬大西洋均呈现显著的增温。而在拉布拉多海东南部的北大西洋海域,则有明显的降温趋势,并且降温趋势在冬春季(最大2.4℃/9.5ka左右)强于夏秋季(最大2℃/9.5ka左右)(图 3)。Leduc等[14]认为北大西洋SST完全受控于太阳辐射的强迫作用,在冬季表现为一致的增温趋势,而在夏季则显示一致的降温趋势,这与模拟的“三核型”模态不一致。事实上,中纬度北大西洋的Mg/Ca记录也显示了SST变化趋势在空间上存在着纬向上的差异(见图 2b),这个纬向上的空间差异与模拟的“三核型”模态相吻合(图 3b3c),表明这个“三核型”模态很可能是北大西洋SST的一个固有特征,而不是KCM模拟的误差。利用海-气耦合模式KCM模拟的北大西洋SST变化趋势在响应太阳辐射变化时表现出的空间差异性反映了气候系统的内部反馈过程对SST的重要影响。

“三核型” SST经向模态主要是由北大西洋涛动触发和维持的[82],北大西洋涛动是北大西洋地区大气变率的主要模态[83],其在冬季最显著; 而在中高纬北大西洋地区,SST的变化趋势也在冬季最显著,春季次之。Rimbu等[84]发现全新世期间北大西洋SST的第一模态与北大西洋涛动高度耦合,因此,北大西洋涛动很可能对北大西洋SST有重要的调节作用,使得全新世SST变化趋势在空间上呈现“三核型”经向模态。此外,对于低纬北大西洋夏季的增温,模拟研究发现可能与全新世以来北非季风逐渐减弱触发的风-蒸发-海温反馈机制有关[8587]

4.3 温室气体和冰盖的忽略对模拟-记录对比的可能影响

本文的模拟试验只考虑太阳辐射的强迫而忽略了温室气体和冰盖的影响。全新世以来CO2浓度大约从早全新世的260ppmv增加到工业革命前的280ppmv[88, 89],CH4浓度由早全新世的750ppbv减小到中全新世的600ppbv,到晚全新世又反弹回800ppbv左右[90]; 而北美残余冰盖直到7ka B.P. 才消失[91],即冰量在早全新世要多于中晚全新世。本文的KCM模拟试验中,没有考虑早全新世冰盖的反馈作用,这可能会导致模拟的早全新世SST的高估,使SST的降温趋势增加或者增温趋势减小。由本文的模拟-记录对比可见,模式模拟的全新世SST的降温趋势较代用记录重建的SST小。因此KCM模拟的全新世SST变化对温室气体和冰盖两个强迫作用的响应效应的忽略并不影响本文的模拟-记录的对比,而导致模拟的SST的低估可能与KCM模式的结构本身有关。

4.4 北大西洋高纬地区U37K′记录的季节性问题

在北大西洋高纬地区,U37K′记录的SST显示了降温趋势(见图 2a)。Leduc等[14]认为这一区域U37K′指标记录夏季SST,降温趋势主要由减少的夏季太阳辐射驱动,然而这与KCM模拟的4个季节的SST变化趋势都完全相反(见图 3)。这里需要注意的是浮游植物是可游动的[92],而北大西洋高纬地区是大西洋经向翻转流的强烈下沉区域,因此,这一区域的浮游植物可能并不生长在海洋表层。Lohmann等[30]对比了这一区域的U37K′记录与其他模式的模拟结果,发现全新世U37K′记录的变化趋势与模拟的较深层的海水温度变化趋势一致,因此,北大西洋高纬地区的U37K′记录并不反映任何季节的表层海水温度,浮游生物的栖息深度也对代用记录的指示意义有非常重要的影响。

5 结论

本文利用39个北大西洋全新世的SST的重建记录和全球大气-海洋-海冰耦合气候模式KCM在轨道强迫下对全新世的SST模拟资料,探讨了全新世北大西洋SST变化趋势,同时分析了代用记录反演结果的季节信号。

U37K′重建的全新世SST变化趋势与Mg/Ca记录的SST存在显著的差异,Mg/Ca记录的SST变化幅度要显著弱于U37K′的记录。U37K′记录的SST显示,全新世期间北大西洋低纬与中高纬的SST变化存在相反的趋势: 在低纬表现为增温趋势,在中高纬表现为降温趋势,尤其是在临近北美东部的海域上,降温幅度最高达到7.9℃/9.5ka。Mg/Ca记录也显示出明显的空间差异: 在低纬北大西洋海域和中纬北大西洋西部海域呈现降温趋势,但变化幅度均比较小,绝大部分在2℃/9.5ka以下; 在中纬北大西洋东部和高纬北大西洋呈现增温趋势,最高增温幅度达到4℃/9.5ka。

模拟的全新世北大西洋SST在季节变化上存在显著的差异,但在空间分布上4个季节(春、 夏、 秋、 冬)均显示出明显的“三核型”经向模态。在冬、 春季,SST主要表现为增温趋势,降温区域仅局限于拉布拉多海东南部的北大西洋海域。在夏、 秋季,以降温趋势为主,增温区域限于低纬和高纬的北大西洋海域。

记录-模拟对比显示,中纬和低纬北大西洋的U37K′记录以及低纬北大西洋西部的Mg/Ca值可能反映夏、 秋季SST,中纬北大西洋东部的Mg/Ca值可能反映冬、 春季SST,而中纬西部和高纬的Mg/Ca值可能反映4个季节的SST。

在全新世轨道驱动因子作用下,冬季和夏季的太阳辐射对北大西洋相应季节的SST变化趋势有十分重要的影响,此外,大气环流对北大西洋海温有一定的调谐作用,使得北大西洋SST变化趋势在空间上呈现“三核型”经向模态。在时间变化上,北大西洋的SST具有很强的持续性,这使得冬季和夏季的SST空间模态可分别延续至春季和秋季。

致谢: 靳立亚感谢德意志研究联合会(Deutsche Forschungsgemeinschaft,简称DFG)“The Future Ocean”(EXC 80/1)项目的支持; 感谢审稿专家和编辑部老师建设性的修改意见。

参考文献(References)
1 Milankovitch M. Canon of Insolation and the Ice-age Problem(Beograd:Koniglich Serbische Akademie, 1941)English Translation by the Israel Program for Scientific Translations[M]. Washington D C: Published for the US Department of Commerce and the National Science Foundation, 1969 : 1 ~633. (0)
2 李玉霞, 林振山. 基于统计-动力反演的近千年印度夏季风驱动机制探讨[J]. 第四纪研究,2015, 35 (6) : 1437~1449.
Li Yuxia, Lin Zhenshan. Statistical-dynamical inversion model for analyzing the driving mechanism of Indian summer monsoon during the last millennium[J]. Quaternary Sciences,2015, 35 (6) : 1437~1449. (0)
3 罗虎明, 林振山, 李玉霞. 轨道尺度东亚夏季风的动力反演[J]. 第四纪研究,2013, 33 (3) : 603~609.
Luo Huming, Lin Zhenshan, Li Yuxia. The dynamic inversion of orbital-scale East Asian summer monsoon[J]. Quaternary Sciences,2013, 33 (3) : 603~609. (0)
4 马小林, 田军. 15Ma以来海陆记录的轨道-构造尺度东亚季风的演化以及西北内陆的干旱化[J]. 第四纪研究,2015, 35 (6) : 1320~1330.
Ma Xiaolin, Tian Jun. East Asian monsoon evolution and aridification of Northwest China viewed from land and sea on the tectonic-orbital time scale since 15Ma[J]. Quaternary Sciences,2015, 35 (6) : 1320~1330. (0)
5 汪品先, 李前裕, 田军, 等. 从南海看第四纪大洋碳储库的长周期循环[J]. 第四纪研究,2015, 35 (6) : 1297~1319.
Wang Pinxian, Li Qianyu, Tian Jun, et al. Long-term cycles in carbon reservoir of the Quaternary ocean:A perspective from the South China Sea[J]. Quaternary Sciences,2015, 35 (6) : 1297~1319. (0)
6 Ganopolski A, Kubatzki C, Claussen M, et al. The influence of vegetation-atmosphere-ocean interaction on climate during the Mid-Holocene[J]. Science,1998, 280 (5371) : 1916~1919. (0)
7 Liu Z, Otto-Bliesner B, Kutzbach J, et al. Coupled climate simulation of the evolution of global monsoons in the Holocene[J]. Journal of Climate,2003, 16 (15) : 2472~2490. (0)
8 王绍武. 全新世北大西洋冷事件: 年代学和气候影响[J]. 第四纪研究,2009, 29 (6) : 1146~1153.
Wang Shaowu. Holocene cold events in the North Atlantic:Chronology and climatic impact[J]. Quaternary Sciences,2009, 29 (6) : 1146~1153. (0)
9 deMenocal P B. Cultural responses to climate change during the Late Holocene[J]. Science,2001, 292 (5517) : 667~673. (0)
10 邓朝, 汪永进, 刘殿兵, 等. "8.2ka"事件的湖北神农架高分辨率年纹层石笋记录[J]. 第四纪研究,2013, 33 (5) : 945~953.
Deng Chao, Wang Yongjin, Liu Dianbing, et al. The Asian monsoon variability around 8.2ka B.P. recorded by an annually-laminated stalagmite from Mt. Shennongjia, Central China[J]. Quaternary Sciences,2013, 33 (5) : 945~953. (0)
11 Rayner N A, Parker D E, Horton E B, et al. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century[J]. Journal of Geophysical Research,2003, 108 (D14) : 4407~4436. doi: 10.1029/2002JD002670 (0)
12 张会领, 余克服, 施祺, 等. 珊瑚生长率重建西沙海域中晚全新世海温变化[J]. 第四纪研究,2014, 34 (6) : 1296~1305.
Zhang Huiling, Yu Kefu, Shi Qi, et al. Sea surface temperature variations during the Mid-Late Holocene reconstructed by Porites coral growth rates in the Xisha Islands[J]. Quaternary Sciences,2014, 34 (6) : 1296~1305. (0)
13 谢树成, 黄咸雨, 杨欢, 等. 示踪全球环境变化的微生物代用指标[J]. 第四纪研究,2013, 33 (1) : 1~18.
Xie Shucheng, Huang Xianyu, Yang Huan, et al. An overview on microbial proxies for the reconstruction of past global environmental change[J]. Quaternary Sciences,2013, 33 (1) : 1~18. (0)
14 Leduc G, Schneider R, Kim J H, et al. Holocene and Eemian sea surface temperature trends as revealed by alkenone and Mg/Ca paleothermometry[J]. Quaternary Science Reviews,2010, 29 (7~8) : 989~1004. (0)
15 南青云, 李铁刚, 陈金霞, 等. 南冲绳海槽7000a B.P. 以来基于长链不饱和烯酮指标的古海洋生产力变化及其与气候的关系[J]. 第四纪研究,2008, 28 (3) : 482~490.
Nan Qingyun, Li Tiegang, Chen Jinxia, et al. Paleoproductivity variation and its correlation with climate changes:An approach of long-chain alkenone in the South Okinawa Trough since 7000a B[J]. Quaternary Sciences,2008, 28 (3) : 482~490. (0)
16 宋木, 刘卫国, 郑卓, 等. 西北干旱区湖泊沉积物中长链烯酮的古环境意义[J]. 第四纪研究,2013, 33 (6) : 1199~1210.
Song Mu, Liu Weiguo, Zheng Zhuo, et al. Paleoenvironmental implications of long chain alkenones in arid regions, Northwestern China[J]. Quaternary Sciences,2013, 33 (6) : 1199~1210. (0)
17 翦知湣, 王博士, 乔培军. 南海南部晚第四纪表层海水温度的变化及其与极地冰芯古气候记录的比较[J]. 第四纪研究,2008, 28 (3) : 391~398.
Jian Zhimin, Wang Boshi, Qiao Peijun. Late Quaternary changes of sea surface temperature in the southern South China Sea and their comparison with the paleoclimatic records of polar ice cores[J]. Quaternary Sciences,2008, 28 (3) : 391~398. (0)
18 张帅, 李铁刚, 常凤鸣, 等. MIS 6期以来热带西太平洋降雨与ITCZ的关系[J]. 第四纪研究,2015, 35 (2) : 390~400.
Zhang Shuai, Li Tiegang, Chang Fengming, et al. The relationship between the Tropical Pacific precipitation and the ITCZ variation since MIS 6[J]. Quaternary Sciences,2015, 35 (2) : 390~400. (0)
19 罗琼一, 金海燕, 翦知湣, 等. 南海现代浮游有孔虫的垂直分布及其古海洋学意义[J]. 第四纪研究,2015, 35 (6) : 1342~1353.
Luo Qiongyi, Jin Haiyan, Jian Zhimin, et al. Vertical distribution of living planktonic foraminifera in the northern South China Sea and its paleoceanographic implications[J]. Quaternary Sciences,2015, 35 (6) : 1342~1353. (0)
20 张静静, 李宏亮, 陈建芳, 等. 南海沉降颗粒物U37K′指标的影响因素初探[J]. 第四纪研究,2015, 35 (6) : 1354~1365.
Zhang Jingjing, Li Hongliang, Chen Jianfang, et al. Influencing factors of U37K′ index in sinking particles in the South China Sea[J]. Quaternary Sciences,2015, 35 (6) : 1354~1365. (0)
21 Sikes E L, Farrington J W, Keigwin L D. Use of the alkenone unsaturation ratio U37K′ to determine past sea surface temperatures:Core-top SST calibrations and methodology considerations[J]. Earth and Planetary Science Letters,1991, 104 (1) : 36~47. (0)
22 孙青, 储国强. 长链烯酮不饱和度温标研究进展[J]. 地质地球化学,2002, 30 (4) : 63~67.
Sun Qing, Chu Guoqiang. Progress in the study of temperature proxy of alkenone unsaturation[J]. Geology-Geochemistry,2002, 30 (4) : 63~67. (0)
23 Laepple T, Huybers P. Reconciling discrepancies between U37K′ and Mg/Ca reconstructions of Holocene marine temperature variability[J]. Earth and Planetary Science Letters,2013, 375 (8) : 418~429. (0)
24 Nürnberg D, Bijma J, Hemeleben C. Assessing the reliability of magnesium in foraminiferal calcite as a proxy for water mass temperatures[J]. Geochimica et Cosmochimica Acta,1996, 60 (5) : 803~814. (0)
25 李建如. 有孔虫壳体的Mg/Ca比值在古环境研究中的应用[J]. 地球科学进展,2005, 20 (8) : 815~822.
Li Jianru. The application of foraminiferal shell Mg/Ca ratio in paleo-environmental studies[J]. Advances in Earth Science,2005, 20 (8) : 815~822. (0)
26 徐建, 李建如, 乔培军. 有孔虫Mg/Ca温度计研究进展——盐度影响及校正[J]. 地球科学进展,2011, 26 (9) : 997~1005.
Xu Jian, Li Jianru, Qiao Peijun. Progresses in study of foraminiferal Mg/Ca-Thermometer:Salinity effect and its correction[J]. Advances in Earth Science,2011, 26 (9) : 997~1005. (0)
27 Kim J H, Schneider R. GHOST global database for alkenone-derived Holocene sea-surface temperature records(reference list). 2004, Available from:<http://www.pangaea.de/Projects/GHOST> (0)
28 Lorenz S J, Kim J H, Rimbu N, et al. Orbitally driven insolation forcing on Holocene climate trends:Evidence from alkenone data and climate modeling[J]. Paleoceanography,2006, 21 (1) : PA1002. doi: 10.1029/2005PA001152 (0)
29 Schneider B, Leduc G, Park W. Disentangling seasonal signals in Holocene climate trends by satellite-model-proxy integration[J]. Paleoceanography,2010, 25 (4) : PA4217. doi: 10.1029/2009PA001893 (0)
30 Lohmann G, Pfeiffer M, Laepple T, et al. A model-data comparison of the Holocene global sea surface temperature evolution[J]. Climate of the Past,2013, 9 (4) : 1807~1839. (0)
31 Rashid H, Marche B, Vermooten M, et al. Comment on "Asynchronous variation in the East Asian winter monsoon during the Holocene" by Xiaojian Zhang, Liya Jin, and Na Li[J]. Journal of Geophysical Research:Atmospheres,2016, 121 . doi: 10.1002/2015JD023983 (0)
32 Jin Liya, Zhang Xiaojian, Leduc G. Replay to comment by Rashid et al[J]. Journal of Geophysical Research:Atmospheres,2016, 121 . doi: 10.1002/2015JD024270 (0)
33 Otto-Bliesner B L, Schneider R, Brady E C, et al. A comparison of PMIP 2 model simulations and the MARGO proxy reconstruction for tropical sea surface temperatures at Last Glacial Maximum[J]. Climate Dynamics,2009, 32 (6) : 799~815. (0)
34 王志远, 刘健. 过去2000年全球典型暖期特征与机制的模拟研究[J]. 第四纪研究,2014, 34 (6) : 1136~1145.
Wang Zhiyuan, Liu Jian. Modeling study on the characteristics and mechanisms of global typical warm periods over the past 2000 years[J]. Quaternary Sciences,2014, 34 (6) : 1136~1145. (0)
35 严蜜, 王志远, 刘健. 中国过去1500年典型暖期气候的模拟研究[J]. 第四纪研究,2014, 34 (6) : 1166~1175.
Yan Mi, Wang Zhiyuan, Liu Jian. Simulation of the characteristics and mechanisms of Chinese typical warm periods over the past 1500 years[J]. Quaternary Sciences,2014, 34 (6) : 1166~1175. (0)
36 况雪源, 刘健, 王红丽, 等. 近千年来中国气温模拟与重建资料的对比分析[J]. 第四纪研究,2011, 31 (1) : 48~56.
Kuang Xueyuan, Liu Jian, Wang Hongli, et al. Comparison of simulated and reconstructed temperature in China during the last millennium[J]. Quaternary Sciences,2011, 31 (1) : 48~56. (0)
37 Bendle J A P, Rosell-Melé A. High-resolution alkenone sea surface temperature variability on the North Icelandic Shelf:Implications for Nordic Seas paleoclimatic development during the Holocene[M]. The Holocene, 2007 : 9 ~24. (0)
38 Marchal O, Cacho I, Stocker T F, et al. Apparent long-term cooling of the sea surface in the northeast Atlantic and Mediterranean during the Holocene[J]. Quaternary Science Reviews,2002, 21 (4~6) : 455~483. (0)
39 Sachs J P. Cooling of Northwest Atlantic slope waters during the Holocene[J]. Geophysical Research Letters,2007, 34 (3) : L03609. doi: 10.1029/2006GL028495 (0)
40 Herbert T D, Schuffert J D. History of sea surface temperature variations in Cariaco basin over a full glacial-interglacial cycle[J]. Proceedings of the Ocean Drilling Program, Scientific Results,2000, 165 : 239~247. (0)
41 Rühlemann C, Mulitza S, Müller P J, et al. Warming of the tropical Atlantic Ocean and slowdown of thermohaline circulation during the Last Deglaciation[J]. Nature,1999, 402 (6761) : 511~514. (0)
42 Weldeab S, Schneider R R, Müller P. Comparison of Mg/Ca-and alkenone-based sea surface temperature estimates in the fresh water- influenced Gulf of Guinea, Eastern Equatorial Atlantic[J]. Geochemistry, Geophysics, Geosystems,2007, 8 (5) : Q05P22. doi: 10.1029/2006GC001360 (0)
43 Zhao M, Beveridge N A S, Shackleton N J, et al. Molecular stratigraphy of cores off Northwest Africa:Sea surface temperature history over the last 80ka[J]. Paleoceanography,1995, 10 (3) : 661~675. (0)
44 Romero O E, Kim J H, Donner B. Submillennial-to-millennial variability of diatom production off Mauritania, NW Africa, during the Last Glacial cycle[J]. Paleoceanography,2008, 23 (3) : PA3218. doi: 10.1029/2008PA001601 (0)
45 Kuhlmann H, Meggers H, Freudenthal T, et al. The transition of the monsoonal and the N Atlantic climate system off NW Africa during the Holocene[J]. Geophysical Research Letters,2004, 31 (22) : L22204. doi: 10.1029/2004GL021267 (0)
46 Martrat B, Grimalt J O, Shackleton N J, et al. Four climate cycles of recurring deep and surface water destabilizations on the Iberian margin[J]. Science,2007, 317 (5837) : 502~507. (0)
47 Pailler D, Bard E. High frequency paleoceanographic changes during the past 140 000 yr recorded by the organic matter in sediments of the Iberian margin[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2002, 181 (4) : 431~452. (0)
48 Bard E, Rostek F, Turon J L, et al. Hydrological impact of Heinrich events in the subtropical Northeast Atlantic[J]. Science,2000, 289 (5483) : 1321~1324. (0)
49 Rodrigues T, Grimalt J O, Abrantes F G, et al. Holocene interdependences of changes in sea surface temperature, productivity, and fluvial inputs in the Iberian continental shelf(Tagus mud patch)[J]. Geochemistry, Geophysics, Geosystems,2009, 10 (7) : Q07U06. doi: 10.1029/2008GC002367 (0)
50 Kim J H, Rimbu N, Lorenz S J, et al. North Pacific and North Atlantic sea-surface temperature variability during the Holocene[J]. Quaternary Science Reviews,2004, 23 (20~22) : 2141~2154. (0)
51 Cacho I, Grimalt J O, Canals M, et al. Variability of the western Mediterranean Sea surface temperature during the last 25 000 years and its connection with the Northern Hemisphere climatic changes[J]. Paleoceanography,2001, 16 (1) : 40~52. (0)
52 Cacho I, Grimalt J O, Pelejero C, et al. Dansgaard-Oeschger and Heinrich event imprints in Alboran Sea paleotemperatures[J]. Paleoceanography,1999, 14 (6) : 698~705. (0)
53 Martrat B, Grimalt J O, Lopez-Martinez C, et al. Abrupt temperature changes in the western Mediterranean over the past 250 000 years[J]. Science,2004, 306 (5702) : 1762~1765. (0)
54 Emeis K C, Struck U, Blanz T, et al. Salinity changes in the central Baltic Sea(NW Europe)over the last 10 000 years[J]. The Holocene,2003, 13 (3) : 411~421. (0)
55 Emeis K C, Dawson A G. Holocene paleoclimate records over Europe and the North Atlantic[J]. The Holocene,2003, 13 (3) : 305~309. (0)
56 Emeis K C, Struck U, Schulz H M, et al. Temperature and salinity variations of Mediterranean Sea surface waters over the last 16 000 years from records of planktonic stable oxygen isotopes and alkenone unsaturation ratios[J]. Palaeogeography, Palaeoclimatology, Palaeoecology,2000, 158 (3~4) : 259~280. (0)
57 Emeis K C, Schulz H, Struck U, et al. Eastern Mediterranean surface water temperatures and δ 18 O composition during deposition of sapropels in the Late Quaternary[J]. Paleoceanography,2003, 18 (1) : 1005. doi: 10.1029/2000PA000617 (0)
58 Risebrobakken B, Jansen E, Andersson C, et al. A high-resolution study of Holocene paleoclimatic and paleoceanographic changes in the Nordic Seas[J]. Paleoceanography,2003, 18 (1) : 1017. doi: 10.1029/2002PA000764 (0)
59 Thornalley D J R, Elderfield H, McCave I N. Holocene oscillations in temperature and salinity of the surface subpolar North Atlantic[J]. Nature,2009, 457 (7230) : 711~714. (0)
60 Came R E, Oppo D W, McManus J F. Amplitude and timing of temperature and salinity variability in the subpolar North Atlantic over the last 10 k.y[J]. Geology,2007, 35 (4) : 315~318. (0)
61 Farmer E J, Chapman M R, Andrews J E. Holocene temperature evolution of the subpolar North Atlantic recorded in the Mg/Ca ratios of surface and thermocline dwelling planktonic foraminifers[J]. Global and Planetary Change,2011, 79 (3~4) : 234~243. (0)
62 Keigwin L D, Sachs J P, Rosenthal Y, et al. The 8200 year B[J]. Paleoceanography,2005, 20 (2) : PA2003. doi: 10.1029/2004PA001074 (0)
63 Nürnberg D, Ziegler M, Karas C, et al. Interacting Loop Current variability and Mississippi River discharge over the past 400 kyr[J]. Earth and Planetary Science Letters,2008, 272 (1~2) : 278~289. (0)
64 Schmidt M W, Spero H J, Lea D W. Links between salinity variation in the Caribbean and North Atlantic thermohaline circulation[J]. Nature,2004, 428 (6979) : 160~163. (0)
65 Lea D W, Pak D K, Peterson L C, et al. Synchroneity of tropical and high-latitude Atlantic temperatures over the Last Glacial termination[J]. Science,2003, 301 (5638) : 1361~1364. (0)
66 Weldeab S, Lea D W, Schneider R R, et al. 155 000 years of West African monsoon and ocean thermal evolution[J]. Science,2007, 316 (5829) : 1303~1307. (0)
67 Elderfield H, Ganssen G. Past temperature and δ 18 O of surface ocean waters inferred from foraminiferal Mg/Ca ratios[J]. Nature,2000, 405 (6785) : 442~445. (0)
68 Skinner L C, Elderfield H. Constraining ecological and biological bias in planktonic foraminiferal Mg/Ca and δ 18 Occ:A multispecies approach to proxy calibration testing[J]. Paleoceanography,2005, 20 (1) : PA1015. doi: 10.1029/2004PA001058 (0)
69 王宁, 张肖剑, 靳立亚. 千年时间尺度南亚高压和西太平洋副热带高压关系的时空变化特征[J]. 第四纪研究,2015, 35 (6) : 1425~1436.
Wang Ning, Zhang Xiaojian, Jin Liya. The spatial and temporal variation characteristics of the South Asia High and Western Pacific Subtropical High on millennial time scale[J]. Quaternary Sciences,2015, 35 (6) : 1425~1436. (0)
70 Jin Liya, Schneider B, Park W, et al. The spatial-temporal patterns of Asian summer monsoon precipitation in response to Holocene insolation change:A model-data synthesis[J]. Quaternary Science Reviews,2014, 85 (2) : 47~62. (0)
71 Park W, Keenlyside N, Latif M, et al. Tropical Pacific climate and its response to global warming in the Kiel Climate Model[J]. Journal of Climate,2009, 22 (1) : 71~92. (0)
72 Roeckner E, Bäuml G, Bonaventura L et al. The atmospheric general circulation model ECHAM 5. Part Ⅰ:Model description. Hamburg, Germany:Max Planck Institut für Meteorologie, 2003, Report No.349 127, ISSN 0937~1060 (0)
73 Valcke S. OASIS 3 user’s guide(oasis3_prism_2-5), PRISM Technical Report No 3, 6th edition. CERFACS, Toulouse, France. 2006 (Available at http://www.prism.enes.org/Publications/Reports/oasis3_UserGuide_T3.pdf) (0)
74 Madec G. NEMO reference manual, ocean dynamics component:NEMO-OPA. In:Preliminary version:Note du Pole de mod élisation. Paris, France:Institut Pierre-Simon Laplace(IPSL), 2008, No.27, ISSN 1288~1619 (0)
75 Berger A, Loutre M F. Insolation values for the climate of the last 10 million years[J]. Quaternary Science Reviews,1991, 10 (4) : 297~317. (0)
76 Lorenz S J, Lohmann G. Acceleration technique for Milankovitch type forcing in a coupled atmosphere-ocean circulation model:Method and application for the Holocene[J]. Climate Dynamics,2004, 23 (7~8) : 727~743. (0)
77 Liu Z, Brady E, Lynch-Stieglitz J. Global ocean response to orbital forcing in the Holocene[J]. Paleoceanography,2003, 18 (2) : 1041. doi: 10.1029/2002PA000819 (0)
78 Behrenfeld M J, O'Malley R T, Siegel D A, et al. Climate-driven trends in contemporary ocean productivity[J]. Nature,2006, 444 (7120) : 752~755. (0)
79 Bijma J, Altabet M, Conte M, et al. Primary signal:Ecological and environmental factors——Report from Working Group 2[J]. Geochemistry, Geophysics, Geosystems,2001, 2 (1) : 2000GC000051. doi: 10.1029/2000GC000051 (0)
80 Jonkers L, Brummer G-J A, Peeters F J C, et al. Seasonal stratification, shell flux, and oxygen isotope dynamics of left-coiling N[J]. ,2010, 25 (2) : PA2204. doi: 10.1029/2009PA001849 (0)
81 Jonkers L, Jiménez-Amat P, Mortyn P G, et al. Seasonal Mg/Ca variability of N[J]. Earth and Planetary Science Letters,2013, 376 (5) : 137~144. (0)
82 Hurrell J W. Decadal trends in the North Atlantic Oscillation:Regional temperatures and precipitation[J]. Science,1995, 269 (5224) : 676~679. (0)
83 周天军, 宇如聪, 郜永琪, 等. 北大西洋年际变率的海气耦合模式模拟Ⅰ: 局地海气相互作用[J]. 气象学报,2006, 64 (1) : 1~17.
Zhou Tianjun, Yu Rucong, Gao Yongqi, et al. Ocean-atmosphere coupled model simulation of North Atlantic interannual variabilityⅠ:Local air-sea interaction[J]. Acta Meteorologica Sinica,2006, 64 (1) : 1~17. (0)
84 Rimbu N, Lohmann G, Lorenz S J, et al. Holocene climate variability as derived from alkenone sea surface temperature and coupled ocean-atmosphere model experiments[J]. Climate Dynamics,2004, 23 (2) : 215. (0)
85 Kutzbach J E, Liu Z. Response of the African monsoon to orbital forcing and ocean feedbacks in the Middle Holocene[J]. Science,1997, 278 (5337) : 440~443. (0)
86 Liu Z, Otto-Bliesner B, Kutzbach J, et al. Coupled climate simulation of the evolution of global monsoons in the Holocene[J]. Journal of Climate,2003, 16 (15) : 2472~2490. (0)
87 Zhao Y, Braconnot P, Marti O, et al. A multi-model analysis of the role of the ocean on the African and Indian monsoon during the Mid-Holocene[J]. Climate Dynamics,2005, 25 (7~8) : 777~800. (0)
88 Indermühle A, Stocker T F, Joos F, et al. Holocene carbon-cycle dynamics based on CO2 trapped in ice at Taylor Dome, Antarctica[J]. Nature,1999, 398 (6723) : 121~126. (0)
89 刘植, 黄少鹏. 不同时间尺度下的大气CO2浓度与气候变化[J]. 第四纪研究,2015, 35 (6) : 1458~1470.
Liu Zhi, Huang Shaopeng. Multiple time scales of variations of atmospheric CO2 concentration and global climate[J]. Quaternary Sciences,2015, 35 (6) : 1458~1470. (0)
90 Blunier T, Chappellaz J, Schwander J, et al. Variations in atmospheric methane concentration during the Holocene epoch[J]. Nature,1995, 374 (6517) : 46~49. (0)
91 Peltier W R. Global glacial isostasy and the surface of the ice-age earth:The ICE-5G(VM2)model and GRACE[J]. Annual Review of Earth and Planetary Sciences,2004, 32 (12) : 111~149. (0)
92 Conte M H, Sicre M-A, Rühlemann C, et al. Global temperature calibration of the alkenone unsaturation index(U37K′) in surface waters and comparison with surface sediments[J]. Geochemistry, Geophysics, Geosystems,2006, 7 (2) : Q02005. doi: 10.1029/2005GC001054 (0)
Changing trends of sea surface temperatures in the North Atlantic during the Holocene: A study of model-data comparison
Jiao Tengteng, Li Jiarui, Chen Jie, Zhang Xiaojian, Jin Liya     
( Key Laboratory of Western China's Environmental Systems, Ministry of Education, College of Earth Environmental Sciences, Lanzhou University, Lanzhou 730000)

Abstract

Changing trends of the sea surface temperatures (SSTs) in the North Atlantic were analyzed in this study through comparing proxy records and climatic simulation results. Paleo-SST proxy records, including 27 alkenone records and 12 Mg/Ca records, are from the extended global database for alkenone-derived Holocene SST records (GHOST database). Climatic simulation results are from a long-term transient simulation performed with a coupled atmosphere-ocean-sea ice general circulation model, the Kiel Climate Model (KCM), forced by the Earth's orbital variations for the last 9500 years. Other forcing factors such as Greenhouse gas and continental ice sheets have been neglected. Alkenone-derived SSTs exhibit a warming trend in the low-latitude North Atlantic (0~15°N) and a cooling trend in the middle-and high-latitude North Atlantic during the Holocene. The greatest variability in SSTs is seen in the middle-latitude western North Atlantic, with a trend reaching -7.9℃/9.5ka. Mg/Ca-based SSTs show distinct trends from alkenone records with an increasing trend over the middle-latitude eastern and high-latitude North Atlantic and a decreasing trend over middle-latitude western and low-latitude North Atlantic. SST trends derived from Mg/Ca records are much smaller than that from alkenone records. Model results suggest a longitudinal tripole pattern in the linear trends of North Atlantic SSTs during the Holocene for all four seasons, with a center of decreasing trend sandwiched between two centers of increasing trend. North Atlantic SSTs were dominated by a warming trend in winter and spring and a cooling trend in summer and autumn. The cooling trend in winter and spring is distributed only over the southwest of the Labrador Sea, while the warming trend in summer and autumn is mainly distributed in the low-and high-latitude North Atlantic. Model-data comparisons suggest that alkenone records may reflect summer and autumn SSTs in the low-and middle-latitude North Atlantic. Mg/Ca records may represent summer and autumn SSTs in the low-latitude western North Atlantic but winter and spring SST in the middle-latitude eastern North Atlantic. In addition, Mg/Ca records in the middle-latitude western and high-latitude North Atlantic may represent all four seasons' SST. Changing trends of North Atlantic SSTs during the Holocene were greatly affected by winter and summer insolation. North Atlantic SSTs tend to extend their memories from winter to spring and from summer to autumn in response to the insolation forcing. Therefore, Mg/Ca records in the subtropical and subpolar North Atlantic can reflect winter SSTs even if there were no evidence for a calcifying population of planktonic foraminifera being present in winter as planktonic foraminifera records in this area can record spring ocean conditions that receive signal from winter SSTs. In addition, North Atlantic SSTs were modulated by North Atlantic atmospheric circulation that generated a longitudinal tripole pattern in the linear trends of North Atlantic SSTs during the Holocene for all four seasons.
Key words: Holocene     North Atlantic     sea surface temperature     proxy     climate simulation     seasonal signal