第四纪研究  2016, Vol.35 Issue (1): 227-236   PDF    
大陆东南沿海河流与台湾西部河流磁性矿物特征及判源指标
曹文红, 陈静 , 马俊强    
(华东师范大学河口海岸学国家重点实验室, 上海  200062)
摘要    近年来发现台湾西部河流泥沙对东海内陆架区域, 尤其是泥质区南部的贡献不可忽视。建立有效的判源指标是识别海洋沉积物的前提。本文拟从大陆和台湾河流表层沉积物入手, 分析其磁性和磁性矿物特征, 并建立物源判别指标。通过对大陆东南沿海河流(长江、钱塘江、瓯江和闽江)和台湾西部河流(浊水溪、大安溪、大甲溪和乌溪)44个表层沉积物样品细颗粒组分( <45μm)进行多参数磁性测量、热磁和X射线衍射分析, 发现长江和浙闽河流沉积物磁性较强, 磁性矿物颗粒较细, 以磁铁矿为主; 台湾西部河流沉积物磁性很弱, SIRM/Xlf值异常高, 磁性矿物颗粒较粗, 磁黄铁矿为主要磁性矿物, 浊水溪最具代表性。这一磁性和磁性矿物的差异主要是由流域母岩以及流域内沉积物风化搬运过程的不同导致。本文提出基于SIRM/Xlf和HIRM磁性参数的物源判别指标, 可较好地示踪大陆东南沿海河流和台湾西部河流的沉积物。
主题词     长江    浙闽河流    台湾西部河流    磁性特征    物源    
中图分类号     P941.77;P574.1+9;P575.5                    文献标识码    A

1 引言

近年来,沉积物源汇过程逐渐成为地学研究热点之一。这一过程不仅仅存在于河流系统,也存在于海洋系统中。河流沉积物入海后,源汇过程仍然在继续,其搬运沉积主要受到海流系统的控制。例如长江泥沙入海后,沉积物的扩散沉积过程主要受东海内陆架两支海流(浙闽沿岸流和台湾暖流)的共同制约(图1)。在浙闽沿岸流的驱动下,长江泥沙向南输送可达台湾海峡[1, 2, 3],在浙闽沿岸形成条带状分布的泥质区[3, 4],全新世沉积中心厚度可达40m[3, 5]。泥质区的物质来源一直备受关注,以往研究多侧重于长江和黄河物质的贡献[6, 7],而近年来的研究逐渐意识到台湾西部河流(浊水溪等)的贡献也不可忽视,尤其是在泥质区南部区域[1, 2, 8, 9]。要识别该区域的泥沙来源,首先要从入海河流泥沙中寻找有效的判源指标。目前针对大陆和台湾河流沉积物物源对比的研究主要集中于长江[10, 11]和浊水溪[8, 9],浙闽河流提及较少; 指标多限于粘土粒级沉积物[1, 12, 13],其他粒级的沉积物涉及较少。因此,本文拟从长江、 浙闽河流和台湾西部河流入手,以浙闽沿岸流可携带沉积物粒径组分为研究对象; 此外,由于受到长江泥沙倒灌的影响,浙闽河流泥沙本身的物源特征很可能被掩盖,所以采样点都设计在潮流界以上。Horng 等[2]曾指出磁黄铁矿在台湾河流和台湾海峡沉积物中普遍存在,而对长江口沉积物的研究显示磁性矿物以磁铁矿为主导[14]。与磁性矿物密切相关的沉积物磁学特征,由于其实验过程简易快速,且是一种有效的判源指标,经常用于物源研究中[15, 16, 17, 18]。据此,本文拟选取磁性特征及磁性矿物为指标进行探讨,尝试提取基于磁性特征的物源判别指标。

2 样品与方法 2.1 样品

我们于2012年7月采集了钱塘江、 瓯江和闽江潮流界以上的河流边滩次表层沉积物(表层以下5~10cm); 2014年4月采集了台湾西部河流(大安溪、 大甲溪、 乌溪和浊水溪)次表层沉积物样品; 并从台湾国立中山大学收集了3个浊水溪口的沉积物样品; 收集了多个公共航次采集的长江河口沉积物样品。具体样品信息见图1表1

图1 研究区位置与样品点位图[ Fig.1 Study area and sampling locations. Dotted line represents summer,modified from Xu et al.[1]

表1 样品与实验 Table 1 Samples and experiments

浙闽泥质区岩芯沉积物的粒度分析结果显示存在两个敏感粒级,其中粗粒级组分很可能反映的是风暴沉积,而细粒级(<45μm)组分的变化很可能反映的是浙闽沿岸流的变化[19, 20]。尽管对这一结果还存在着一些争议[19, 20, 21, 22],但是可被浙闽沿岸流远程携带的泥沙肯定是较细的粒级。因此,本文的研究对象着眼于细粒级沉积物(<45μm)。

2.2 研究方法

本文对河流沉积物进行了磁性特征、 热磁和X射线衍射(XRD)分析,具体分析样品见表1

2.2.1 磁学基本参数

称取过筛后(<45μm)样品5g左右,进行装样,利用Bartington磁化率仪测量样品的低频(0.47kHz)和高频(4.7kHz)磁化率(κlfκhf),并计算质量磁化率χlf和χhf。使用Dtech 2000交变退磁仪(交变磁场峰值100mT,直流磁场0.04mT)获得非磁滞剩磁(ARM),利用Minispin旋转磁力仪测定,并计算非磁滞剩磁磁化率χARM。样品用MMPM10脉冲磁化仪获得1T条件下的等温剩磁,再将样品在100mT、 300mT反向磁场中磁化,利用Minispin旋转磁力仪测得等温剩磁IRM1T(本文定义为饱和等温剩磁SIRM)和IRM-100mT、 IRM-300mT,计算退磁参数(S-100=100×(SIRM-IRM-100mT)/(2×SIRM)、 S-300=100×(SIRM-IRM-300mT)/(2×SIRM))和硬剩磁(HIRM=(SIRM+IRM-300mT)/2),再计算各比值参数SIRM/χlf、 χARMlf和χARM/SIRM。

2.2.2 热磁

称取10g左右样品,倒入烧杯,加水搅拌混合,将磁铁包上保鲜膜,放入烧杯中吸取磁性矿物,冲洗入坩埚。这一过程重复多次,将提取的磁性颗粒低温烘干(40℃)后,在氩气氛围下进行温度磁化率测定,仪器为AGICO MFK1-FB。

2.2.3 X射线衍射

将磁选出的磁性矿物(约2g)装入载玻片样品框架,压紧成型,然后上机测试。所用仪器为Panalytical(原Philips)公司生产的XPert Pro MPD型X射线衍射仪,测试条件为:Cu-Ka辐射,发散狭峰与防散射狭缝均为 1°,接收狭缝为0.2mm,工作电压40kV; 工作电流40mA,步长 0.02°,扫描速度 0.05°/s,扫描范围 5°~80°(2θ)。

3 结果 3.1 磁性特征

lf和SIRM通常反映了样品中亚铁磁性矿物(如磁铁矿)的含量[23]; χARM对稳定单畴亚铁磁性矿物颗粒极为敏感[24]; χARMlf和χARM/SIRM均指示亚铁磁性矿物颗粒的大小[25, 26]; HIRM反映样品中不完整反铁磁性矿物(如赤铁矿、 针铁矿)的绝对含量,S值反映样品中不完整反铁磁性矿物(如赤铁矿和针铁矿)的相对含量[23]。根据这些磁性参数的结果,可以将样品归纳为4组(图2):1)长江和长江口区域; 2)浙闽河流(钱塘江、 瓯江和闽江); 3)台湾浊水溪及河口; 4)台湾西部小河流(大安溪、 大甲溪和乌溪)。

图2 河流沉积物磁性特征 Fig.2 Magnetic properties of river sediment samples

长江和长江口区域:lf值总体较高,且河道沉积物变化幅度较大,均值为106×10-8m3/kg,最大值为396×10-8m3/kg,SIRM值也相对较高,SIRM/χlf较低,平均为10kA/m,说明亚铁磁性(强磁性)矿物含量较多。S-100、 S-300均值高达90[WTB3]%[WTBZ],同样说明了亚铁磁性矿物为主导矿物。较高的ARM、 χARMlf和χARM/SIRM值说明亚铁磁性矿物的颗粒较细。HIRM值较高,均值为464×10-6Am2/kg,反应了不完整反铁磁性矿物占有一定的比例。

浙闽河流:χlf值均值为62×10-8m3/kg,与长江河口沉积物接近,SIRM和SIRM/χlf值也与长江沉积物接近,SIRM/χlf均值为13kA/m,说明亚铁磁性矿物含量和长江类似。χARM、 χARMlf和χARM/SIRM值也显示出和长江沉积物相同的特性,磁化率主要由较细的亚铁磁性矿物颗粒贡献。HIRM值较长江沉积物有所降低,均值为297×10-6Am2/kg,说明不完整反铁磁性矿物含量比长江沉积物中的稍低。

台湾浊水溪及河口:χlf值总体很低,数值分布范围为9×10-8~50×10-8m3/kg,均值为24×10-8m3/kg,远低于长江和浙闽河流,反映亚铁磁性矿物含量少。浊水溪半数样品的SIRM和SIRM/χlf异常高,其中4个样品SIRM/χlf值大于60kA/m,2个样品SIRM/lf值超过100kA/m,最大值高达136kA/m,很可能是铁硫化物的影响[27],具体讨论见后。同时这些样品的ARM和χARMlf也相对较高,这是由于磁性矿物的种类引起的,并不能反映磁性颗粒的情况。总体来说χARM/SIRM值较低,均值为19×10-5m3/A,磁性矿物颗粒较粗。除去那些异常高SIRM值的样品,其他样品HIRM值极低,HIRM均值为156×10-6Am2/kg,不完整反铁磁性矿物含量很少。 台湾西部小河流: 整体χlf值非常低(均值为11×10-8m3/kg),低SIRM以及低HIRM(均值为14×10-6Am2/kg)说明磁性矿物含量非常稀少,磁性特征和浊水溪低SIRM值样品类似。

3.2 热磁

图3a~3e分别是随机选取的长江口(CJK-6、 CJK-7)、 钱塘江(QT-1)、 瓯江(OJ-1)和闽江(MJ-1)样品的热磁曲线。加热曲线出现双峰,260℃和520℃附近各有一个峰,从室温到260℃的加热过程中χ/χ0缓慢升高,这一般是纤铁矿转化为磁赤铁矿[28]或由细粒单畴颗粒解阻引起[29, 30]。在300~440℃随着温度的升高/0有所下降,这一般被认为是亚稳定、 强磁性的磁赤铁矿受热转化成热稳定、 弱磁性的赤铁矿[31, 32]。随着温度的继续升高,磁化率相对强度继续增加到最大值,在温度到达580℃附近,χ/χ0迅速降低,显示了典型的磁铁矿特征[33]。总体来说,这4条河流沉积物的热磁曲线形态较为接近,说明它们的磁性矿物类型较为相似,基本以磁铁矿为主。

图3 典型样品热磁曲线 Fig.3 X/X0-T curves of the typical samples. Black and gray lines refer to heating and cooling curves respectively

图3f~3j分别是浊水溪SIRM/χlf值异常样品(ZSX-2、 ZSX-4)、 大安溪(DAX-2)和乌溪(WX-1、 WX-2)样品热磁结果。加热曲线出现320℃左右的居里温度,指示了磁黄铁矿[33, 34, 35],而所有样品冷却曲线远高于加热曲线,指示在加热过程中生成了新的亚铁磁性颗粒[36, 37, 38]。台湾西部河流中磁黄铁矿特征明显,尤其在浊水溪沉积物中最甚,大安溪(DAX-2)、 乌溪(WX-1、 WX-2)磁性矿物含量少,磁黄铁矿特征存在,但不如浊水溪明显。

3.3 X射线衍射

X射线衍射图像综合分析近年来应用于各种矿物及物相分析[39, 40, 41, 42]。本文选定磁铁矿特征衍射峰为d1=2.526nm,d2=1.485nm,d3=1.094nm[43],磁黄铁矿特征峰为d1=2.06nm,d2=2.64nm,d3=1.718nm[43]。XRD图谱结果显示,长江(CJK-2)、 钱塘江(QT-1)、 瓯江(OJ-1)和闽江(MJ-4)样品中磁铁矿衍射峰均较为清晰,并未发现磁黄铁矿特征衍射峰; 台湾浊水溪(ZSX-4)磁黄铁矿的特征峰非常明显,大安溪(DAX-2)和乌溪(WX-1)磁黄铁矿特征衍射峰不明显,磁铁矿特征峰较弱(图4)。

图4 X射线衍射图谱 Fig.4 Diagram of X-ray diffraction
4 讨论 4.1 SIRM/χlf异常高原因分析

在磁性参数上,我们发现台湾河流部分样品(多为浊水溪样品)具有异常高的SIRM和SIRM/χlf值(100kA/m左右,见图2),这显然不是磁铁矿的特征,因为磁铁矿的SIRM/χlf值通常低于30kA/m,多集中于10kA/m[27, 33, 44]。矫顽力较高的赤铁矿虽然具有较高的SIRM/χlf[27],但不容易被磁化和退磁,具有较低的S-300。台湾河流这部分样品的S-300值却高达90[WTB3]%[WTBZ]以上,可见沉积物中磁性矿物较容易磁化,因此赤铁矿也不是异常高SIRM/χlf值的原因。除此之外,铁硫化物如胶黄铁矿(Fe3S4)、 磁黄铁矿(Fe7S8)等也具有高SIRM/χlf[27,44~46],王张华和陈中原[47]在东海外陆架也发现过异常高SIRM/χlf值现象,通过对磁性矿物的鉴定,他们认为高SIRM/χlf值是自生的胶黄铁矿所致,但也不排除自生磁黄铁矿的影响。本文对这些异常高SIRM/χlf值的样品也进行了热磁和X射线衍射分析,发现这些样品中有很强的磁黄铁矿信号(图3和4),前人也曾指出磁黄铁矿在台湾河流中普遍存在[2],因此我们认为SIRM/χlf异常高是由于台湾河流沉积物中的磁黄铁矿所致。

4.2 大陆东南沿海河流和台湾西部河流特征磁性矿物及原因[ZK)]

磁性参数、 热磁曲线以及XRD图谱显示长江和浙闽河流的磁性矿物以磁铁矿为主导,而台湾西部河流以磁黄铁矿为特征磁性矿物,其中以输沙量最大的浊水溪最为明显(见图2~4)。对长江、 浙闽河流重矿物的研究也发现磁铁矿是主要的磁性矿物[48, 49],台湾地区磁黄铁矿分布广泛[2, 50, 51],中央山脉磁黄铁矿含量多于磁铁矿[50]。可见,磁铁矿和磁黄铁矿可作为示踪两大区域物源的特征磁性矿物。

河流沉积物主要来自流域岩石的风化,其矿物组成和源岩关系密切。长江流域广,源岩复杂,上游流域广泛分布着碳酸岩、 峨眉山玄武岩、 中酸性火成岩等,中下游流域主要分布变质岩、 中酸性火成岩和沉积岩[52](图5)。其中上游地区峨眉山玄武岩富含强磁性的磁铁矿[52],这已经被用作示踪长江上游物源的一个指标,在江汉盆地及长江三角洲地区的第四纪地层中普遍发现的磁性大幅增强现象就被认为和长江上游物质的输入有关[53, 54]。现代长江入海沉积物颗粒较细[55],主要来自上游地区[56, 57],因此可以推测入海沉积物中的磁性矿物主要源自上游地区的磁铁矿。此外,上游和中下游的中酸性火成岩也产出磁铁矿[58]。钱塘江、 瓯江、 闽江流域主要分布着中酸性火成岩,也是磁铁矿主要源岩之一(图5)。

图5 流域地质图(据Gu等[52]改绘) Fig.5 Geological map of river drainage basins,modified from Gu et al.[52]

台湾地区河流主要源自中央山脉,基本为喜马拉雅期低级变质岩,仅东部分布有少量中酸性火成岩(图5)。这些变质岩的源岩为沉积岩,沉积岩中的黄铁矿在低级变质(温度压力较低,保留源岩较多)过程中较易生成磁黄铁矿[50, 51],因此台湾西部河流沉积物中磁黄铁矿含量较为丰富。 细观图5,不难发现长江中下游流域也广泛分布着变质岩,而在入海沉积物中却没有发现磁黄铁矿。主要原因推测有以下两点: 其一是支流沉积物的贡献较少。如前所述长江入海沉积物主要来源于上游地区,尤其是细粒沉积物,中下游支流贡献较少[56, 57]; 其二是磁黄铁矿的性质不稳定,磁黄铁矿在表生氧化作用下易转变为褐铁矿[59, 60, 61]。长江流域中下游地区地势较为平缓,多个沉积盆地(江汉、 洞庭湖和鄱阳湖)的存在使得沉积物的风化搬运过程和时间都较长,即使存在磁黄铁矿,在湿热的环境下也会被氧化为褐铁矿,前人的研究显示长江中下游流域中就含有丰富的褐铁矿[48]。台湾河流属于短途山地河流,坡降大,且台湾地区物理风化作用强烈、 化学风化作用较弱[12, 62],风化矿物可以很快被搬运至河口地区,所以磁黄铁矿能很好的保存在入海沉积物中。

4.3 磁性物源判别指标

通过磁性特征参数SIRM/χlf和HIRM,可以很好的区分大陆东南沿海河流与台湾西部河流的物源,尤其是长江和台湾浊水溪(图6)。

图6 SIRM/χlf和HIRM判别图 Fig.6 Sediment provenance discrimination from SIRM/χlf and HIRM

长江、 钱塘江、 瓯江和闽江沉积物具有低SIRM/χlf和高HIRM值,主要是由于主导磁性矿物为磁铁矿,SIRM/χlf较低,但是不完整反铁磁性矿物也占有一定的比例,HIRM值较高,长江HIRM值高于浙闽河流。相比之下,台湾浊水溪沉积物具有高SIRM/χlf和低HIRM值,因为主要磁性矿物为磁黄铁矿,丰富的磁黄铁矿导致其HIRM也较其他西部小河流稍高些,但是普遍低于长江沉积物,西部小河流由于磁性矿物含量非常少,SIRM/χlf和HIRM值都非常低。

该磁性判别指标较为便捷,但是在用于识别海洋沉积物来源时要特别小心,在还原性很强的环境,尤其在沉积速率较低的钻孔中,早期成岩作用较强[63, 64, 65],因此还需要考虑早期成岩作用对磁性矿物的影响。

5 结论

大陆东南沿海河流与台湾西部河流细粒级沉积物的磁性特征存在明显差异,具体可分为四大分区: 长江及河口、 浙闽河流、 台湾浊水溪、 台湾西部小河流。长江及河口沉积物磁性最强,平均磁化率为106×10-8m3/kg,SIRM/χlf值较低,平均为10kA/m,HIRM值较高(464×10-6Am2/kg),不完整反铁磁性矿物较多,磁性矿物颗粒较细; 浙闽河流磁性较长江略弱,平均磁化率χlf为62×10-8m3/kg,SIRM/χlf平均值为13kA/m,HIRM值较长江有所降低(297×10-6Am2/kg),不完整反铁磁性矿物含量略低,磁性矿物颗粒较细; 台湾浊水溪磁性较弱,平均χlf为24×10-8m3/kg,半数样品SIRM/χlf值异常高([KG-*5]>60kA/m,最大值高达136kA/m),HIRM均值较低(156×10-6Am2/kg),不完整反铁磁性矿物含量较少,磁性矿物颗粒较粗; 台湾西部小河流磁性最弱(χlf均值为11×10-8m3/kg),SIRM/χlf值和HIRM值也非常低,磁性矿物含量很少。热磁和X射线衍射实验都显示出长江和浙闽河流以磁铁矿为特征磁性矿物,而台湾西部河流以磁黄铁矿为特征磁性矿物,其中浊水溪最具代表性,这也是SIRM/χlf值异常高的原因。本文提出基于SIRM/χlf和HIRM磁性参数的物源判别指标,长江和浙闽河流具有高HIRM和低SIRM/χlf,其中浙闽河流HIRM较长江略低; 而台湾浊水溪具有低HIRM和高SIRM/χlf,西部小河流整体具低HIRM和低SIRM/χlf,该指标可很好的示踪大陆东南沿海河流和台湾西部河流的沉积物。

致谢 本文浊水溪河口部分样品由台湾国立中山大学刘祖乾教授提供,华东师范大学河口海岸学国家重点实验室张卫国老师在磁性参数的解释上给予许多帮助,刘演博士协助野外采样工作,在此一并谨致谢忱。

参考文献(References)
1 Xu K H, Milliman J D, Li A C et al.Yangtze- and Taiwan-derived sediments on the inner shelf of East China Sea.Continental Shelf Research, 2009, 29 (18): 2240~2256
2 Horng C S, Huh C A.Magnetic properties as tracers for source-to-sink dispersal of sediments:A case study in the Taiwan Strait.Earth and Planetary Science Letters, 2011, 309 (1): 141~152
3 Liu J P, Xu K H, Li A C et al.Flux and fate of Yangtze River sediment delivered to the East China Sea.Geomorphology, 2007, 85 ( 3~4): 208~224
4 秦蕴珊, 赵一阳, 陈丽蓉等.东海地质.北京: 科学出版社, 1987.326
Qin Yunshan, Zhao Yiyang, Chen Lirong et al.Geology of the East China Sea.Beijing:Science Press, 1987.326
5 Liu J P, Li A C, Xu K H et al.Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea.Continental Shelf Research, 2006, 26 ( 17~18): 2141~2156
6 徐方建, 李安春, 李铁刚等.中全新世以来东海内陆架泥质沉积物来源.中国石油大学学报, 2011, 35 (1): 1~12
Xu Fangjian, Li Anchun, Li Tiegang et al.Provenance of mud sediments in the inner shelf of East China Sea since Mid-Holocene.Journal of China University of Petroleum, 2011 35 (1): 1~12
7 肖尚斌, 李安春, 刘卫国等.闽浙沿岸泥质沉积的物源分析.自然科学进展, 2009, 19 (2): 185~191 iao
Xiao Shangbin, Li Anchun, Liu Weiguo et al.Sediment provenance analysis in the Min-Zhe mud area.Progress in Natural Science, 2009 19 (2): 185~191
8 Huh C A, Chen W F, Hsu F H et al.Modern( <100years)sedimentation in the Taiwan Strait:Rates and source-to-sink pathways elucidated from radionuclides and particle size distribution.Continental Shelf Research, 2011, 31 (1): 47~63
9 Liu J P, Liu C S, Xu K H et al.Flux and fate of small mountainous rivers derived sediments into the Taiwan Strait.Marine Geology, 2008, 256 ( 1~4): 65~76
10 杨守业, 李 超, 王中波等.现代长江沉积物地球化学组成的不均一性与物源示踪.第四纪研究, 2013, 33 (4): 645~655 ang
Yang Shouye, Li Chao, Wang Zhongbo et al.Heterogeneity of geochemical compositions of the Changjiang River sediments and provenance indication.Quaternary Sciences, 2013 33 (4): 645~655
11 何梦颖, 郑洪波, 贾军涛.长江现代沉积物碎屑锆石U-Pb年龄及Hf同位素组成与物源示踪研究.第四纪研究, 2013, 33 (4): 656~670
He Mengying, Zheng Hongbo, Jia Juntao.Detrital zircon U-Pb dating and Hf isotope of modern sediments in the Yangtze River:Implications for the sediment provenance.Quaternary Sciences, 2013 33 (4): 656~670
12 李传顺, 石学法, 高树基等.台湾河流沉积物的黏土矿物组成特征与物质来源.科学通报, 2012, 57 ( 2~3): 169~177
Li Chuanshun, Shi Xuefa, Kao Shuhji et al.Clay mineral composition and their sources for the fluvial sediments of Taiwanese rivers.Chinese Science Bulletin, 2012, 57 (6): 673~681
13 Ma Chunyan, Chen Jing, Zhou Yuanjun et al.Clay minerals in the major Chinese coastal estuaries and their provenance implications.Frontiers of Earth Science in China, 2010, 4 (4): 449~456
14 张卫国.长江口潮滩沉积物的环境磁学研究.上海: 华东师范大学博士学位论文, 2001. 1~141
Zhang Weiguo.Environmental Magnetic Study of Intertidal Sediments of the Yangtze Estuary.Shanghai:The Doctoral Dissertation of East China Normal University, 2001. 1~141
15 王 辉, 郑祥民, 王晓勇等.长江中下游干流河底沉积物环境磁性特征.第四纪研究, 2008, 28 (4): 640~648
Wang Hui, Zheng Xiangmin, Wang Xiaoyong et al.Environmental magnetic properties of sediments from middle and lower reaches of Changjiang River.Quaternary Sciences, 2008 28 (4): 640~648
16 罗 超, 郑 妍, 郑洪波等.长江流域悬浮物磁性特征及其物源指示意义.第四纪研究, 2013, 33 (4): 684~696
Luo Chao, Zheng Yan, Zheng Hongbo et al.Magnetic properties of suspended sediment in the Yangtze River and its provenance implications.Quaternary Sciences, 2013 33 (4): 684~696
17 刘 健, 秦华峰, 孔祥淮等.黄东海陆架及朝鲜海峡泥质沉积物的磁学特征比较研究.第四纪研究, 2007, 27 (6): 1031~1039
Liu Jian, Qin Huafeng, Kong Xianghuai et al.Comparative researches on the magnetic properties of muddy sediments from the Yellow Sea and East China Sea shelves and the Korea Strait.Quaternary Sciences, 2007 27 (6): 1031~1039
18 黎 兵, 魏子新, 李 晓等.长江三角洲第四纪沉积记录与古环境响应.第四纪研究, 2011, 31 (2): 316~328
Li Bing, Wei Zixin, Li Xiao et al.Records from quaternary sediment and palaeo-environment in the Yangtze River delta.Quaternary Sciences, 2011 31 (2): 316~328
19 肖尚斌, 李安春.东海内陆架泥区沉积物的环境敏感粒度组分.沉积学报, 2005, 23 (1): 122~129
Xiao Shangbin, Li Anchun.A study on environmentally sensitive grain-size population in inner shelf of the East China Sea.Acta Sedimentologica Sinica, 2005 23 (1): 122~129
20 Xiao S B, Li A C, Liu J P et al.Coherence between solar activity and the East Asian winter monsoon variability in the past 8000 years from Yangtze River-derived mud in the East China Sea.Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 237 ( 2~4): 293~304
21 王 可, 郑洪波, Prins M et al.东海内陆架泥质沉积反映的古环境演化.海洋地质与第四纪地质, 2008, 28 (4): 1~10
Wang Ke, Zheng Hongbo, Prins M et al.High-resolution paleoenvironmental record of the mud sediments of the East China Sea inner shelf.Marine Geology & Quaternary Geology, 2008 28 (4): 1~10
22 徐方建, 李安春, 万世明等.东海内陆架泥质区中全新世环境敏感粒度组分的地质意义.海洋学报, 2009, 31 (3): 95~102
Xu Fangjian, Li Anchun, Wan Shiming et al.The geological significance of environmental sensitive grain-size populations in the mud wedge of the East China Sea during the Mid-Holocene.Acta Oceanologica Sinica, 2009 31 (3): 95~102
23 Thompson R, Oldfield F.Environmental Magnetism.London:Allen and Unwin, 1986. 1~227
24 张卫国, 戴雪荣, 张福瑞等.近7000年巢湖沉积物环境磁学特征及其指示的亚洲季风变化.第四纪研究, 2007, 27 (6): 1053~1062
Zhang Weiguo, Dai Xuerong, Zhang Furui et al.Magnetic properties of sediments from the Chaohu Lake for the last 7000 years and their implications for the evolution of Asian monsoon.Quaternary Sciences, 2007 27 (6): 1053~1062
25 Maher B A.Magnetic properties of some synthetic sub-micron magnetites.Geophysical Journal, 1988, 94 (1): 83~96
26 Banerjee S K, King J, Marvin A J.Rapid method for magnetic granulometry with applications to environmental studies.Geophysical Research Letters, 1981, 8 : 333~336
27 Peters C, Thompson R.Magnetic identification of selected natural iron oxides and sulphides.Journal of Magnetism and Magnetic Materials, 1998, 183 (3): 365~374
28 Oches E A, Banerjee S K.Rock-magnetic proxies of climate change from loess-paleosol sediments of the Czech Repubulic.Studia Geophysica et Geodaetica, 1996, 40 (3): 287~300
29 Liu Q S, Deng C L, Yu Y J et al.Temperature dependence of magnetic susceptibility in an argon environment:Implications for pedogenesis of Chinese loess/palaeosols.Geophysical Journal International, 2005, 161 (1): 102~112
30 宋友桂, 史正涛, 方小敏等.伊犁黄土的磁学性质及其与黄土高原对比.中国科学:地球科学, 2010, 40 (1): 61~72
Song Yougui, Shi Zhengtao, Fang Xiaomin et al.Loess magnetic properties in the Ili Basin and their correlation with the Chinese Loess Plateau.Science China:Earth Sciences, 2010 53 (3): 419~431
31 Florindo F, Zhu R X, Guo B et al.Magnetic proxy climate results from the Duanjiapo loess section, southernmost extremity of the Chinese Loess Plateau.Journal of Geophysical Research, 1999, 104 (B1): 645~659
32 Deng C L, Zhu R X, Verosub K L et al.Paleoclimatic significance of the temperature-dependent susceptibility of Holocene loess along a NW-SE transect in the Chinese Loess Plateau.Geophysical Research Letters, 2000, 27 (22): 3715~3718
33 敖 红, 邓成龙.磁性矿物的磁学鉴别方法回顾.地球物理学进展, 2007, 22 (2): 432~442
Ao Hong, Deng Chenglong.Review in the identification of magnetic minerals.Progress in Geophysics, 2007 22 (2): 432~442
34 Dunlop D J, Özdemir Ö.Rock Magnetism:Fundamentals and Frontiers.New York:Cambridge University Press, 1997. 1~573
35 Hopkinson J.Magnetic and other physical properties of iron at a high temperature.Philosophical Transactions of the Royal Society of London, 1889, 180 : 443~465
36 聂军胜, 昝金波, 宋友桂.中国黄土高原红粘土磁学研究进展.第四纪研究, 2012, 32 (4): 576~587
Nie Junsheng, Zan Jinbo, Song Yougui.Recent advances in red clay environmental magnetism on the Chinese Loess Plateau.Quaternary Sciences, 2012 32 (4): 576~587
37 赵 军, 鹿化煜, 王晓勇等.东秦岭地区黄土堆积的岩石磁学特征及磁化率增强机制探索.沉积学报, 2008, 26 (6): 1052~1062
Jun, Lu Huayu, Wang Xiaoyong et al.Magnetic properties of loess deposit in eastern Qinling Mountains and an investigation on the magnetic susceptibility enhancement.Acta Sedimentologica Sinica, 2008 26 (6): 1052~1062
38 刘秀铭, 夏敦胜, 刘东生等.中国黄土和阿拉斯加黄土磁化率气候记录的两种模式探讨.第四纪研究, 2007, 27 (2): 210~220
Xiuming, Xia Dunsheng, Liu Tungsheng et al.Discussion on two models of paleoclimatic records of magnetic susceptibility of Alaskan and Chinese loess.Quaternary Sciences, 2007 27 (2): 210~220
39 程 峰, 洪汉烈, 顾延生等.广西百色盆地更新世沉积物中粘土矿物特征及其古气候指示意义.第四纪研究, 2014, 34 (3): 560~569
Feng, Hong Hanlie, Gu Yansheng et al.Clay mineralogy and its paleoclimate interpretation of the Pleistocene sediments in Baise Basin, Southern China.Quaternary Sciences, 2014 34 (3): 560~569
40 贾伟丽, 彭淑贞, 张 伟等.末次间冰期以来黄土中伊利石结晶度的变化与古环境.第四纪研究, 2014, 34 (3): 553~559
Weili, Peng Shuzhen, Zhang Wei et al.Variations of illite crystallinity in the Chinese loess deposits since the last interglacial periods and paleoclimatic significance.Quaternary Sciences, 2014 34 (3): 553~559
41 曾蒙秀, 宋友桂.西风区昭苏黄土剖面中碳酸盐矿物组成及其古环境意义辨识.第四纪研究, 2013, 33 (3): 424~436
Mengxiu, Song Yougui.Carbonate minerals of Zhaosu loess section in westerly area and their paleoenvironmental significance.Quaternary Sciences, 2013 33 (3): 424~436
42 梁莲姬, 孙有斌, Christiaan J B等.黄土中的碳酸盐矿物特征与化学风化.第四纪研究, 2014, 34 (3): 645~653
Lianji, Sun Youbin, Christiaan J B et al.Characteristics of carbonate minerals in loess and its implication for chemical weathering.Quaternary Sciences, 2014 34 (3): 645~653
43 中国科学院贵阳地球化学研究所.矿物X射线粉晶鉴定手册.北京: 科学出版社, 1978. 322~361
Guiyang Institute of Geochemistry, Chinese Academy of Sciences.Identified Manual for X-ray of Powder Mineral.Beijing:Science Press, 1978. 322~361
44 Peters C, Dekkers M J.Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size.Physics and Chemistry of the Earth, 2003, 28 (2): 659~667
45 Roberts A P.Magnetic properties of sedimentary greigite(Fe3S4).Earth and Planetary Science Letter, 1995, 134 ( 3~4): 227~236
46 Dekkers M J.Magnetic properties of natural pyrrhotite Part Ⅰ:Behaviour of initial susceptibility and saturation-magnetization-related rock-magnetic parameters in a grain-size dependent framework.Physics of the Earth and Planetary Interiors, 1988, 52 ( 3~4): 376~393
47 王张华, 陈中原.东海外陆架残留沉积中硫复铁矿的发现及其油气指示意义.海洋学报, 2001, 23 (5): 70~77
Zhanghua, Chen Zhongyuan.Greigite in relict sediments, East China Sea continental shelf:Implication for hydrocarbon seepage.Acta Oceanologica Sinica, 2001 23 (5): 70~77
48 何梦颖.长江河流沉积物矿物学、 地球化学和碎屑锆石年代学物源示踪研究.南京: 南京大学博士学位论文, 2014. 1~108
He Mengying.The Provenance Study on the Yangtze River Sediments, Based on Mineralogy, Geochemistry and Detrital Zircon Dating.Nanjing:The Doctoral Dissertation of Nanjing University, 2014. 1~108
49 严肃庄, 胡方西.钱塘江河口区重矿物特征及其与动力环境的关系.华东师范大学学报, 1986, 4 (4): 83~90
Yan Suzhuang, Hu Fangxi.Characteristics of minerals in Qiantang-Jiang estuary and its relationship with hydrodynamic environment.Journal of East China Normal University, 1986 4 (4): 83~90
50 Horng C S, Huh C A, Chen K H et al.Pyrrhotite as a tracer for denudation of the Taiwan orogen.Geochemistry, Geophysics, Geosystems, 2012, 13 (8): 1~12
51 Horng C S, Roberts A P.Authigenic or detrital origin of pyrrhotite in sediments?:Resolving a paleomagnetic conundrum.Earth and Planetary Science Letters, 2006, 241 (3): 750~762
52 Gu J W, Chen J, Sun Q L et al.Chinas Yangtze delta:Geochemical fingerprints reflecting river connection to the sea.Geomorphology, 2014, 227 : 166~173
53 张 丹, 王张华, 卫 巍等.长江三角洲地区晚新生代沉积物岩石磁学特征及其物源指示意义.第四纪研究, 2009, 29 (2): 308~317
Zhang Dan, Wang Zhanghua, Wei Wei et al.Rock magnetic properties and source indications of Late Cenozoic sediments in Yangtze delta area.Quaternary Sciences, 2009 29 (2): 308~317
54 张玉芬, 李长安, 王秋良等.江汉平原沉积物磁学特征及对长江三峡贯通的指示.科学通报, 2008, 53 (5): 577~582
Zhang Yufen, Li Chang'an, Wang Qiuliang et al.Magnetism parameters characteristics of drilling deposits in Jianghan Plain and indication for forming of the Yangtze River Three Gorges.Chinese Science Bulletin, 2008 4 (4): 584~590
55 周晓静.东海陆架细颗粒沉积物组成分布特征及其物源指示.青岛: 中国科学院海洋研究所博士学位论文, 2009. 1~113
Zhou Xiaojing.The Source and Composition of Fine-grained Sediment Deposited on the East China Sea Shelf.Qingdao:The Doctoral Dissertation of Institute of Oceanology, Chinese Academy of Sciences, 2009. 1~113
56 长江水利委员会.2004年长江200年泥沙公报.长江水利委员会, 2005
Changjiang Water Resource Commission.The Sediment Bulletin of the Changjiang in 2004.Changjiang Water Resource Commission, 2005
57 杨守业, 韦刚健, 夏小平等.长江口晚新生代沉积物的物源研究:REE和Nd同位素制约.第四纪研究, 2007, 27 (3): 339~346
Yang Shouye, Wei Gangjian, Xia Xiaoping et al.Provenance study of the Late Cenozoic sediments in the Changjiang delta REE and Nd isotopic constraints.Quaternary Sciences, 2007 27 (3): 339~346
58 王中波, 杨守业, 王汝成等.长江河流沉积物磁铁矿化学组成及其物源示踪.地球化学, 2007, 36 (2): 176~184
Wang Zhongbo, Yang Shouye, Wang Rucheng et al.Magnetite compositions of Changjiang River sediments and their tracing implications.Geochemica, 2007 36 (2): 176~184
59 李光军, 谭康华, 张世权等.普朗铜矿找矿标志及找矿模型.云南地质, 2005, 24 (2): 175~185
Li Guangjun, Tan Kanghua, Zhang Shiquan et al.The ore-prospecting index and model of Pulang Cu deposit, Xianggelila.Yunnan Geology, 2005 24 (2): 175~185
60 胡鹏翔,刘青松.磁性矿物在成土过程中的生成转化机制及其气候意义.第四纪研究, 2014, 34 (3): 458~473
Hu Pengxiang,Liu Qingsong.The production and transformation of magnetic minerals during pedogenesis and its paleoclimate significance.Quaternary Sciences, 2014 34 (3): 458~473
61 刘秀铭,吕 镔,毛学刚等.风积地层中铁矿物随环境变化及其启示.第四纪研究, 2014, 34 (3): 443~457
Liu Xiuming,Lü Bin,Mao Xuegang et al.Iron minerals of aeolian deposits vary with environment and its significances.Quaternary Sciences, 2014 34 (3): 443~457
62 Selvaraj K, Chen C T A.Moderate chemical weathering of subtropical Taiwan:Constraints from solid-phase geochemistry of sediments and sedimentary rocks.Journal of Geology, 2006, 114 (1): 101~116
63 郑 妍, 郑洪波, 邓成龙等.还原成岩作用对磁性矿物的影响及古气候意义: 以长江口水下三角洲岩芯YD0901沉积物为例.第四纪研究, 2012, 32 (4): 655~662
Zheng Yan, Zheng Hongbo, Deng Chenglong et al.Diagenetic alteration on magnetic minerals and the paleoclimate implications, results from core YD0901 of Yangtze subaqueous delta.Quaternary Sciences, 2012 32 (4): 655~662
64 胡忠行, 张卫国, 董辰寅等.东海内陆架沉积物磁性特征对早期成岩作用的响应.第四纪研究, 2012, 32 (4): 670~678
Hu Zhongxing, Zhang Weiguo, Dong Chenyin et al.Influence of early diagenesis on magnetic properties of inner shelf deposits of the East China Sea.Quaternary Sciences, 2012 32 (4): 670~678
65 王世朋, 李永祥, 付少英等.南海北部陆坡GHE24L柱样沉积物磁性特征及其环境意义.第四纪研究, 2014, 34 (3): 516~527
Wang Shipeng, Li Yongxiang, Fu Shaoying et al.Environmental changes as recorded by mineral magnetic properties of sediments from the core GHE24L, South China Sea.Quaternary Sciences, 2014 34 (3): 516~527
MAGNETIC MINERALS AS TRACERS FOR THE MAINLAND COASTAL RIVERS AND WEST TAIWAN RIVERS
Cao , Chen Jing , Ma Junqiang    
(State Key Laboratory for Estuarine and Coastal Research, East China Normal University, Shanghai 200062)

Abstract

Sediment source-sink is a hot topic in recent years.This process is not only existing in the riverine system but also going on in the sea.Zhejiang-Fujian Coast Current and Taiwan Warm Current in the East China Sea control the dispersal of terrestrial sediments derived from Yangtze River, Zhejiang-Fujian rivers and west Taiwan rivers.These sediments deposit along the coast, forming the inner shelf mud of East China Sea.To trace the sources of marine sediments, a prerequisite is to find an effective provenance indicator for these riverine sediments.The present study aims to set up such a provenance indicator through analyzing surficial sediments from the mainland(Yangtze River, Qiantang River, Ou River and Min River)and west Taiwan(Choshui River, Da'an River, Dachia River, and Wu River)rivers.The measurement of the magnetic properties, thermomagnetic and X-ray diffraction analysis(XRD)were tested for the fine sediments(a fraction of less than 45μm)of 44 riverine samples.The results show that there is an obvious difference in magnetic properties of fine particles between the sediments from mainland rivers and west Taiwan rivers.The Yangtze River are characteristic of highest Xlf(106×10-8m3/kg in average, all data in abstract is in average)and HIRM(464×10-6Am2/kg), and a lower SIRM/Xlf(10kA/m).Zhejiang-Fujian rivers including Qiantangjiang, Oujiang and Minjiang are similar to the Yangtze River, with higher Xlf(62×10-8m3/kg)and HIRM(297×10-6Am2/kg), and a lower SIRM/Xlf(13kA/m).By comparison, Taiwan Choshui sediments are featured by lower Xlf(24×10-8m3/kg)and HIRM(156×10-6Am2/kg), half of them with an anomalously high SIRM/Xlf( >60kA/m; maximum of 136kA/m).The west Taiwan short rivers have low Xlf(11×10-8m3/kg)and HIRM(14×10-6Am2/kg).The results of thermomagnetic curves show that the mainland rivers are represented by magnetite peak of 580℃.The west Taiwan rivers are characterized by pyrrhotite peak of 320℃, especially in the Choshui River.The results of XRD confirm that characteristic diffraction peaks of magnetite and pyrrhotite occur respectively in the sediments of mainland and west Taiwan rivers.That's to say, the dominant magnetic minerals are magnetite in the mainland rivers and pyrrhotite west Taiwan rivers which is the reason of anomalously high SIRM/Xlf.Such a difference is believed related to basin-wide geomorphology and geology including:(1)the difference of parent rocks(representative E'mei basalt block of the Yangtze basin; intermediate-acidic igneous rock of Zhejiang-Fujian coasts and low-grade metamorphic rocks of west Taiwan); and (2)the different process of weathering and transportation in the riverine system(long duration in the Yangtze River system vs.short in the west Taiwan rivers).Based on the above analysis, this paper proposes a provenance indicator of SIRM/Xlf and HIRM, which would be effective for tracing sediments derived from mainland and west Taiwan rivers.

Key words     Yangtze River    Zhejiang-Fujian rivers    west Taiwan rivers    magnetic properties    sediment provenance