第四纪研究  2016, Vol.36 Issue (3): 666-675   PDF    
泥炭沉积分子古气候研究进展
黄咸雨 , 谢树成     
( 中国地质大学(武汉)地球科学学院地理系, 生物地质与环境地质国家重点实验室, 武汉 430074)
摘要: 丰富的有机质、优良的保存条件及活跃的微生物活动, 使得泥炭沉积成为分子古气候重建的重要载体。近20年来, 全球学者开展了较为广泛的泥炭沉积分子古气候研究, 探讨了脂类的来源及其与环境条件的关系, 建立了丰富的分子古气候指标体系。古温度指标包括细菌四醚膜脂的甲基化指数/环化指数(MBT/CBT)、叶蜡脂类单体氢同位素组成、异构脂肪醇指数(BNA15)等; 古水文指标包括叶蜡脂类单体氢同位素差值、藿类通量、陆源三萜烯芳构化指数(AAR)等。利用上述指标, 研究者重建了东亚季风区、北半球北方区末次冰消期以来的古气候变化历史。神农架大九湖是泥炭沉积分子古气候研究开展得早且系统的地点之一, 本文简要地介绍了大九湖分子古气候研究取得的主要进展。前期工作已经充分证明, 与微生物活动有关的脂类指标是泥炭沉积分子古气候研究的重要工具, 值得继续重视; 由于部分指标的多解性以及受生物降解的影响, 需要结合现代过程调查, 查明指标的适用性及响应气候变化的机制; 在系统的现代过程研究的基础上, 逐步建立适用于泥炭沉积的半定量指标; 为了促进泥炭沉积分子古气候学研究的发展, 建议重视新技术的引入与发展, 例如脂类单体稳定碳和氢同位素分析, 以及单体放射性碳同位素分析。
主题词泥炭     分子古气候     脂类     微生物    
中图分类号     P593,P532                    文献标识码    A

1 引言

分子古气候学是指应用有机分子指标开展的古气候学研究[1],所涉及的有机分子来自于生物体,包括高等植物和微生物。这些有机分子在成岩过程中能保存原始的碳骨架而记录原始的生物信息,被称为生物标志物(biomarker)。在较年轻的载体中,生物标志物主要来源于生物脂类,又被称为地质脂类(geolipid,简称脂类)。受益于仪器技术手段的飞速发展,分子古气候研究在近30年得到了迅猛发展,被广泛地应用于海相、 湖相、 洞穴沉积物及黄土-古土壤序列等[2~16]

泥炭地是一类特殊的湿地,在水热条件适宜的条件下有机质的堆积速率超过降解速率,从高纬度地区到赤道地区都有分布[17],是进行全球古气候重建的重要载体之一[18, 19]。全球泥炭地只占陆地面积的3%,但存储了至少30%的土壤有机碳,是全球陆地碳循环的重要场所[20]。得益于较高的有机碳含量,泥炭沉积中保存了含量高且种类丰富的脂类分子。泥炭脂类既来自初级生产者高等植物,还来自微生物。泥炭地滞水、 缺氧的环境适合保存脂类早期成岩转化的中间产物。在泥炭的堆积过程中,环境条件特别是水位是重要的控制因素,因而泥炭沉积是进行分子古气候研究的优良载体。本文对泥炭沉积分子古气候学近20年来的发展状况进行评述,主要从指标体系方面总结取得的主要进展及存在的问题,并对未来的发展趋势提出展望。

2 实验技术简介

分子古气候学研究离不开实验技术。开展泥炭脂类研究,需要了解一些重要的脂类处理步骤及测试技术,主要包括脂类提取、 分离、 定性与定量分析,以及单体碳与氢同位素分析。提取是指将岩石或沉积物中离散的脂类富集起来,目前常用的方法有索氏抽提法、 快速溶剂萃取法及超声提取法[21]。泥炭样品有机质含量非常高,样品需求量很少(通常是1g左右),因而超声提取法被广泛的采用,可以简便快速地处理大批量样品。抽提得到的总脂类是复杂的混合物,包括非极性的烷烃、 芳烃,极性的脂肪酸、 脂肪醇、 醚类等,需要经过一定的分离纯化步骤,常用的是硅胶柱层析法[21]。最终分离得到的非极性组分,主要是正构烷烃、 异构烷烃和环烷烃,可以直接进行仪器测试; 极性组分需要经过衍生化步骤(如硅烷化、 甲酯化、 乙酰化)再进行仪器测试。如果要进行单体碳或氢同位素分析,一些组成复杂的样品还需考虑进一步的分离纯化步骤,如分子筛或尿素络合[21]

在仪器测试方面,通常采用气相色谱仪、 气相色谱-质谱联用仪来进行化合物的定性和定量研究。对于分子量比较大的组分,如四醚膜脂,需要液相色谱-质谱联用仪进行分析。气相色谱-燃烧/热转化-同位素比值质谱仪可以用来测试单个化合物的同位素组成,目前主要是分析单个化合物的碳与氢同位素组成。关于实验技术部分,更详细的资料请参阅文献[21, 22]

3 研究进展 3.1 脂类分布特征与来源

泥炭样品所含脂类非常丰富,既有来自高等植物的正构脂类,如长链正构烷烃、 脂肪醇、 脂肪酮、 脂肪酸; 还有来自微生物的脂类,如藿类(包括藿烷、 藿烯、 藿酸和藿醇)、 四醚膜脂、 短链异构脂肪醇等。泥炭沉积中四醚膜脂(GDGTs)的分布特征参考文献[23],藿类分布特征参考文献[24]图 1是神农架大九湖泥炭沉积正构烷烃、 脂肪酮、 脂肪醇的代表性质量色谱图。

图 1 神农架大九湖泥炭沉积ZK3钻孔正构烷烃、脂肪酮和脂肪醇代表性质量色谱图 根据文献[25]修改; 图上数字代表化合物的碳数 Fig. 1 Selective mass chromatographs of n-alkanes,n-alkan-2-ones and fatty alcohols from the Dajiuhu peat deposit of Shennongjia,Central China,modified from reference[25]. The arabic numbers represent the carbon number of lipids

泥炭沉积中脂类主要来自原地生物贡献[26]。在泥炭沉积中,来自高等植物叶蜡的脂类包括长链正构烷烃、 脂肪醇、 脂肪酸。长链正构烷烃的碳数分布范围是C21~C35,具有明显的奇偶优势; 长链脂肪醇和脂肪酸的碳数分布范围为C22~C30,具有明显的偶奇优势[21]。泥炭藓的正构烷烃组成以nC23和nC25烷为主峰,而维管束植物以nC29和nC31烷为主峰[27, 28]。藿类主要来自细菌[29]。结合非常偏负的单体碳同位素特征,一些藿类如里白烯可以用来指示嗜甲烷菌的贡献[30, 31]。泥炭藓叶片含水细胞中寄生的微生物可以将甲烷氧化成CO2供泥炭藓进行光合作用,这种互惠的寄生活动可以通过同位素标记方法来证实,记录在藿类及特征的磷脂脂肪酸上[32]。在泥炭沉积中,支链GDGTs化合物非常丰富[33],这与泥炭地缺氧的环境相对应。支链GDGTs被认为来自中温酸杆菌[33]。GDGT-0是泥炭沉积中主要的类异戊二烯四醚膜脂,可以用来指示产甲烷古菌的贡献[34]。泉古菌醇(crenarchaeol)主要来自奇古菌门的氨氧化古菌[35]

3.2 分子古气候指标体系 3.2.1 古温度

在所有载体的分子古气候研究中,分子古温度计的研究工作是走在前列的。1986年Brassell等[2]提出了里程碑式的基于长链烯酮的U37K指标,2002年Schouten等[3]提出了基于浮游奇古菌四醚膜脂的TEX86指标。上述古温度计在海洋沉积中得到了良好的应用。陆相方面,2007年Weijers等[6]提出了适合土壤的基于细菌四醚膜脂的甲基化指数/环化指数(MBT/CBT)指标。但烯酮指标不适合于泥炭沉积。古菌和细菌四醚膜脂化合物在泥炭沉积中广泛存在[34~36],但TEX86指标在泥炭沉积中的应用并不成功,MBT/CBT指标在泥炭沉积中的应用也很有限[37, 38],需要进一步探索这些指标的主要影响因素,建立更可靠的适合泥炭沉积的校正公式[39]

除了基于四醚膜脂的古温度指标,叶蜡脂类的单体氢同位素组成在特定的区域也被认为可以充当古温度计。高等植物进行脂类合成的水主要来自大气降水,因而叶蜡脂类氢同位素组成能够记录大气降水的氢同位素组成[40, 41]。在一些地区,如欧洲和北美高纬度地区,大气降水的氢同位素组成与大气温度密切相关,因而这些地区沉积物中保存的叶蜡氢同位素能够用来指示古温度变化[42~44]。在这些地区,叶蜡单体氢的研究工作主要集中在湖泊沉积中,泥炭沉积叶蜡单体氢同位素的研究还比较少。Xie等[45]探讨了英国一处泥炭nC23烷单体氢同位素与过去200年器测温度记录的相似性。在中国东部季风区,叶蜡正构烷烃单体氢同位素的古气候意义还不明确。在红原泥炭沉积中,单个化合物氢同位素的变化与董哥洞石笋氧同位素的变化非常相似[46],也与我们在神农架大九湖重建的古温度记录相似。在台湾岛的一处泥炭沉积,Li等[47]认为nC27和nC29烷单体氢同位素能够反映千年尺度温度的变化。

与高等植物相比,微生物对气候变化的响应往往更灵敏[48],这可以记录在微生物脂类组成中,如上述提到的四醚膜脂古温度指标。我们在开展神农架不同海拔土壤脂肪醇研究中发现,来自微生物的异构脂肪醇与正构脂肪醇的比值和大气温度变化密切相关,由此构建了基于C15脂肪醇的古温度指标异构脂肪醇指数(BNA15)[25]。将该指标运用于大九湖泥炭沉积,建立的过去13ka古温度记录与基于孢粉转化函数得到的古温度记录非常相似,而且基于微生物脂类的分子古温度计能够提供更多的温度变化细节[25]。这种差异可能是由于孢粉集成了大范围的温度信息,而泥炭中脂类主要反映的原地的信号。

3.2.2 古水文条件

泥炭地生长着喜湿的植物,水位的波动也控制着上部泥炭的氧化还原电位及微生物的降解行为,因而泥炭的堆积过程和水文条件的变化密切相关,可以挖掘出非常多的古水文指标,如有壳变形虫组合、 总有机碳同位素组成等[49]。在分子古气候学方面,目前已建立了为数不少的古水文指标。

除了反映古温度变化,脂类单体氢同位素还可以用来反演泥炭地的有效湿度[46, 50, 51]。在北方泥炭地中,泥炭藓和维管束植物是主要的成炭植物。由于泥炭藓缺乏真正的根,它只能利用表层水,而维管束植物可以通过根来利用更深的泥炭水。与浅层的泥炭水相比,表层水更容易受到蒸发作用的影响,表现出偏正的氢同位素组成。因此,可以利用高碳数(如nC29和nC31烷)和中等碳数(nC23烷)单体氢同位素的差值重建泥炭沉积蒸发过程及对应的湿度或降水量的变化历史[50]。在中国东部季风区泥炭沉积中,不同碳数正构烷烃单体氢同位素的差值也可以用来指示有效湿度的变化[46, 51]

泥炭地水位的波动会显著地影响好氧微生物的活性[52]。藿类化合物是一类主要由细菌合成的脂类,是细菌细胞膜的重要组成成分,其功能类似于真核生物中的甾醇。虽然目前已经发现一些兼性厌氧或严格厌氧的细菌可以合成藿类,但在泥炭沉积中,藿类主要由好氧细菌合成。这得到了我们在大九湖泥炭地开展的藿烷环化酶基因(控制藿类合成的关键酶)数据的支持[53]。在偏干的条件下,泥炭表层通气条件得到改善,使得更多的区域能够适宜于好氧细菌的生长; 而在偏湿或水淹的环境中,泥炭表层因水体停滞氧气被快速耗尽而处于缺氧状态,好氧细菌的活性受到抑制。基于这样的认识,我们提出来自好氧细菌的藿类的沉积通量是古水文条件的良好指标[54]。除了藿类,利用微生物和水位之间的关系,基于醚类的指标如细菌GDGTs的含量、 来自产甲烷古菌的archaeol含量等也可以用来指示泥炭地水位的变化[31, 55, 56]

微生物脂类可以用来指示水文条件的变化,微生物调控的高等植物脂类的转换过程也往往与水文条件密切相关[57]。陆源三萜类是被子植物的标志物,广泛的分布于叶片、 树皮中。活体植物主要合成羽扇醇、 香木素等带有极性官能团的三萜类化合物。这些官能团在早期成岩转换过程中极容易丢失,从而转化为三萜烯或其他化合物。我们在大九湖全新世泥炭沉积中识别出了丰富的三萜烯转化产物,主要是芳构化三萜烯[57]和脱A环三萜烯[58],其中芳构化三萜烯包括4个系列。脱A环三萜烯也被检出于东北哈泥泥炭中[59]。芳构化三萜烯通常被认为是受热力作用形成,而我们研究的全新世泥炭沉积热力作用非常弱,因而可以认为主要是微生物活动形成; 进一步,我们发现陆源三萜类化合物的芳构化过程和古水文条件密切相关,在偏干的条件下可以转化成四环甚至五环芳构化产物,而在偏湿的条件下以三环芳构化产物为主。基于此,我们提出可以用来指示古水文条件的变化的陆源三萜类化合物的芳构化指数(AAR)[57]

除了微生物指标,一些与高等植物相关的指标也可以用来指示古水文条件的变化[27]。基于湖相环境中沉水/浮水植物和挺水/陆地植物叶蜡正构烷烃组成差异,Ficken等[60]提出Paq(=(nC23+nC25)/(nC23+nC25+nC29+nC31))来区分物源。沉水/浮水植物具有较高的Paq 值(>0.4),而挺水和陆生高等植物具有较低的Paq 值。在泥炭地中,泥炭藓具有和沉水/浮水植物非常相似的正构烷烃组成,因而Paq 指标也被认为可以指示泥炭藓的贡献[27]。一些学者利用Paq 来重建泥炭沉积古水文条件的变化[61~65]。需要注意的是,泥炭藓正构烷烃的产量比维管束植物至少低一个数量级[66],因而Paq 值有可能低估泥炭藓的贡献。此外,在水热条件良好的区域,值得考虑生物降解是否能影响Paq 值。

图 2 末次冰消期以来泥炭沉积分子古气候重建研究点分布图 Fig. 2 Distributions of the peat deposits applying molecular proxies to reconstruct paleoclimate since the Late Deglaciation

3.2.3 其他

除了上述有较为明确古气候意义的指标,在实际研究过程中还会用到一些其他的指标。这些指标的古气候意义相对模糊,可能受温度和湿度的双重影响。常见的有基于正构脂类的平均碳链长度(ACL)[11, 14]、 奇偶优势指数(CPI)[14]。研究者还建立了基于长链脂肪醇的指标[67, 68]。上述指标的解译需要结合实际情况,比较好的选择是多指标相结合。

正构脂肪酮在泥炭沉积中含量丰富,也被广泛的运用来进行古环境重建,且效果良好[69~72]。不同于其他脂类,正构脂肪酮的来源还存在争议。部分学者认为此类化合物直接由植物体输入,如泥炭藓和维管束植物[69, 73, 74]; 其他的学者则认为正构脂肪酮是其他脂类(如正构烷烃、 脂肪酸和脂肪醇)的转化产物[75, 76]。不论脂肪酮的来源是哪种,在全球泥炭沉积中,正构脂肪酮常常出现一种比较相似的分布模式,以nC27和nC25酮为主。此种分布模式很少出现在已报道的成炭植物正构烷烃中。因此,尚不能排除某种广泛存在的植物或微生物是泥炭沉积中正构脂肪酮的主要来源[77]

叶蜡单体碳同位素已被广泛的用来指示生态系统对气候变化的响应[78],特别是指示C3/C4植物的相对丰度[79]。在泥炭沉积中,叶蜡单体碳同位素的应用还比较有限[80~85]。泥炭地通常发育于湿度相对较高的环境,存在明显的滞水,因而主要是C3植物。与总有机碳同位素相比,目前已经报道的泥炭沉积叶蜡单体碳同位素在全新世时段的变化幅度相对较小(4‰左右)[84, 85],可能同时受相对湿度和植被类型的影响。为了更好地发挥泥炭沉积叶蜡单体碳同位素的古气候意义,需要开发新的途径,例如探索不同碳数碳同位素的差值[84, 85]。一项最新的研究显示,湖相沉积中不同碳数正构烷烃单体碳同位素差值可以很好地响应全新世气候变化[86]

3.3 神农架大九湖分子古气候研究进展

目前已经开展的泥炭沉积分子古气候重建工作主要集中在末次冰消期以来,在研究地区上主要集中于东亚季风区和北半球北方区(图 2),赤道地区和南半球还没有相关的分子古气候报道。其中,神农架大九湖是泥炭沉积分子古气候研究开展得早且系统的地点之一。

2005年5月,我们小组在大九湖获得了长4m的岩芯ZK3(31°28′50″N, 110°00′09″E) 样品,上部2.6m是连续的泥炭沉积。据总有机物加速器 14C 测年并经日历年龄校正,2.6m处的年龄为距今12.9ka[91]。在ZK3岩芯上,我们开展了系统的分子古气候研究,提出了新的古温度指标BNA15[25]和新的古水文指标(藿类沉积通量、 陆源三萜烯芳构化指数AAR)[54, 57]。在此基础上,我们重建了该地区13ka以来的古温度变化及古水文变化[103](图 3),并探讨了古水文变化对江汉平原及相邻区域古文化演变的影响[54],以及研究区域全新世古温度和古水文条件的配置模式[103]。我们发现,在新仙女木事件和早全新世,长江中游地区气候配置以冷湿-暖干模式为主,不同于同期北方的冷干-暖湿模式[91]。尽管古温度与古水文的关系比较复杂,但当温度从一种状态向另一种状态转变时,长江中游地区的干旱程度加剧[103]

图 3 神农架大九湖泥炭沉积13ka以来的古温度和古水文重建序列根据文献[103]修改 Fig. 3 Paleotemperature and paleohydrological records in the Dajiuhu peat deposit of Shennongjia over the last 13ka,modified from reference[103]

除了上述古温度和古水文指标,我们还探讨了其他指标的古气候意义。在早全新世较湿的阶段(距今10ka),我们检测到了富集的长链异构烷烃(主要是2-甲基和3-甲基异构体,具有较重的碳同位素组成[92])、 甾烯[91]和脱A-环三萜烯[58]。这些化合物只在早全新世泥炭快速堆积且较湿的阶段出现,可能与他们的稳定性有关,甾烯和脱A-环三萜烯属于早期成岩转化的中间产物[58, 91],相对不稳定,需要特殊的条件才能保存下来。而具有偏重碳同位素组成的长链异构烷烃则可能和潮湿阶段的特殊生物输入有关[92]

我们在大九湖开展的研究还显示,虽然不同的指标都可以指示泥炭堆积过程中古水文条件的变化,但不同指标的灵敏性存在差异性。与藿类沉积通量相比,陆源三萜烯芳构化指数AAR反映的是一些明显的变化阶段,缺乏更多的细节信息; 而藿类沉积通量则灵敏的记录了干旱期内部的波动性[57]。因此,如果能够进行多指标综合对比,可以获得更可靠的古水文变化信息。

大九湖泥炭沉积分子古气候研究工作得益于对现代过程的充分重视[104]。在藿类研究中,我们开展了藿烷环化酶基因和表层样品中藿类总量与水位关系的研究。目前,我们正在大九湖开展系统的现代过程研究,通过对气象条件(主要是气温、 湿度、 降水量)、 水位、 水化学(pH、 氧化还原电位、 电导率、 溶解氧)和主要离子(磷酸盐、 硫酸盐、 总铁离子、 氨态氮)等的高分辨率监测,查明脂类指标和环境条件的关系及可能的机制,重点关注叶蜡正构烷烃单体碳与氢同位素的古气候意义。

4 存在的问题与研究展望

近20年以来,泥炭沉积分子古气候研究取得了长足的发展,既探讨了经典分子指标在泥炭沉积中的适用性,也建立了适合泥炭沉积的新的古气候指标,并在东亚季风区和欧洲-北美地区末次冰消期以来古气候重建研究中得到了广泛的应用,帮助我们更好地认识相关地区末次冰消期以来的古气候变化历史。在可预见的未来,分子古气候研究将会在更多地区的泥炭沉积中得到广泛的应用。

虽然高等植物是泥炭沉积中有机碳的主要贡献者,但微生物活动伴随着泥炭的堆积过程,因而可以留下丰富的来自微生物的脂类或受微生物活动影响的脂类。这些与微生物活动有关的脂类和环境条件密切相关,是进行泥炭沉积分子古气候重建的优良材料。一些分子指标具有多解性,与温度和湿度都有关系,部分指标还会受到降解过程的影响,因而切忌简单地套用指标,需要慎重考虑指标的适用性,最好是多指标对比。

为了推动泥炭沉积分子古气候研究的快速发展,需要系统的开展现代过程研究。既需要在典型的空间梯度上探讨指标与环境条件的关系,也需要在室内或野外开展模拟实验,探索一些指标和环境条件的半定量关系,同时也更好地认识指标响应气候变化的机制。一些欧洲学者已经开展泥炭地原位升温实验,来检验脂类古温度指标的可靠性[105, 106]

在现代过程研究的基础上,要推动新技术在泥炭沉积分子古气候研究中的应用。例如,可以引入高分辨率有机质谱进行四醚膜脂新化合物鉴定及古气候应用。在完善叶蜡单体碳与氢同位素古气候应用的基础上,探索微生物脂类单体同位素的古气候意义。还需要积极探索脂类单体放射性同位素(单体 14C)在泥炭沉积分子古气候中的应用潜力[81]

致谢: 感谢神农架大九湖国家湿地公园管理局张志麒工程师一直以来的帮助; 感谢杨欢提出的修改建议; 感谢李辉老师帮忙绘图。感谢黄俊华、 顾延生、 秦养民、 陈旭、 王红梅、 喻建新、 朱宗敏、 郑敏、 向武、 程丹丹、 杨欢等老师对野外或室内分析的指导; 感谢薛建涛、 王新欣、 胡玉、 高宇、 宋青伟、 王锐诚、 丁伟华、 郑丽端、 王灿发、 张一鸣等同学在野外采样和室内分析中的辛勤付出; 感谢刘文贵、 贾成玲在单体仪器方面的帮助; 感谢美国密歇根大学Philip A. Meyers教授一直以来的鼓励和帮助; 感谢审稿专家对本文提出的建设性修改意见。

参考文献(References)
1 Eglinton T I, Eglinton G. Molecular proxies for paleoclimatology[J]. Earth and Planetary Science Letters,2008, 275 (1-2) : 1~16. (0)
2 Brassell S C, Eglinton G, Marlowe I T, et al. Molecular stratigraphy:A new tool for climatic assessment[J]. Nature,1986, 320 (6058) : 129~133. (0)
3 Schouten S, Hopmans E C, Schefuβ E, et al. Distributional variations in marine crenarchaeotal membrane lipids:A new tool for reconstructing ancient sea water temperatures?[J]. Earth Planetary Science Letters,2002, 204 (1-2) : 265~274. (0)
4 谢树成, 梁斌, 郭建秋, 等. 生物标志化合物与相关的全球变化[J]. 第四纪研究,2003, 23 (5) : 521~528.
Xie Shucheng, Liang Bin, Guo Jianqiu, et al. Biomarkers and the related global change[J]. Quaternary Sciences,2003, 23 (5) : 521~528. (0)
5 贾国东, 彭平安. 有机生物地球化学与晚新生代古全球变化研究[J]. 地学前缘,2005, 12 (2) : 179~187.
Jia Guodong, Peng Ping'an. Organic biogeochemistry and past global change[J]. Earth Science Frontiers,2005, 12 (2) : 179~187. (0)
6 Weijers J W H, Schouten S, van den Donker J C, et al. Environmental controls on bacterial tetraether membrane lipid distribution in soils[J]. Geochimica et Cosmochimica Acta,2007, 71 (3) : 703~713. (0)
7 Castañeda I S, Schouten S. A review of molecular organic proxies for examining modern and ancient lacustrine environments[J]. Quaternary Science Reviews,2011, 30 (21-22) : 2851~2891. (0)
8 苗忠英, 郑绵平, 张震, 等. 湖相沉积物有机地球化学在古环境研究中的应用[J]. 矿产地质,2014, 33 (5) : 1108~1116.
Miao Zhongying, Zheng Mianping, Zhang Zhen, et al. Application of lacustrine sedimentary organic geochemistry to reconstruction of paleoenvironment[J]. Mineral Deposits,2014, 33 (5) : 1108~1116. (0)
9 李婧婧, 谢树成. 微生物四醚膜脂化合物在湖泊环境中的研究进展[J]. 矿物岩石地球化学通报,2015, 34 (2) : 277~285.
Li Jingjing, Xie Shucheng. Application of microbial membrane tetraether lipids in lacustrine environments:A review[J]. Bulletin of Mineralogy, Petrology and Geochemistry,2015, 34 (2) : 277~285. (0)
10 张静静, 李宏亮, 陈建芳, 等. 南海沉降颗粒物U37K'指标的影响因素初探[J]. 第四纪研究,2015, 35 (6) : 1354~1365.
Zhang Jingjing, Li Hongliang, Chen Jianfang, et al. Influencing factors of U37K' index in sinking particles in the South China Sea[J]. Quaternary Sciences,2015, 35 (6) : 1354~1365. (0)
11 汪亘, 王永莉, 孟培, 等. 东北地区五大连池湖相沉积物正构烷烃和单体碳同位素特征及其古植被意义[J]. 第四纪研究,2015, 35 (4) : 890~900.
Wang Gen, Wang Yongli, Meng Pei, et al. Chemical and compound specific carbon isotopic characteristics of n-alkanes in the Qingshi lacustrine sediments, Wudalianchi, Northeast China, and their paleovegetation significances[J]. Quaternary Sciences,2015, 35 (4) : 890~900. (0)
12 王自翔, 王永莉, 孟培, 等. 泸沽湖沉积物中的铁元素和有机分子记录及其古气候/环境意义[J]. 第四纪研究,2015, 35 (1) : 131~142.
Wang Zixiang, Wang Yongli, Meng Pei, et al. Iron and n-alkanes records and their environmental significance of Lugu Lake, southeastern Tibetan Plateau[J]. Quaternary Sciences,2015, 35 (1) : 131~142. (0)
13 匡欢传, 周浩达, 胡建芳, 等. 末次盛冰期和全新世大暖期湖光岩玛珥湖沉积记录的正构烷烃和单体稳定碳同位素分布特征及其古植被意义[J]. 第四纪研究,2013, 33 (6) : 1222~1233.
Kuang Huanchuan, Zhou Haoda, Hu Jianfang, et al. Variations of n-alkanes and compound-specific carbon isotopes in sediments from Huguangyan Maar Lake during the Last Glacial Maximum and Holocene Optimum:Implications for paleovegetation[J]. Quaternary Sciences,2013, 33 (6) : 1222~1233. (0)
14 崔琳琳, 王旭, 沈吉, 等. 末次盛冰期以来泸沽湖沉积记录的正构烷烃分布特征和单体碳同位素组成及其古植被意义[J]. 第四纪研究,2015, 35 (4) : 901~912.
Cui Linlin, Wang Xu, Shen Ji, et al. Changes in distribution and compound-specific carbon isotope compositions of n-alkanes as recorded in Lugu Lake sediments from Southwestern China since Last Glacial Maximum and implications for paleovegetation evolution[J]. Quaternary Sciences,2015, 35 (4) : 901~912. (0)
15 杨楚鹏, 刘芳, 常晓红, 等. 30ka以来南海东北部陆坡坡底沉积有机质的长链正构烷烃特征及其古植被意义[J]. 第四纪研究,2015, 35 (4) : 881~889.
Yang Chupeng, Liu Fang, Chang Xiaohong, et al. The n-alkane records from sediments in the base of slope(near Abyssal Plain)of the north eastern South China Sea(SCS)over the last 30ka:Implications for paleovegetation[J]. Quaternary Sciences,2015, 35 (4) : 881~889. (0)
16 宋木, 刘卫国, 郑卓, 等. 西北干旱区湖泊沉积物中长链烯酮的古环境意义[J]. 第四纪研究,2013, 33 (6) : 1199~1210.
Song Mu, Liu Weiguo, Zheng Zhuo, et al. Paleoenvironmental implications of long chain alkenones in arid regions, Northwestern China[J]. Quaternary Sciences,2013, 33 (6) : 1199~1210. (0)
17 柴岫. [J]. 泥炭地学,1990 : 1~312.
Chai Xiu. Peatland[J]. Beijing:Geological Publishing House,1990 : 1~312. (0)
18 鲍鲲山, 王国平, 赵红梅, 等. 泥炭沉积与气候变化的泥炭记录[J]. 地层学杂志,2012, 36 (1) : 97~108.
Bao Kunshan, Wang Guoping, Zhao Hongmei, et al. Peat deposits and their evidence of climate changes:A review[J]. Journal of Stratigraphy,2012, 36 (1) : 97~108. (0)
19 张俊辉, 夏敦胜, 张英, 等. 中国泥炭记录末次冰消期以来古气候研究进展[J]. 地球科学进展,2012, 27 (1) : 42~51.
Zhang Junhui, Xia Dunsheng, Zhang Ying, et al. Advances in palaeoclimatic research recorded by peat in China since the Last Deglaciation[J]. Advances in Earth Science,2012, 27 (1) : 42~51. (0)
20 Gorham E. Northern peatlands:Role in the carbon cycle and probable responses to climatic warming[J]. Ecological Applications,1991, 1 (2) : 182~195. (0)
21 谢树成, 殷鸿福, 史晓颖, 等. [J]. 地球生物学——生命与地球环境的相互作用和协同演化,2011 : 44~50.
Xie Shucheng, Yin Hongfu, Shi Xiaoying, et al. Geobiology——Interaction and Co-evolution between Organisms and Environments[J]. Beijing:Science Press,2011 : 44~50. (0)
22 Peters K E, Walters C C, Moldowan J M. The Biomarker Guide(2nd ed.)Vol 1.[M]. Cambridge: Cambridge University Press, 2005 : 1 ~471. (0)
23 Liu X, Leider A, Gillespie A, et al. Identification of polar lipid precursors of the ubiquitous branched GDGT orphan lipids in a peat bog in Northern Germany[J]. Organic Geochemistry,2010, 41 (7) : 653~660. (0)
24 Huang X, Meyers P A, Xue J, et al. Environmental factors affecting the low temperature isomerization of homohopanes in acidic peat deposits, Central China[J]. Geochimica et Cosmochimica Acta,2015, 154 : 212~228. (0)
25 Huang X, Meyers P A, Jia C, et al. Paleotemperature variability in Central China during the last 13ka recorded by a novel microbial lipid proxy in the Dajiuhu peat deposit[J]. The Holocene,2013, 23 (8) : 1123~1129. (0)
26 Farrimond P, Flanagan R L. Lipid stratigraphy of a Flandrian peat bed Northumberland, UK:Comparison with the pollen record[J]. The Holocene,1996, 6 (5) : 69~74. (0)
27 Nichols J E, Booth R K, Jackson S T, et al. Paleohydrologic reconstruction based on n-alkane distributions in ombrotrophic peat[J]. Organic Geochemistry,2006, 37 (11) : 1505~1513. (0)
28 Huang X, Wang C, Zhang J, et al. Comparison of free lipid compositions between roots and leaves of plants in the Dajiuhu peatland, Central China[J]. Geochemical Journal,2011, 45 (5) : 365~373. (0)
29 Rohmer M. Hopanoids. In:Timmis K N ed. Handbook of Hydrocarbon and Lipid Microbiology[M]. Berlin and Heidelberg: Springer-Verlag, 2010 : 133 ~142. (0)
30 Pancost R D, Steart D S, Handley L, et al. Increased terrestrial methane cycling at the Palaeocene-Eocene Thermal Maximum[J]. Nature,2007, 449 (7160) : 332~335. (0)
31 Zheng Y, Singarayer J S, Cheng P, et al. Holocene variations in peatland methane cycling associated with the Asian summer monsoon system[J]. Nature Communications,2014, 5 : 4631. (0)
32 van Winden J F, Kip N, Reichart G J, et al. Lipids of symbiotic methane-oxidizing bacteria in peat moss studied using stable carbon isotope labeling[J]. Organic Geochemistry,2010, 41 (9) : 1040~1044. (0)
33 Weijers J W H, Panoto E, van Bleijswijk J, et al. Constraints on the biological source (s) of the orphan branched tetraether membrane lipids[J]. Geomicrobiology Journal,2009, 26 (6) : 402~414. (0)
34 Huguet A, Fosse C, Laggoun-Defarge F, et al. Occurrence and distribution of glycerol dialkyl glycerol tetraethers in a French peat bog[J]. Organic Geochemistry,2010, 41 (6) : 559~572. (0)
35 Zheng Y, Li Q, Wang Z, et al. Peatland GDGT record of Holocene climatic and biogeochemical responses to the Asian monsoon[J]. Organic Geochemistry,2015, 87 : 86~95. (0)
36 Weijers J W H, Schouten S, Hopmans E C, et al. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits[J]. Environmental Microbiology,2006, 8 (4) : 648~657. (0)
37 Ballantyne A P, Greenwood D R, Sinninghe Damsté J S, et al. Significantly warmer Arctic surface temperatures during the Pliocene indicated by multiple independent proxies[J]. Geology,2010, 38 (7) : 603~606. (0)
38 Zhou Haoda, Hu Jianfang, Ming Lili, et al. Branched glycerol dialkyl glycerol tetraethers and paleoenvironmental reconstruction in Zoigê peat sediments during the last 150 years[J]. Chinese Science Bulletin,2011, 56 (23) : 2456~2463. (0)
39 Weijers J W H, Steinmann P, Hopmans E C, et al. Bacterial tetraether membrane lipids in peat and coal:Testing the MBT-CBT temperature proxy for climate reconstruction[J]. Organic Geochemistry,2011, 42 (5) : 477~486. (0)
40 侯居峙. 湖泊沉积物中生物分子标志物稳定氢同位素在古气候变化研究中的应用[J]. 第四纪研究,2010, 30 (6) : 1209~1217.
Hou Juzhi. Application of the biomarker D/H ratio of lake sediments in paleoclimatic reconstruction[J]. Quaternary Sciences,2010, 30 (6) : 1209~1217. (0)
41 Sachse D, Billault I, Bowen G J, et al. Molecular paleohydrology:Interpreting the hydrogen-isotopic composition of lipid biomarkers from photosynthesizing organisms[J]. Annual Review of Earth and Planetary Sciences,2012, 40 : 221~249. (0)
42 Sachse D, Radke J, Gleixner G. Hydrogen isotope ratios of recent lacustrine sedimentary n-alkanes record modern climate variability[J]. Geochimica et Cosmochimica Acta,2004, 68 (23) : 4877~4889. (0)
43 Thomas E K, McGrane S, Briner J P, et al. Leaf wax δ 2 H and varve-thickness climate proxies from proglacial lake sediments, Baffin Island, Arctic Canada[J]. Journal of Paleolimnology,2012, 48 (1) : 193~207. (0)
44 Shanahan T M, Hughen K A, Ampel L, et al. Environmental controls on the 2 H/1 H values of terrestrial leaf waxes in the eastern Canadian Arctic[J]. Geochimica et Cosmochimica Acta,2013, 119 : 286~301. (0)
45 Xie S, Nott C J, Avsejs L A, et al. Palaeoclimate records in compound-specific δD values of a lipid biomarker in ombrotrophic peat[J]. Organic Geochemistry,2000, 31 (10) : 1053~1057. (0)
46 Seki O, Meyers P A, Yamamoto S, et al. Plant-wax hydrogen isotopic evidence for postglacial variations in delivery of precipitation in the monsoon domain of China[J]. Geology,2011, 39 (9) : 875~878. (0)
47 Li H, Liew P M, Seki O, et al. Paleoclimate variability in central Taiwan during the past 30 kyrs reflected by pollen, δ 13 CTOC, and n-alkane -δD records in a peat sequence from Toushe Basin[J]. Journal of Asian Earth Science,2013, 69 : 166~176. (0)
48 谢树成, 黄咸雨, 杨欢, 等. 示踪全球环境变化的微生物代用指标[J]. 第四纪研究,2013, 33 (1) : 1~18.
Xie Shucheng, Huang Xianyu, Yang Huan, et al. An overview on microbial proxies for the reconstruction of past global environmental change[J]. Quaternary Sciences,2013, 33 (1) : 1~18. (0)
49 Chambers F M, Booth R K, de Vleeschouwer F, et al. Development and refinement of proxy-climate indicators from peats[J]. Quaternary International,2012, 268 : 21~33. (0)
50 Nichols J E, Booth R K, Jackson S T, et al. Differential hydrogen isotopic ratios of Sphagnum and vascular plant biomarkers in ombrotrophic peatlands as a quantitative proxy for precipitation-evaporation balance[J]. Geochimica et Cosmochimica Acta,2010, 74 (4) : 1407~1416. (0)
51 Seki O, Meyers P A, Kawamura K, et al. Hydrogen isotopic ratios of plant wax n-alkanes in a peat bog deposited in Northeast China during the last 16 kyr[J]. Organic Geochemistry,2009, 40 (6) : 671~677. (0)
52 Jaatinen K, Fritze H, Laine J, et al. Effects of short-and long-term water-level drawdown on the populations and activity of aerobic decomposers in a boreal peatland[J]. Global Change Biology,2007, 13 (2) : 491~510. (0)
53 Gong L, Wang H, Xiang X. pH shaping the composition of sqhC-containing bacterial communities[J]. Geomicrobiology Journal,2014, 32 (5) : 433~444. (0)
54 Xie S, Evershed R P, Huang X, et al. Concordant monsoon-driven postglacial hydrological changes in peat and stalagmite records and their impacts on prehistoric cultures in Central China[J]. Geology,2013, 41 (8) : 827~830. (0)
55 Weijers J W H, Schouten S, van der Linden M, et al. Water table related variations in the abundance of intact archaeal membrane lipids in a Swedish peat bog[J]. FEMS Microbiology Letters,2004, 239 (1) : 51~56. (0)
56 Pancost R D, McClymont E L, Bingham E M, et al. Archaeol as a methanogen biomarker in ombrotrophic bogs[J]. Organic Geochemistry,2011, 42 (10) : 1279~1287. (0)
57 Huang X, Xue J, Wang X, et al. Paleoclimate influence on early diagenesis of plant triterpenes in the Dajiuhu Peatland, Central China[J]. Geochimica et Cosmochimica Acta,2013, 123 : 106~119. (0)
58 Huang X, Xie S, Zhang C, et al. Distribution of aliphatic des-A-triterpenoids in the Dajiuhu peat deposit, Southern China[J]. Organic Geochemistry,2008, 39 (12) : 1765~1771. (0)
59 Zheng Yanhong, Zhou Weijian, Liu Zhao, et al. Compositions of aliphatic des-a-triterpenes in the Hani peat deposit, Northeast China and its biological significance[J]. Chinese Science Bulletin,2010, 55 (21) : 2275~2281. (0)
60 Ficken K J, Li B, Swain D L, et al. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes[J]. Organic Geochemistry,2000, 31 (7-8) : 745~749. (0)
61 Zheng Y, Zhou W, Xie S, et al. Lipid biomarkers in the Zoigê-Hongyuan peat deposit:Indicators of Holocene climate changes in West China[J]. Organic Geochemistry,2007, 38 (1) : 1927~1940. (0)
62 Zhou W, Zheng Y, Meyers P A, et al. Postglacial climate-change record in biomarker lipid compositions of the Hani peat sequence, Northeastern China[J]. Earth and Planetary Science Letters,2010, 294 (7-8) : 37~46. (0)
63 Nichols J E, Peteet D M, Christopher M M, et al. Impacts of climate and vegetation change on carbon accumulation in a south-central Alaskan peatland assessed with novel organic geochemical techniuques[J]. The Holocene,2014, 24 (9) : 1146~1155. (0)
64 Zhang Y, Liu X, Lin Q, et al. Vegetation and climate change over the past 800 years in the monsoon margin of Northern China reconstructed from n-alkanes from the Great Hinggan Mountain ombrotrophic peat bog[J]. , . (0)
65 He Y, Zhao C, Zheng Z, et al. Peatland evolution and associated environmental changes in Central China over the past 40 000 years[J]. Quaternary Research,2015, 84 (2) : 255~261. (0)
66 Pancost R D, Baas M, van Geel B, et al. Biomarkers as proxies for plant inputs to peats:An example from a sub-boreal ombrotoropic bog[J]. Organic Geochemistry,2002, 33 (7) : 675~690. (0)
67 Zheng Yanhong, Xie Shucheng, Liu Xiaomin, et al. n-alkanol ratios as proxies of paleovegetation and paleoclimate in a peat-lacustrine core in Southern China since the last deglaciation[J]. Frontiers of Earth Science in China,2009, 3 (4) : 445~451. (0)
68 Zheng Y, Zhou W, Liu Z, et al. The n-alkanol paleoclimate records in two peat deposits:A comparative study of the northeastern margin of the Tibetan Plateau and Northeast China[J]. Environmental Earth Sciences,2011, 63 (1) : 135~143. (0)
69 Ortiz J E, Díaz-Bautista A, Aldasoro J J, et al. n-alkan-2-ones in peat forming plants from the Roñanzas ombrotrophic bog(Asturias, Northern Spain)[J]. Organic Geochemistry,2011, 42 (6) : 586~592. (0)
70 Zheng Y, Zhou W, Liu X, et al. n-alkan-2-one distributions in a Northeastern China peat core spanning the last 16 kyr[J]. Organic Geochemistry,2011, 42 (1) : 25~30. (0)
71 Zheng Y, Zhou W, Meyers P A. Proxy value of n-alkan-2-ones in the Hongyuan peat sequence to reconstruct Holocene climate changes on the eastern margin of the Tibetan Plateau[J]. Chemical Geology,2011, 288 (3-4) : 97~10. (0)
72 López-Días V, Urbanczyk J, Blanco C G, et al. Biomarkers as paleoclimate proxies in peatlands in coastal high plains in Asturias, N Spain[J]. International Journal of Coal Geology,2013, 116 . (0)
73 Nichols J E, Huang Y S. C23-C31 n-alkan-2-ones are biomarkers for the genus Sphagnum in freshwater peatlands[J]. Organic Geochemistry,2007, 38 (11) : 1972~1976. (0)
74 Ronkainen T, McClymont E L, Väliranta M, et al. The n-alkane and sterol composition of living fen plants as a potential tool for palaeoecological studies[J]. Organic Geochemistry,2013, 59 : 1~9. (0)
75 Duan Y, Ma L. Lipid geochemistry in a sediment core from Ruoergai Marsh deposit(eastern Qinghai-Tibet Plateau, China)[J]. Organic Geochemistry,2001, 32 (12) : 1429~1442. (0)
76 Jansen B, Nierop K G J. Methyl ketones in high altitude Ecuadorian Andosols confirm excellent conservation of plant-specific n-alkane patterns[J]. Organic Geochemistry,2009, 40 (1) : 61~69. (0)
77 López-Dias V, Blanco C G, Bechtel A, et al. Different source of n-alkanes and n-alkane-2-ones in a 6000cal[J]. , . (0)
78 Hughen K A, Eglinton T I, Xu L, et al. Abrupt tropical vegetation response to rapid climate changes[J]. Science,2004, 304 (5679) : 1955~1959. (0)
79 Tipple B J, Pagani M. A 35 Myr North American leaf-wax compound-specific carbon and hydrogen isotope record:Implications for C4 grasslands and hydrological cycle dynamics[J]. Earth and Planetary Science Letters,2010, 299 (1-2) : 250~262. (0)
80 Ficken K J, Barber K E, Eglinton G. Lipid biomarker, δ ó13 C and plant macrofossil stratigraphy of a Scottish montane peat bog over the last two millennia[J]. Organic Geochemistry,1998, 28 (3-4) : 217~237. (0)
81 Pancost R D, van Geel B, Baas M, et al. δ 13 C values and radiocarbon dates of microbial biomarkers as tracers for carbon recycling in peat deposits[J]. Geology,2000, 28 (7) : 663~666. (0)
82 Ishiwatari R, Fujino N, Brincat D, et al. A 35 kyr record of organic matter composition and δ 13 C of n-alkanes in bog sediments close to Lake Baikal:Implications for paleoenvironmental studies[J]. Organic Geochemistry,2009, 40 (1) : 51~60. (0)
83 Nichols J E, Walcott M, Bradley R, et al. Quantitative assessment of precipitation seasonality and summer surface wetness using ombrotrophic sediments from an Arctic Norwegian peatland[J]. Quaternary Research,2009, 72 (3) : 443~451. (0)
84 Yamamoto S, Kawamura K, Seki O, et al. Environmental influences over the last 16ka on compound-specific δ 13 C variations of leaf wax n-alkanes in the Hani peat deposit from the Northeast China[J]. Chemical Geology,2010, 277 (3-4) : 261~268. (0)
85 Yamamoto S, Kawamura K, Seki O, et al. Paleoenvironmental significance of compound-specific δ 13 C variations in n-alkanes in the Hongyuan peat sequence from Southwest China over the last 13ka[J]. Organic Geochemistry,2010, 41 (5) : 491~497. (0)
86 Jia G, Bai Y, Yang X, et al. Biogeochemical evidence of Holocene East Asian summer and winter monsoon variability from a tropical maar lake in Southern China[J]. Quaternary Science Reviews,2015, 111 : 51~61. (0)
87 Zhou W, Xie S, Meyers P A, et al. Reconstruction of late glacial and Holocene climate evolution in Southern China from geolipids and pollen in the Dingnan peat sequence[J]. Organic Geochemistry,2005, 36 (9) : 1272~1284. (0)
88 Zheng Yanhong, Zhou Weijian, Xie Shucheng, et al. A comparative study of n-alkane biomarker and pollen records:An example from Southern China[J]. Chinese Science Bulletin,2009, 54 (6) : 1065~1072. (0)
89 朱芸, 雷国良, 姜修洋, 等. 晚全新世以来福建仙山泥炭钻孔的正构烷烃记录[J]. 第四纪研究,2013, 33 (6) : 1211~1221.
Zhu Yun, Lei Guoliang, Jiang Xiuyang, et al. Late Holocene organism records from peat n-alkanes of Xianshan Mountian in Fujian Province, Southeast China[J]. Quaternary Sciences,2013, 33 (6) : 1211~1221. (0)
90 杨桂芳, 谢树成, 黄俊华, 等. 天目山泥炭类脂物记录的微生物特征和植被演替[J]. 地学前缘,2008, 15 (4) : 170~177.
Yang Guifang, Xie Shucheng, Huang Junhua, et al. Microbial characteristics and vegetation changes as recorded in lipid biomarker of Tianmushan peat bog[J]. Earth Science Frontiers,2008, 15 (4) : 170~177. (0)
91 Huang X, Meyers P A, Huang J, et al. Moisture conditions during the Younger Dryas and the Early Holocene in the middle reaches of the Yangtze River, Central China[J]. The Holocene,2012, 22 (12) : 1473~1479. (0)
92 Huang X, Meyers P A, Xue J, et al. Cryptic abundance of long-chain iso and anteiso methylalkanes in the Dajiuhu peat deposit[J]. Organic Geochemistry,2014, 66 : 137~139. (0)
93 郑艳红, 周卫健, 谢树成. 若尔盖高原全新世气候序列的类脂分子化石记录[J]. 第四纪研究,2007, 27 (1) : 108~113.
Zheng Yanhong, Zhou Weijian, Xie Shucheng. Fossil records of lipid molecules from Holocene peat on Zoigê Plateau[J]. Quaternary Sciences,2007, 27 (1) : 108~113. (0)
94 周静, 张平中, 贾继红, 等. 甘南郎木寺中全新世泥炭总有机碳和脂类分子化合物的组合特征[J]. 第四纪研究,2008, 28 (4) : 754~761.
Zhou Jing, Zhang Pingzhong, Jia Jihong, et al. Combined characteristic of total organic carbon and lipid compounds from Middle Holocene peat in Langmusi, southern Gansu[J]. Quaternary Sciences,2008, 28 (4) : 754~761. (0)
95 Ortiz J E, Torres T, Delgado A, et al. The palaeoenvironmental and palaeohydrological evolution of Padul peat bog(Granada, Spain)over one million years, from elemental, isotopic and molecular organic geochemical proxies[J]. Organic Geochemistry,2004, 35 : 1243~1260. (0)
96 Ortiz J E, Gallego J L R, Torres T, et al. Palaeoenvironmental reconstruction of Northern Spain during the last 8000cal yr BP based on the biomarker content of the Roñanzas peat bog(Asturias)[J]. Organic Geochemistry,2010, 41 (5) : 454~466. (0)
97 López-Dias V, Borrego Á G, Blanco C G, et al. Biomarkers in a peat deposit in Northern Spain(Huelga de Bayas, Asturias)as proxy for climate variation[J]. Journal of Chromatography A,2010, 1217 : 3538~3546. (0)
98 Pancost R D, Baas M, van Geel B, et al. Response of an ombrotrophic bog to a regional climate event revealed by macrofossil, molecular and carbon isotopic data[J]. The Holocene,2003, 13 (6) : 921~932. (0)
99 Xie S, Nott C J, Avsejs L A, et al. Molecular and isotopic stratigraphy in an ombrotrophic mire for palaeoclimate reconstruction[J]. Geochimica et Cosmochimica Acta,2004, 68 (13) : 2849~2862. (0)
100 Xie Shucheng, Evershed Richard P. Peat molecular fossils recording paleoclimatic change and organism replacement[J]. Chinese Science Bulletin,2001, 46 (20) : 1749~1752. (0)
101 Andersson R A, Kuhry P, Meyers P A, et al. Impacts of paleohydrological changes on n-alkane biomarker compositions of a Holocene peat sequence in the Eastern European Russian Arctic[J]. Organic Geochemistry,2011, 49 : 1065~1075. (0)
102 Schemmel F, Niedermeyer E M, Schwab V F, et al. Plant wax δD values record changing Eastern Mediterranean atmospheric circulation patterns during the 8[J]. Quaternary Science Reviews,2016, 133 : 96~107. (0)
103 谢树成, 胡超涌, 顾延生, 等. 最近13ka以来长江中游古水文变化[J]. 地球科学——中国地质大学学报,2015, 40 (2) : 198~205.
Xie Shucheng, Hu Chaoyong, Gu Yansheng, et al. Paleohydrological variation since 13ka BP in middle Yangtze region[J]. Earth Science——Journal of China University of Geosciences,2015, 40 (2) : 198~205. (0)
104 秦养民, 王翰林, 张千帆, 等. 长江中游泥炭湿地有壳变形虫空间分布及其对水化学因子的响应[J]. 第四纪研究,2013, 33 (1) : 26~33.
Qin Yangmin, Wang Hanlin, Zhang Qianfan, et al. Response of testate amoebae community to water chemistry in peatlands near the middle reach of Yangtze River[J]. Quaternary Sciences,2013, 33 (1) : 26~33. (0)
105 Huguet A, Fosse C, Laggoun-Défarge F, et al. Effects of a short-term experimental microclimate warming on the abundance and distribution of branched GDGTs in a French peatland[J]. Geochimica et Cosmochimica Acta,2013, 105 : 294~315. (0)
106 Huguet A, Francez A J, Jusselme M D, et al. A climatic chamber experiment to test the short-term effect of increasing temperature on branched GDGT distribution in Sphagnum peat[J]. Organic Geochemisry,2014, 73 : 109~112. (0)
An overview of the molecular paleoclimate in peat deposits
Huang Xianyu, Xie Shucheng     
( State Key Laboratory of Biogeology and Environmental Geology, Department of Geography, School of Earth Sciences, China University of Geosciences(Wuhan), Wuhan 430074)

Abstract

Owing to their higher organic matter concentrations, anaerobic conditions, and abundant microbial populations, peat deposits serve as important archives for molecular paleoclimate reconstructions. For several decades, researchers have investigated the distribution patterns and origins of lipids in peat deposits, considered their relationships with environmental factors, and established a number of molecular paleoclimate proxies. Among these, proxies for paleotemperature reconstructions include the tetraether-derived methylation index/cyclisation ratio(MBT/CBT), leaf wax δD values, and the branched fatty alcohol ratio(BNA15). Paleohydrological proxies include the δD offsets between individual leaf waxes, the hopanoid fluxes, and the average aromatic ring(AAR)contents. Based on these molecular proxies, histories of paleoclimate evolution since the Late Deglaciation have been reconstructed in the East Asian monsoon regions, and the boreal region of the Northern Hemisphere. As a representative site, we outlined the progresses in molecular paleoclimate reconstructions over the last decade in the Dajiuhu peat deposit, Central China. These studies clearly prove that molecular proxies, especially those related to microbial activities, are powerful tools for paleoclimate reconstructions. However, more studies are needed to fully understand the fidelities of molecular proxies and the underlying mechanisms that associate them with the climate changes, especially through the investigations of modern processes in peatlands. Furthermore, this field still needs to develop new techniques, to identify new biomarkers, to constrain the lipid sources and proxy fidelities of lipid proxies, and to establish new proxies.
Key words: peat     molecular paleoclimate     lipids     geomicrobes