第四纪研究  2016, Vol.36 Issue (2): 347-353   PDF    
西安蓝田S4古土壤剖面中针铁矿富集层与土壤古水分研究
赵景波①②, 罗小庆, 刘瑞, 刘秀铭④⑤, 杜娟    
(① 陕西师范大学旅游与环境学院, 西安 710062;
② 中国科学院地球环境研究所, 黄土与第四纪地质国家重点实验室, 西安 710075;
③ 武警工程大学基础部, 西安 710086;
④ 福建师范大学地理科学学院, 福建省湿润亚热带山地生态重点实验室——省部共建国家重点 实验室培育基地, 福州 350007;
⑤ Department of Environment and Geography, Macquarie University, Sydney NSW 2109, Australia)
摘要    利用野外调查与观察、电镜观察和X-射线衍射法,对西安市蓝田县白鹿塬东端安村北约1km的第四纪黄土-古土壤剖面(34°17'N,109°32'E)中第4层古土壤(S4)的铁锰结核样品进行了实验分析。整个S4古土壤风化剖面厚度为5.6m,粘化层的厚度为1.5m,在S4古土壤层下部5.0~5.6m深度范围发现了具有指示当时土壤水分含量、地下水富集、水分循环等作用的针铁矿(α-FeO(OH))与铁锰结核富集层。针铁矿呈褐黄色薄膜分布于土体表面。含针铁矿的铁锰结核呈黑褐色球形,电镜下主要呈颗粒状、球形和呈菊花形等形态。针铁矿和铁锰结核呈层分布在同一层位,形成于当时的地下水位附近。在铁锰结核样品中,针铁矿含量为0.9%~3.3%,粘土矿物伊利石含量为6.0%~15.5%,高岭石含量为2%~5%,石英含量为61.1%~66.6%,斜长石含量10%~16.4%,钾长石含量3.8%~6.0%。针铁矿与铁锰结核的发育和迁移深度指示,在西安蓝田安村附近S4古土壤发育时期,年降水量至少为900mm,且重力水分布深度达到了5.6m,5.6m深度范围内的含水量大于25%,在针铁矿和铁锰结核发育层位,含水量接近饱和。当时土壤水分含量很充足,土壤水分平衡为正,有较多水分补给地下水,适于茂盛森林植被发育。研究显示,组成铁锰结核的物质成分来自S4古土壤粘化层中高价铁锰氧化物迁移,并随着地下水位的升降而发生还原和氧化聚集形成。
主题词     针铁矿    铁锰结核    Fe2O3迁移    土壤古含水量    水分平衡    西安蓝田    
中图分类号     P534.63;S151.9+2                    文献标识码    A

过去对中国黄土高原中部和北部的黄土与气候变化开展了大量研究[1, 2, 3, 4, 5, 6, 7, 8, 9, 10],取得了引人注目的成果。对关中地区的西安[11, 12]、 渭南[13, 14]等地的黄土与气候变化也开展了许多研究。近年来,对黄土水理性质和工程性质与第四纪气候变化的关系以及碳同位素与植被也进行了一定研究[15, 16, 17, 18, 19, 20, 21, 22],并取得了新的研究成果。过去对关中平原S4古土壤的成壤强度及气候环境等问题进行了研究,认为该区S4是在亚热带湿润气候条件下形成的,当时年均温可能比现今该区高4-6℃,年均降水量多200-300mm[3]。虽然过去对中国黄土与古土壤进行了大量研究,但在中国北方的黄土与古土壤序列中尚未见有发现铁锰结核的报到,未见有对古土壤发育时土壤含水量和水分存在形式以及水分循环研究成果的发表。尽管过去对黄土与古土壤中的针铁矿与气候干湿[23, 24, 25]以及磁性矿物的转化[26, 27]进行过研究,但也没有发现宏观可见的针铁矿的明显富集,没有分析针铁矿与土壤含水量的关系。

前人对欧洲、 中亚和美洲黄土也开展了许多研究[28, 29, 30, 31, 32, 33],但研究的主要是物质组成、 年代与环境、 气候变化,没有对土壤古水分含量进行研究,在黄土与古土壤序列中也未见有发现铁锰结核与针铁矿聚集层位的报道。

本文根据在蓝田安村S4古土壤剖面中发现的针铁矿和铁锰结核的研究,揭示针铁矿、 铁锰结核与土层含水量的关系,探讨西安地区S4古土壤发育时的土壤含水量和水分循环等过去涉及很少的环境变化问题。

1 研究剖面概况与方法

发现铁锰结核的剖面(34°17′N,109°32′E) 位于西安市蓝田县城西约5km的白鹿塬最东端(图1),距安村北约1km。过去的研究表明,白鹿塬第四纪黄土-古土壤发育完整,从早更新世黄土到全新世黄土总厚度约125m[34],从S5古土壤底界到全新世黄土顶界厚度约28m。该剖面中,从上向下第5层红色古土壤(S5)由3层构成,厚约4.5m,第4层古土壤(S4)的确定是以标志性的S5古土壤为依据,由此确定紧邻其上的古土壤为S4。S4古土壤风化剖面厚度为5.6m,粘化也较强,粘化层厚1.5m。

图1 研究剖面位置 Fig.1 Location of section studied

本文采用的研究方法包括野外调查和观测、 电镜观察、 X-射线衍射分析。在第4层古土壤(S4)的铁锰结核层采集铁锰结核样品10个,其中4个样品用于X-射线衍射,6个样品用于电镜观察。电镜观察是首先把样品制成直径5mm左右厚度2mm左右的薄片,之后喷金,然后在电镜下观察。X-射线衍射分析是首先把样品研磨成粉末,用直径0.05mm铜筛选出小于0.05mm的颗粒样品,之后用X-射线衍射仪进行分析。X-射线衍射电压为40 kv,电流为200mA。电镜观察分析是在陕西师范大学完成的,X-射线衍射是在西安地质矿产研究所进行的。

2 结果与分析 2.1 第4层古土壤剖面分层、 针铁矿与铁锰结核分布

通过调查和观察发现,西安蓝田安村发育针铁矿与铁锰结核层的S4古土壤风化剖面厚5.6m,可分为3层(图2),由上向下: 第1层是红色古土壤粘化层(Bts),厚约1.5m; 第2层是含有丰富铁锰胶膜的风化淋滤黄土层(Cs),厚约3.5m; 第3层是含有针铁矿和铁锰结核的风化淋滤黄土层(Ce),厚约0.6m。第3层颜色不均,呈黄褐色,含有灰褐色斑块,铁锰结核密集分布,每5-10cm可见铁锰结核1个,结核呈灰黑色和灰褐色,直径一般为2-4mm。再向下是第5层红色古土壤(S5)。从S4古土壤顶部到第5层黄土底部,均没有CaCO3结核淀积层出现,表明CaCO3在强烈的淋溶作用下已经流失。在针铁矿与铁锰结核发育层位,由于红色铁质胶膜大多已转化为褐黄色的针铁矿,所以红色胶膜较少存在。

图2 西安蓝田第4层古土壤(S4)风化剖面分层、 针铁矿与铁锰结核分布 (a)S4古土壤风化剖面分层;(b)S4古土壤粘化层之下风化淋滤黄土层中的红色铁质胶膜;(c)褐黄色薄膜状针铁矿;(d)黑褐色铁锰结核 Fig.2 Subdivision of S4 paleosol section and distribution of goethite and ferromanganese nodules
2.2 铁锰结核的矿物结晶形态和超微结构

6个铁锰结核样品的电镜观察可知,铁锰质结核主要以胶体形式出现,但也有的铁锰质结核结晶较好。结晶较好的铁锰质结核主要呈较规则的颗粒状(图3a),集合体呈球形; 另一种结晶的球形集合体形态表面呈菊花状(图3b)。晶体颗粒非常细小,在5000倍的电镜下才能够看清楚微小的晶体颗粒。未结晶的铁锰结核几乎都呈无定形的胶体形态,呈条带状具有一定的定向分布特点(图3c)。

图3 针铁矿和铁锰结核超微结构 (a)铁锰结核的结晶形态,呈结晶粒状超微结构;(b)铁锰结核由结晶的呈菊花形的超微结构; (c)未结晶胶体形态的铁锰质结核的超微结构,呈条带状具有定向分布的特点 Fig.3 Ultra microstructure of goethite and ferromanganese nodules
2.3 针铁矿含量与铁锰结核的矿物组成

4个铁锰结核样品的X-射线衍射结果显示,铁锰结核中含有0.9%-3.3%的针铁矿(表1图4)。由于X-射线衍射确定的成分属于结晶的成分,而铁锰质结核主要是未结晶的胶体物质,所以X-射线衍射确定的铁锰矿物含量不高。衍射曲线显示,铁锰结核样品中碎屑矿物以石英为主,含量在61.1%-66.6%; 其次为斜长石,含量在10.0%-16.4%; 钾长石在碎屑矿物中占第3位,含量在3.8%-6.0%。粘土矿物以伊利石为主,含量在6.0%-15.5%(图4表1); 其次为高岭石,含量在2.0%-5.0%。

图4 西安蓝田S4古土壤的铁锰结核X-射线衍射曲线 Fig.4 X-ray diffraction curves of ferromanganese nodules in S4 paleosol

表1 X-射线衍射确定的铁锰结核的矿物组成(%) Table 1 Mineral composition of ferromanganese nodules determined by X-ray diffraction(%)
3 讨论 3.1 S4古土壤下部铁锰结核与针铁矿的形成条件

一般认为,地下水水位的季节性升降变化是铁锰结核形成的外在条件,氧化还原反应是其形成的内在本质[35, 36]。傅桦和丁瑞兴[36]、 李雪等[37]研究江淮地区的铁锰结核认为,江淮地区的结核成因与东北地区相同,主要成因是由于水分集中于土壤表层,并经常处于干湿交替状态。当土体上部水分饱和或临时积水时,铁锰被还原而随水分下渗迁移; 当表层水分减少时,土壤处于氧化状态,未被淋失的铁锰因氧化而就地以结核的形式固定下来。湘南地区的研究表明,红土型铁锰矿的结核状矿石主要分布在潜水面附近[37]。一般认为,铁锰结核是在土壤渍水还原条件下,铁锰氧化物还原形成Fe2+、 Mn2+,在MnO2存在的催化作用下,Fe2+快速氧化并沉积在MnO2的表面,随着旱季土壤的变干,周围的活性Fe2+、 Mn2+又被氧化沉积在MnO2表面,干湿交替和氧化与还原反复进行,就形成了铁锰结核[36, 37]。国外研究表明[38, 39],铁锰物质的运移、 富集要求温湿的气候和土壤饱水-干燥过程。雨季土壤富水时,铁锰还原成2价,随地下水运移到地下水面附近[38],旱季时地下水位下降,土壤透气性良好,铁锰氧化成高价氧化物,聚集而成各种结核[38]

由此可见,铁锰结核的形成需要还原和氧化交替的条件,这种条件一般出现在紧靠地下水位附近或含水量高的土壤中上部,雨季为水分饱和,处于还原条件,旱季位于地下水位之上,处于氧化环境。

在S4古土壤铁锰结核中针铁矿的普遍存在(表1)也表明当时有饱和水分的出现。针铁矿是分布较广的一种水合铁氧化物,针铁矿化学组成为α-FeO(OH)。在S4古土壤铁锰结核富集层位,也是铁锰胶膜大量减少的层位,表明铁锰结核是铁锰胶膜转变而成的。然而高价铁锰氧化物是以胶体形式存在的,迁移很缓慢[40],一般沿着裂隙和孔道迁移(图2b),分散分布,很难形成球形和椭球形结核。由此可以推断,在S4古土壤高价铁锰氧化物缓慢向下迁移到达饱水层时,由于出现了还原环境,高价铁锰氧化物就转变成了低价的Fe2+、 Mn2+,使得它们的迁移能力大大增强,但在旱季地下水位下降时,低价铁锰就被氧化为高价氧化物,同时发生聚集形成了含针铁矿的高价铁锰氧化物结核。

调查资料显示,蓝田安村剖面附近S4古土壤中的铁质胶膜迁移深度为5.6m,比年均温度16℃、 年降水量1000mm左右条件下发育的江苏六合现代黄棕壤铁质胶膜迁移深度[41]还略大,由此确定该区当时年降水量至少达到了900余mm。

3.2 蓝田S4古土壤发育时的土壤水存在形式与含量

研究古土壤发育时的土壤含水量与存在形式对揭示第四纪水循环有重要科学意义。过去对古土壤发育时土壤含水量研究很少,原因是没有建立可直接利用的古水分含量指标。在蓝田S4古土壤风化剖面中,铁锰质胶膜从该层古土壤粘化层底部一直分布到S5古土壤层的顶部,分布深度达到了5.6m。铁锰质胶膜是不可溶解的胶体物质,它们的迁移除了要求酸性的土壤介质条件之外,还要求流动明显的重力水条件[40, 42],重力水的推动是铁锰胶体物质迁移所必须的动力。这就充分证明,在蓝田S4古土壤发育时期,重力水的分布深度达到了5.6m。在西安所在的关中平原地区,黄土层中的重力水是含量大于20%的水分[43]。因为铁锰胶膜是粘附在土壤表面的胶体物质,所以略大于20%的水分是很难使其迁移的,只有含量较高的重力水才能使铁锰胶体物质迁移[40, 42]。如土壤含水量23%表明只有3%的水分为重力水[40, 42]。由此确定,铁锰氧化物胶膜的大量存在代表当时土壤水分含量应在25%以上[40, 42]。根据2003年丰水年西安和洛川马兰黄土含水量研究,在2003年铁锰氧化物未发生迁移的马兰黄土中2-4m含水量为23%-26%[40],铁锰氧化物迁移所需土壤水分含量会大于这一含水量,这也表明S4古土壤铁锰胶膜代表土层含水量大于25%。由于S4古土壤铁锰氧化物胶膜分布深度达到了5.6m,所以在0-5.6m深度范围内含水量一般大于25%。

3.3 蓝田地区S4古土壤发育时的土壤水分循环和平衡

林地土壤水分平衡方程为W=P-I-R-E[43],式中W为土壤储水量,P为年降水量,I为树冠截流量,R为地表径流量,E为土壤总蒸发量(土壤蒸发量和植物蒸腾量之和)。前人观测表明[43],在年平均降水量600mm左右的黄土高原区,林地土壤总蒸发量与年降水量基本保持平衡,即土壤年总蒸发量与年均降水量基本相等,在这种情况下没有剩余的水分渗入地下。在年降水量多于600mm的年份土壤水量平衡值为正值,即经过蒸发、 蒸腾、 树冠截留及地表径流损失之后仍有剩余的水分渗入地下。在年均降水量少于600mm的年份土壤水量平衡值为负值[43],没有剩余的水分渗入地下。

识别水分平衡的另一指标是重力水分布深度,依据是降水形成的土层重力水入渗深度明显超过了蒸发作用影响的深度就表明土壤水分为正平衡,反之为负平衡[43]。超过了蒸发影响深度的重力水是能够有效补给地下水的水分,是大气降水明显有剩余的最重要的表现[40, 42, 43]。黄土高原黄土层蒸发作用影响的深度为2m[43],重力水入渗深度大于2m指示土壤水分为正平衡。土壤化学成分迁移深度同样能够指示水分平衡的正负。土壤的CaCO3淀积层和红色铁锰胶膜迁移深度代表了重力水入渗深度[40, 42]。前述的资料表明,蓝田安村S4土壤的红色铁锰质胶膜和针铁矿薄膜分布深度达到了5.6m,证明S4发育时重力水分布达到了5.6m,指示水分为明显的正平衡。由此确定,在S4发育时期,蓝田地区年降水量显著大于土壤年总蒸发量,土壤水分为显著正平衡,每年一般会剩余较多的大气降水补给地下水。

4 结论

综上所述,可得出以下认识:

(1)西安蓝田安村剖面S4古土壤下部的红褐色铁锰胶膜、 针铁矿和铁锰质结核的发育及分布具有指示年降水量和土层重力水带分布的重要作用,它们指示S4古土壤发育时该区年降水量至少为900mm,土壤重力水分布深度至少达到了5.6m,安村附近当时地下水位距地表约5.6m。

(2)在西安蓝田S4古土壤发育的温湿阶段,土壤水分为正平衡,当时大气降水能够参与地下水循环,在每年雨季和雨季之后有较多剩余水分渗入地下,成为该区当时地下水的补给来源。

(3)在西安蓝田S4古土壤发育的温湿阶段,该区在植被生长季节和每年绝大部分时间里5.6m深度范围内平均含水量一般大于25%,土层水分很充足,具有适合森林植被发育的充足的土壤水分条件。

参考文献(References)
1 刘东生等. 黄土与环境. 北京:科学出版社, 1985. 336~358
Liu Tungsheng et al. Loess and Environment. Beijing:Science Press, 1985. 336~358
2 安芷生, 魏兰英, 卢演俦. 洛川剖面中土壤地层学初步研究. 第四纪研究, 1985,(1):166~174
An Zhisheng, Wei Lanying, Lu Yanchou. Preliminary study on soil strata in the loess section in Luochuan. Quaternary Sciences, 1985,(1):166~174
3 Guo Zhengtang, Liu Tungsheng, Fedoroff Nicolas et al. Climate extremes in Loess of China coupled with the strength of deep-water formation in the North Atlantic. Global and Planetary Change, 1998, 18(3-4):113~128
4 吕厚远, 刘东生, 吴乃琴等. 末次间冰期以来黄土高原南部植被演变的植物硅酸体记录. 第四纪研究, 1999,(4):336~347
Lü Houyuan, Liu Dongsheng, Wu Naiqin et al. Phytolith record of vegetation succession in the southern Loess Plateau since Late Pleistocene. Quaternary Sciences, 1999,(4):336~347
5 唐克丽, 贺秀斌. 黄土高原全新世黄土-古土壤演替及气候演变的再研讨. 第四纪研究, 2004, 24(2):129~139
Tang Keli, He Xiubin. Re-discussion on loess-paleosol evolution and climatic change on the Loess Plateau during the Holocene. Quaternary Sciences, 2004, 24(2):129~139
6 高玲, 丁仲礼. 最近130ka来黄土物质化学风化的空间观察. 第四纪研究, 2008, 28(1):162~168
Gao Ling, Ding Zhongli. Spatial changes of chemical weathering recorded by loess deposits in the Chinese Loess Plateau during past 130000 years. Quaternary Sciences, 2008, 28(1):162~168
7 Liu T S, An Z S, Yuan B Y et al. The loess-paleosol sequence in China and climatic history. Episodes, 1985, 8(1):21~28
8 葛俊逸, 郭正堂, 郝青振. 特征时期黄土高原风化成壤强度的空间特征与气候梯度. 第四纪研究, 2006, 26(6):962~968
Ge Junyi, Guo Zhengtang, Hao Qingzhen. Spatial variations of weathering intensity of the Loess Plateau and the climate gradients within characteristic time slices. Quaternary Sciences, 2006, 26(6):962~968
9 周鑫, 郭正堂, 彭淑贞等. 西峰剖面午城黄土古风化强度变化与早更新世季风环境演化. 第四纪研究, 2007, 27(4):645~650
Zhou Xin, Guo Zhengtang, Peng Shuzhen et al. Variations of paleo-weathering intensity of the Wucheng loess formation at Xifeng and the implications on environmental changes. Quaternary Sciences, 2007, 27(4):645~650
10 Peng Shuzhen, Hao Qingzhen, Oldfield Frank et al. Release of iron from chlorite weathering and links to magnetic enhancement in Chinese loess deposits. Catena, 2014, 117:43~49
11 Zhao Jingbo. Illuvial depth of CaCO3 of the paleosols in the loess of Guanzhong Plain. Chinese Science Bulletin, 1992, 37(5):403~407
12 Zhao Jingbo, Cao Junji, Jin Zhangdong et al. The fifth paleosol layer in the southern part of China's Loess Plateau and its environmental significance. Quaternary International, 2014, 334-335:189~196
13 郭正堂, 刘东生, 安芷生. 渭南黄土沉积中十五万年来的古土壤及其形成时的古环境. 第四纪研究, 1994,(3):256~269
Guo Zhengtang, Liu Tungsheng, An Zhisheng. Paleosols of the last 0.15Ma in the Weinan loess section and their paleoclimatic significance. Quaternary Sciences, 1994,(3):256~269
14 刁桂仪, 文启忠. 渭南黄土剖面中的稀土元素. 海洋地质与第四纪地质, 2000, 20(4):57~62
Diao Guiyi, Wen Qizhong. Rare earth elements in the Weinan loess section. Marine Geology & Quaternary Geology, 2000, 20(4):57~62
15 赵景波, 楚纯洁, 马延东等. 陕西洛川L1-S4黄土-古土壤湿陷性及其成因研究. 第四纪研究, 2014, 34(2):399~406
Zhao Jingbo, Chu Chunjie, Ma Yandong et al. Collapsibility from L1 loess to S4 paleosol and its causes in the Luochuan, Shaanxi Province. Quaternary Sciences, 2014, 34(2):399~406
16 Zhao Jingbo, Ma Yandong, Cao Junji et al. Effect of Quaternary climatic change on modern hydrological systems in the southern Chinese Loess Plateau. Environmental Earth Sciences, 2015, 73:1161~1167
17 饶志国, 郭文康, 薛骞等. 黄土高原西部地区黄土地层有机质主要来源分析. 第四纪研究, 2015, 35(4):819~827
Rao Zhiguo, Guo Wenkang, Xue Qian et al. Assessment on primary provenance of organic matter in loess/paleosol sequences in the western Chinese Loess Plateau. Quaternary Sciences, 2015, 35(4):819~827
18 张晓, 贾鑫, 饶志国等. 陇西黄土高原东南部地区末次冰期以来C3/C4植物相对丰度变化及其区域性剖面的对比研究. 第四纪研究, 2013, 33(1):187~196
Zhang Xiao, Jia Xin, Rao Zhiguo et al. C3/C4 variation since the Last Glacial in the southeastern Longxi Loess Plateau and its comparison with other results. Quaternary Sciences, 2013, 33(1):187~196
19 张博, 宁有丰, 安芷生等. 黄土高原现代C4和C3植物生物量及其对环境的响应. 第四纪研究, 2015, 35(4):801~808
Zhang Bo, Ning Youfeng, An Zhisheng et al. Abundance of C4/C3 plants in the Chinese Loess Plateau and their response to plant growing environment. Quaternary Sciences, 35(4):801~808
20 何同, 刘连文, 陈旸等. 晚中新世-上新世黄土高原佳县红粘土剖面碳同位素记录与C4植被演化. 第四纪研究, 2015, 35(4):791~800
He Tong, Liu Lianwen, Chen Yang et al. Carbon isotope record of authigenic calcite from the northern Chinese Loess Plateau:Implications for C4 vegetation evolution during Late Miocene-Pliocene. Quaternary Sciences, 2015, 35(4):791~800
21 赵得爱, 吴海斌, 吴建育等. 过去典型增温期黄土高原东西部C3/C4植物组成变化特征. 第四纪研究, 2013, 33(5):848~855
Zhao De'ai, Wu Haibin, Wu Jianyu et al. C3/C4 plants characteristics of the eastern and western parts of the Chinese Loess Plateau during Mid-Holocene and last interglacial. Quaternary Sciences, 2013, 33(5):848~855
22 张红艳, 鹿化煜, 顾兆炎等. 中国半干旱-湿润区末次间冰期以来黄土有机碳同位素特征与植被变化. 第四纪研究, 2015, 35(4):809~818
Zhang Hongyan, Lu Huayu, Gu Zhaoyan et al. Organic matter stable isotopic composition of loess deposits in semiarid to humid climate regions of China and the vegetation variations since the last interglaciation. Quaternary Sciences, 2015, 35(4):809~818
23 刘秀铭, 吕镔, 毛学刚等. 风积地层中铁矿物随环境变化及其启示. 第四纪研究, 2014, 34(3):443~457
Liu Xiuming, Lü Bin, Mao Xuegang et al. Iron minerals of aeolian deposits vary with environment and its significance. Quaternary Sciences, 2014, 34(3):443~457
24 闫晓丽, 杨一博, 方小敏等. 临夏盆地晚中新世沉积物中赤铁矿和针铁矿的含量特征及其意义. 兰州大学学报(自然科学版), 2012, 48(1):55~61
Yan Xiaoli, Yang Yibo, Fang Xiaomin et al. Characteristics and implications of hematite and goethiteconcentration in sediments of the late miocene, Linxia Basin. Journal of Lanzhou University(Natural Edition), 2012, 48(1):55~61
25 季峻峰, 陈骏, Balsam W等. 黄土剖面中赤铁矿和针铁矿的定量分析与气候干湿变化研究. 第四纪研究, 2007, 27(2):221~229
Ji Junfeng, Chen Jun, Balsam W et al. Quantitative analysis of hematite and goethite in the Chines Loess Plateau sequences and its implication for dry and humid variability. Quaternary Sciences, 2007, 27(2):221~229
26 胡鹏翔, 刘青松. 磁性矿物在成土过程中的生成转化机制及其气候意义. 第四纪研究, 2014, 34(3):458~473
Hu Pengxiang, Liu Qingsong. The production and transformation of magnetic minerals during pedogenesis and its paleoclimate significance. Quaternary Sciences, 2014, 34(3):458~473
27 王涛, 刘秀铭, 吕镔等. 新疆尼勒克黄土岩石磁学特征及变化机制研究. 第四纪研究, 2014, 34(3):491~503
Wang Tao, Liu Xiuming, Lü Bin et al. Study of rock magnetic properties and its variation mechanism of loess in Nileke, Xinjiang. Quaternary Sciences, 2014, 34(3):491~503
28 Fink J, Kukla G J. Pleistocene climates in central Europe:At least 17 interglacials after the Olduvai event. Quaternary Research, 1977, 7:363~371
29 Dodonov A E, Baiguzina L L. Loess stratigraphy of central Asia:Palaeoclimatic and palaeoenvironmental aspects. Quaternary Sciences Reviews, 1995, 14(7-8):707~720
30 Bronger A, Winter R. Loess-palaeosol-sequences in Tajikistan as a palaeoclimate record of the Quaternary in Central Asia. Quaternary Proceedings, 1995, 4:69~81
31 Shackleton N J, An Z S, Dodonov A E. Accumulation rate of loess in Tajikistan and China:Relationship with global ice volume cycles. Quaternary Proceedings, 1995, 4:1~6
32 Kukla G J. Pleistocene land-sea correlations. Earth Science Reviews, 1977, 13:307~374
33 侯顺民, 刘秀铭, 吕镔等. 土耳其Nallihan黄土-古土壤岩石磁学特征及其环境意义. 第四纪研究, 2015, 35(4):1006~1019
Hou Shunmin, Liu Xiuming, Lü Bin et al. Rock magnetic properties of loess in Nallihan, Turkey and its environmental significances. Quaternary Sciences, 2015, 35(4):1006~1019
34 赵景波. 西北黄土区第四纪土壤与环境. 西安:陕西科学技术出版社, 1994. 34~35
Zhao Jingbo. Quaternary Soil and Environment in Loess Area of Northwestern China. Xi'an:Shaanxi Science and Technology Press, 1994. 34~35
35 张民, 龚子同. 钙质变性土形成中的某些地球化学特征. 土壤, 1989,(5):226~233
Zhang Min, Gong Zitong. Some geochemical characteristics of calcareous soil in its formation. Soil, 1989,(5):226~233
36 傅桦, 丁瑞兴. 北亚热带江淮地区白浆土铁锰结核的研究. 热带亚热带土壤科学, 1995, 4(2):102~106
Fu Hua, Ding Ruixing. Study on Fe-Mn nodule of Albic soil in Jianghuai region of northern subtropical zone. Tropical and Subtropical Soil Sciences, 1995, 4(2):102~106
37 李雪, 钟运鄂, 朱恺军. 湘南地区表生氧化锰矿地球化学行为及成矿机理研究. 湖南地质, 2001, 20(1):9~14
Li Xue, Zhong Yun'e, Zhu Kaijun. Research for the geochemical behaviors and the genesismechanism of hypogeneoxidized manganese deposits in south Hunan. Hunan Geology, 2001, 20(1):9~14
38 Driese Steven G, Simpson Edward L, Eriksson Kenneth A. Redoximorphic paleosols in alluvial and lacustrine deposits, 1.8 GA Lochness Formation, Mount ISA, Australia:Pedogenic processes and implications for paleoclimate. Journal of Sedimentary Research, 1995, 65(4):675~689
39 Keith B Miller, Thomas J Mccahon, Ronald R West. Lower Permian(Wolfcampian)paleosol-bearing cycles of the US Midcontinent:Evidence of climatic cyclicity. Journal of Sedimentary Research, 1996, 66(1):71~84
40 Zhao Jingbo, Gu Jing, Du Juan. Climate and soil moisture environment during development of the fifth paleosol in Guanzhong Plain. Science in China(Series D), 2008, 51(5):665~676
41 熊毅, 李庆奎. 中国土壤. 北京:科学出版社, 1987. 67~76
Xiong Yi, Li Qingkui. Soils in China. Beijing:Science Press, 1987. 67~76
42 Zhao Jingbo, Luo Xiaoqing, Ma Yandong et al. The reconstruction of palaeoenvironment during development of the fourth palaeosol in the southern Loess Plateau of China. Catena, 2015, 132:21~28
43 杨文治, 邵明安. 黄土高原土壤水分研究. 北京:科学出版社, 2000. 67~89
Yang Wenzhi, Shao Ming'an. Research in Soil Moisture in Loess Plateau. Beijing:Science Press, 2000. 67~89
ENRICHMENT LAYER OF GOETHITE AND PALEOWATER IN THE SECTION OF S4 PALAEOSOL IN XI'AN AREA
Zhao Jingbo①②, Luo Xiaoqing, Liu Rui, Liu Xiuming④⑤, Du Juan    
(① College of Tourism and Environment Sciences, Shaanxi Normal University, Xi'an 710062;
② State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710075;
③ Foundation Department of Engineering University of CAPF, Xi'an 710086;
④ Key Laboratory for Subtropical Mountain Ecology(Ministry of Science and Technology and Fujian Province Funded), College of Geographical Sciences, Fujian Normal University, Fuzhou 350007;
⑤ Department of Environment and Geography, Macquarie University, Sydney NSW 2109, Australia
)

Abstract

The weathered section(34°17'N, 109°32'E) of the fourth paleosol, located at about 1km far away from the north of An Village in Lantian of Xi'an, at the eastern Bailuyuan, was investigated in this study.The ferromanganese nodules were analyzed by the means of electron microscope and X-ray diffraction.The field investigations showed that Quaternary loess strata developed well in the study area.The total thickness was about 125m and 28m from Early Pleistocene to Holocene loess and from the bottom of S5 to top of Holocene loess, respectively.Argillic horizon of S4 paleosol was 1.5m in thickness, while the whole weathered section was 5.6m.The enrichment layers of goethite(α-FeO(OH)) and ferromanganese nodules were discovered between 5.0m and 5.6m, which could indicate the soil moisture, groundwater enrichment and water circulation at that time.Goethite was distributed on the earth surface as yellow-brown film.Ferromanganese nodules were brown-black spherical, granular and looked like chrysanthemum and so on in the electron microscope.Goethite and ferromanganese nodules were distributed in the same layer and displayed layering distribution, forming near the groundwater level at that time.

In the ferromanganese nodules containing goethite, the relative concentrations of goethite were from 0.9% to 3.3%, and were from 6.0% to 15.5% for the clay mineral illite.The kaolinite concentrations were from 2% to 5% and quartz ranged from 61.1% to 66.6%.The plagioclase and potash feldspar concentrations were 10%~16.4% and 3.8%~6.0%, respectively.The depth of the development and transformations of goethite and ferromanganese nodules demonstrated that the annual rainfall was at least 900mm during the development of S4.The distribution depth of gravity water was up to 5.6m and the moisture was more than 25% within the range.In the development layer of goethite and ferromanganese nodules, the water content was closed to saturation.At that time, soil moisture was very sufficient, and water balance was positive, so much water could infiltrate into groundwater, which was favorable for forest vegetation development.Overall, the section in this study suggested that ferromanganese nodules were resulted from the transformations of high valence ferromanganese oxides in the argillic horizon of S4 paleosol, their reduction and oxidation enrichments occurred along with rise and fall of the groundwater levels.

Key words     goethite    ferromanganese nodules    Fe3O2migration    paleo-moisture content    moisture balance    Lantian in Xi'an area