第四纪研究  2015, Vol.35 Issue (6): 1525-1536   PDF    
大暖期青藏及蒙新湖区古湖泊面积重建
张风菊①, ② , 薛滨 , 姚书春, 李珊英①, ②, 王晓翠①, ②    
(① 中国科学院南京地理与湖泊研究所, 中国科学院湖泊与环境国家重点实验室, 南京 210008; ② 中国科学院大学, 北京 100049)
摘要    特征时期古湖泊面积变化受控于当时的降水和湿度状况, 恢复特征时期的古湖泊面积, 可以为古气候模拟提供边界条件, 进而为预测未来区域水文变化提供一定的科学依据。本文以我国五大湖区中的青藏及蒙新湖区所代表的寒区及干旱区湖泊为研究对象, 根据国内外公开发表的全新世大暖期(6±0.5ka B.P.)湖泊水量(水位、面积等)记录, 收集所有具有大暖期湖泊面积及古降水的记录共计21条, 据此推算古湖泊面积与古降水量之间的定量关系, 并将该关系应用到青藏及蒙新湖区的其他湖泊, 初步恢复了大暖期两大湖区的古湖泊面积。同时, 分别选取位于西藏及蒙新地区的羊卓雍错和乌梁素海作为典型湖泊, 通过其近几十年来实际观测面积与经古湖泊面积-古降水量间关系推算面积的对比验证, 表明恢复的大暖期两大湖区古湖泊面积具有一定的可靠性和代表性。重建结果表明, 青藏及蒙新湖区大暖期古湖泊面积分别约为8.8×104km2 和4.1×104km2, 是现代湖泊面积的2.1倍和3.2倍。
主题词     大暖期    古湖泊面积    青藏高原湖区    蒙新湖区    
中图分类号     P941.78;P534.63+2                    文献标识码    A

通过地质历史时期气候变化研究来进行未来气候变化的相似型分析,是目前预估未来气候变化的有效手段。大暖期(6ka B.P.)为距今最近的一个暖期,6ka B.P.时期对未来全球增温的气候情景预估具有重要参考意义[1]。湖泊作为陆地生态系统的重要地理单元,对区域气候变化反映敏感,是揭示不同时间尺度下气候变化和人类活动信息的有效指示器[2, 3]。大暖期古湖泊尤其是寒区及干旱区古湖泊面积变化的研究,可以尽可能准确地了解当时的地表状况,也可作为验证古气候模型模拟准确与否的有效工具[4, 5, 6, 7],还可为未来类似增温幅度下湖泊演化提供一定的自然背景。

中国湖泊数量众多、分布广泛,特别是分别代表我国寒区及干旱区的青藏和蒙新两大湖区,其对应的湖泊面积分别为41831.7km2和12589.9km2,分别占全国湖泊总面积的51.4%和15.5%[8],是我国湖泊分布的重点区域。另外,该区域多内陆封闭湖泊,人类活动对湖泊影响相对较弱,因此这两大湖区湖泊对气候变化的响应较其他地域灵敏,湖泊面积变化更能较好的反映该区气候条件和自然环境变化的信息。

目前国内外对大暖期青藏高原及蒙新湖区湖泊水位波动及降水、温度格局的重建相对较多[9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34],但关于大暖期古湖泊面积的重建,仅限于少数基于古湖泊阶地恢复的古湖泊面积数据[4, 7],迄今尚未有全国或区域性的大暖期古湖泊面积重建资料。本文在已知青藏及蒙新两大湖区现代湖泊面积的基础上,根据现有的大暖期两大湖区古湖泊面积资料,结合大暖期大量定量降水重建成果,尝试对中国青藏及蒙新湖区大暖期古湖泊面积进行定量重建,以期为大暖期青藏及蒙新湖区古气候模拟提供重要的边界条件,同时为未来变暖情景下两大湖区湖泊面积变化提供一定的历史参考和科学依据。

1 资料与方法

1.1 数据来源

文中关于大暖期的研究时段为5.5~6.5ka B.P.(对应日历年为6.3~7.4cal.ka B.P.),即全新世暖期的鼎盛阶段[12]。所用的青藏及蒙新湖区古湖泊大暖期的降水、面积及水位记录资料主要来源于中国晚第四纪古湖泊水位数据库(CLSDB)[35],同时收集整理近年来国内外主要学术期刊已公开发表的文献书籍[4, 7, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47]。两大湖区湖泊现代水位、降水数据主要源于中国湖泊志、地方志、统计年鉴及“中国气象科学数据共享服务网”等(参考文献略),现代湖泊面积主要源于“湖泊-流域科学数据共享平台(http://lake.data.ac.cn/)”。通过对不同来源不同指标的数据资料的对比,尽量保证资料的全面性及准确性。本研究从两大湖区中收集整理到21条含大暖期的定量古湖泊面积-古降水记录。需要说明的是,由于大暖期青藏及蒙新湖区湖泊数量无从得知,因此,本文暂假定除了文献中有记载的大暖期时存在而现在已经干涸或消亡的湖泊(如罗布泊)外,其他现今存在的湖泊,在大暖期时也同样存在。

1.2 研究方法 1.2.1 大暖期古湖泊面积重建方法

对于封闭湖泊而言,降水往往是控制湖泊水量平衡变化(即水位)最主要的气候参数,而温度、云量以及蒸发的影响则相对较弱[48, 49],尤其是在受人类活动影响极其微弱的大暖期,这种作用更加明显。因此,根据现已有的古湖泊面积及古降水记录资料,探寻大暖期古湖泊面积和古降水之间的关系,即可在大暖期古湖泊(流域)其他气象资料缺失的情况下,根据该关系初步估算两大湖区湖泊相应降水所对应的古湖泊面积。

大暖期古湖泊面积与古降水之间关系的建立主要是利用SPSS 19.0的曲线估计功能。SPSS曲线估计中,首先,在不能明确究竟哪种模型更接近样本数据时可在上述多种可选择的模型中选择几种模型; 然后,SPSS自动完成模型的参数估计,并输出回归方程显著性检验的F值、P值和判定系数R2等统计量; 最后,以判定系数为主要依据选择其中的最优模型,并进行预测分析等。对于本文而言,首先分析大暖期湖泊面积及降水与现代湖泊面积及降水间是线性或非线性关系,确定函数类型,然后采用回归分析的方法建立两者之间的函数关系。函数推导能力的评估主要依据推导误差(Root-Mean-Square Error of Prediction,简称RMSEP)以及推导值与实测值之间的决定系数(Adjusted Coefficients of Determination,简称R2)等统计量。这两个统计量可以很好地用来衡量模型的总体有效性。上述统计量主要通过“刀割法(jackknifing)”来计算。“刀割法”是采用重新取样的方法,用每次去一个样品的方法重新建立独立的数据库,对所建函数进行检验[50]。这种检验方法提供了相对客观的检验结果,目前在转换函数重建中已被广泛接受和使用[51, 52, 53, 54, 55, 56, 57]。最终,具有最小推导误差的函数可以作为最佳的函数模型。

1.2.2 重建结果的检验

通常最有效最直接的验证方法就是用湖泊面积长期监测数据与推导值进行对比。在此,我们分别选取了西藏及蒙新地区具有近几十年湖泊面积及降水数据的羊卓雍错[58, 59, 60, 61]及乌梁素海[62, 63, 64, 65](部分数据由国家气候中心提供),将该湖泊近几十年来有记载的实际观测面积和根据上述函数关系推算的面积进行比较,从而进一步验证所建函数的推导能力。

2 大暖期青藏及蒙新湖区古湖泊面积的重建

2.1 根据古湖泊面积-古降水关系重建的古湖泊面积

表 1所示是从文献中收集到的含有大暖期湖泊面积及降水记录的21个青藏及蒙新湖区的湖泊点,根据这些探寻古湖泊面积和古降水量之间的定量关系,其中三次函数关系显示了最高的相关性而成为最佳建模方法(图 1)。根据该函数关系推导的古湖泊面积值与实际值在坐标轴上较好地沿着1∶1对角线的排列(图 2),也显示了它们有较强的推导能力。因而可在其他湖泊及环境参数未知的情况下,利用上述函数关系粗略估算大暖期两大湖区所有古湖泊面积。

表 1 已有大暖期古湖泊面积和湖区降水记录的湖泊点 Tab.1 List of lake area and precipitation during the Holocene Megathermal

图 1 大暖期湖泊面积/降水与现代湖泊面积/降水关系
班公错、青海湖和察尔汗盐湖3个异常偏离点未参与回归
Fig. 1 The relationship of the lake area/precipitation in the Holocene Megathermal vs. the present. Qinghai Lake, Bangong Co Lake and Chaerhan Lake were excluded from the regression

图 2 大暖期古湖泊面积重建函数的推导能力评估
实线为散点图理想状态下的拟合线,虚线为散点图实际拟合线
Fig. 2 Prediction ability of the reconstruction model on reconstructing the Holocene Megathermal lake area. The solid line represents the ideal regression trend while the dash line represents the actual regression trend

在利用古湖泊面积和古降水之间关系重建古湖泊面积时,大暖期及现代降水量的恢复是关键。目前有关单点或局部区域的全新世干湿或定量-半定量降水序列重建较多[66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94],但关于全国的大暖期降水格局重建仅见方修琦等[13]采用空间集成重建的方法,对中国285个地点的357条全新世暖期原始降水量记录进行重复记录归并和空间集成分析后重建的大暖期降水格局。在我国降水总体分布规律[95]的基础上,根据方修琦等[13]采用的青藏及蒙新地区大暖期有效年降水记录,即可重建青藏及蒙新湖区大暖期降水等值线分布图( 图 3),然后从 图 3中读取相应湖泊点的降水量值,并通过其他单点或区域降水资料的对比验证,初步重建大暖期两大湖区湖泊古降水状况。

图 3 我国青藏(a)及蒙新(b)湖泊大暖期年降水量分布
图中数字为年降水量(mm),根据方修琦等[13]推算而来
Fig. 3 Isohyet of mean annual precipitation in the Tibet Plateau (a) and Inner Mongolia-Xinjiang Region (b) in the Holocene Megathermal modified from Fang et al.[13] Data in the map represent the annual precipitation(mm)

此外,侯光良等[14]曾以孢粉为环境证据,通过选取空间上有代表性的10条由孢粉重建的降水序列,构建了分区古降水空间模拟-多区面积加权的集成方法,建立了青藏高原全新世古降水记录数据集。本文在重建青藏高原湖区大暖期降水时,考虑到该湖区湖泊众多,仅利用大暖期等降水量线并不能完全恢复所有湖泊点的大暖期降水值,因此文中还利用了侯光良等[14]对青藏高原大暖期降水序列的集成重建结果对本文重建的数据进行补充对比( 图 4),确保尽可能细致地还原大暖期青藏高原湖泊降水量。

图 4 青藏高原湖区大暖期湖泊的分区
根据侯光良等[14]修改
Fig. 4 Divisions of the Tibet Plateau in the Holocene Megathermal, modified from Hou et al.[14]

对于湖泊现代降水量来说,大部分青藏、蒙新湖区湖泊的现代降水数据可从已发表文献、中国湖泊志及其他地方志中直接获取。对于两大湖区中无法直接查出现代降水数据的湖泊点,本文采用方修琦等[13]重建大暖期降水时所用的方法,根据已有湖泊的现代降水数据绘制湖泊现代降水等值线分布图( 图 5),从 图 5中近似读取未知现代降水值的湖泊点降水数据。

图 5 我国青藏(a)及蒙新(b)湖泊现代年降水量分布
图中数字为年降水量(mm),根据已有现代降水量数据(参考文献略)推算而来
Fig. 5 Isohyet of mean annual precipitation in the Tibet Plateau (a) and Inner Mongolia-Xinjiang Region (b) at present according to given data of precipitation from related lakes. Data in the map represent the annual precipitation(mm)

2.2 重建古湖泊面积的验证

羊卓雍错1972~2010年(不连续)及乌梁素海1960~2010年(不连续)间的实测面积与推算面积对比见 图 6。从 图 6中可以看出,根据函数关系重建的羊卓雍错及乌梁素海各年份湖泊面积值与实际面积值基本接近,但重建值与实际值仍存在一定误差,而且误差绝对值在不同年份存在一定差异。羊卓雍错相对误差变化范围在0.77%~54.59%之间,最大误差出现在2008年,最小误差出现在1989年;乌梁素海相对误差变化范围在0.80%~70.25%之间,最大误差出现在1977年,最小误差出现在1961年。在羊卓雍错20年重建值与实际值的比较中,误差小于10%的个数为9个,占所有年份的45%;误差在10%~20%之间的个数为4个,占所有年份的20%;误差在20%~30%之间的个数为5个,占所有年份的25%;误差大于30%的个数为2个,占所有年份的10%。在乌梁素海30年重建值与实际值的比较中,误差小于10%的个数为12个,占所有年份的40%;误差在10%~20%之间的个数为8个,占所有年份的26.7%;误差在20%~30%之间的个数为4个,占所有年份的13.3%;误差大于30%的个数为6个,占所有年份的20%。值得注意的是,随着近几十年来人类活动对湖泊影响的加剧,比如乌梁素海中农田退水对湖泊面积的影响,湖区降水量对湖泊面积变化的主控作用可能会弱化,因此将上述降水-古湖泊面积关系应用到现代时还是应慎重。

图 6 羊卓雍错(a)及乌梁素海(b)实际面积与推算面积对比 Fig. 6 Comparison of observed and computed lake area of Yamdrok Lake (a) and Wuliangsuhai Lake(b)

2.3 重建结果

根据前述,古湖泊面积-古降水之间函数关系重建的大暖期青藏高原及蒙新湖区古湖泊面积见 图 7。重建结果表明: 大暖期青藏及蒙新湖区古湖泊面积总计约为1.2×105km2,比现在全国所有湖泊面积之和(81414.6km2[8]还要高。其中,青藏高原湖区大暖期古湖泊面积约为8.8×104km2,约是现在湖泊面积的2.1倍,大于10km2的湖泊649个,合计面积约为8.6×104km2;蒙新湖区大暖期古湖泊面积约为2.9×104km2,比现在的湖泊面积高出1.6×104km2,大于10km2的湖泊228个,合计面积约为2.7×104km2。此外,如果将蒙新湖区大暖期时尚存在的民勤三角城古湖泊(大暖期古湖泊面积约为2130km2[96])以及古罗布泊(全新世中期古湖泊面积约为10000km2[97, 98])的面积计算在内,蒙新湖区大暖期古湖泊面积可达4.1×104km2,约是现代湖泊面积的3.2倍。

图 7 青藏(a)及蒙新(b)湖区不同级别湖泊的面积和数量对比 Fig. 7 Comparison of the number and area of different lake sizes between the Holocene Megathermal and the present in the Tibet Plateau (a) and Inner Mongolia-Xinjiang Region(b)

从湖泊面积变化来看,青藏高原湖区面积>100km2的湖泊大暖期面积较现在增幅较大,而<100km2的湖泊面积增幅相对较小,特别是面积在10km2以下的湖泊大暖期和现在面积变化不明显。相比较而言,蒙新湖区不同等级湖泊大暖期较现在的面积增加幅度总体上要比青藏高原湖区大,但10km2以下的湖泊面积同样在大暖期和现在变化不大。从湖泊数量变化来看,青藏高原湖区面积在1~10km2、10~50km2、50~100km2、100~500km2、500~1000km2以及>1000km2的湖泊分别有413个、356个、93个、164个、24个和12个;蒙新湖区相应等级面积的湖泊数量分别为292个、153个、32个、31个、8个和4个;与现在同级别面积的湖泊数量相比,两大湖区除10km2以下湖泊数目减少外,其余级别均呈增加趋势。此外,虽然小湖在数量上仍占绝对优势,但无论从大暖期还是现代来看,湖泊数量和面积之间并非一种正比关系。

鉴于文中并未考虑那些现在湖泊面积小于1km2,但大暖期时湖泊面积可能大于1km2的湖泊,也未将其余一部分大暖期时存在但面积未知的古湖泊考虑在内,本文重建的大暖期两大湖区古湖泊面积可能较真实值偏低。但另一方面,文中所采用的现在存在的湖泊在大暖期时也可能并未成形,这样就会造成大暖期古湖泊面积值的高估。究竟两者能否抵消或者差值多大,仍有待进一步的研究。此外,对于青藏高原及新疆部分受冰川融水补给的湖泊而言,降水可能并非是影响湖泊变化的单一要素,由于大暖期升温而引起的冰川融水增加、冻土隔水层融化及流域蒸发加强等均可能对湖泊水文状况产生一定影响,从而限制了文中利用降水-面积间关系估算该湖区大暖期古湖泊面积的精度。再者,尽管目前关于青藏及蒙新湖区碳库效应的研究较多[99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110],但由于本文所引资料中给出的大暖期年代几乎均未考虑碳库效应的影响,加之不同区域、不同湖泊,甚至同一湖泊的不同地点间碳库效应差距较大,因此文中并未对所研究湖泊的碳库效应做统一校正。鉴于此,大暖期古湖泊面积的研究仍有待今后进一步的深入。

3 结论

本文主要以中国晚第四纪古湖泊数据库及已公开发表的各类文献为基础,综合集成分别代表我国干旱区的青藏、蒙新湖区具有全新世大暖期湖泊面积及湖区降水量的典型湖泊点记录,根据两大湖区古湖泊面积和古降水量之间的关系,初步重建了大暖期两大湖区所有湖泊的面积。

研究结果表明: 青藏高原湖区大暖期古湖泊面积约为8.8×104km2,约是现在湖泊面积的2.1倍,其中面积在1~10km2的413个、10~50km2的356个、50~100km2的93个、100~500km2的164个、500~1000km2的24个、大于1000km2的12个;蒙新湖区大暖期古湖泊面积约为4.1×104km2,约是现在湖泊面积的3.2倍,其中面积在1~10km2的292个、10~50km2的153个、50~100km2的32个、100~500km2的31个、500~1000km2的8个、大于1000km2的4个。

参考文献(References)
1 Braconnot P, Otto-Bliesner B, Harrison S et al. Results of PMIP 2 coupled simulations of the Mid-Holocene and last glacial maximum. Part 1. Experiments and large-scale features. Climate of the Past, 2007,3(2):261~277
2 王苏民, 薛滨, 沈吉等. 我国湖泊环境演变及其成因机制研究现状. 高校地质学报, 2009,15(2):141~148
Wang Sumin, Xue Bin, Shen Ji et al. The lake environment changes in China and its mechanical explanation. Geological Journal of China Universities, 2009,15(2):141~148
3 沈吉. 湖泊沉积研究的历史进展与展望. 湖泊科学, 2009,21(3):307~313
Shen Ji. Progress and prospect of paleolimnology research in China. Journal of Lake Sciences, 2009,21(3):307~313
4 薛滨. 中国晚第四纪古湖泊水量恢复与古大气环流重建. 南京:中国科学院南京地理与湖泊研究所博士论文, 2001. 1~38
Xue Bin. Reconstruction of Paleo-lake Status and Paleo-atmospheric Circulations of China during the Late Quaternary. Nanjing:The Doctoral Dissertation of Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 2001. 1~38
5 于革. 全球晚第四纪湖泊数据库的研究. 湖泊科学, 1997,9(3):193~202
Yu Ge. Studies on global Late Quaternary lake-level data bases. Journal of Lake Sciences, 1997,9(3):193~202
6 Xue Bin, Yu Ge, Wang Sumin. The CLSDB(Chinese Lake Status Database) and its role in the research of paleoclimate in East Asia. Quaternary Research, 2002,41(1):53~61
7 于革, 薛滨, 刘健等. 中国湖泊演变与古气候动力学研究. 北京:气象出版社, 2001. 135~145
Yu Ge, Xue Bin, Liu Jian et al. Lake Records from China and the Palaeoclimate Dynamics. Beijing:China Meteorological Press, 2001. 135~145
8 马荣华, 杨桂山, 段洪涛等. 中国湖泊的数量、面积与空间分布. 中国科学:地球科学, 2011,41(3):394~401
Ma Ronghua, Yang Guishan, Duan Hongtao et al. China's lakes at present:Number, area and spatial distribution. Science China:Earth Sciences, 2011,41(3):394~401
9 COHMAP Members. Climatic changes of the last 18000 years:Observations and model simulations. Science, 1988,241(4869):1043~1052
10 Prentice I C, Webb Ⅲ T. BIOME 6000:Reconstructing global mid-Holocene vegetation patterns from paleoecological records. Journal of Biogeography, 1998,25(6):997~1005
11 方修琦, 侯光良. 中国全新世气温序列的集成重建. 地理科学, 2011,31(4):385~393
Fang Xiuqi, Hou Guangliang. Reconstruction of precipitation pattern of China in the Holocene Megathermal. Scientia Geographica Sinica, 2011,31(4):385~393
12 施雅风, 孔昭宸, 王苏民等. 中国全新世大暖期气候与环境. 北京:海洋出版社, 1992. 1~18
Shi Yafeng, Kong Zhaochen, Wang Sumin et al. The Climate Change in the Holocene Megathermal. Beijing:China Ocean Press, 1992. 1~18
13 方修琦, 刘翠华, 侯光良. 中国全新世暖期降水格局的集成重建. 地理科学, 2011,31(11):1287~1295
Fang Xiuqi, Liu Cuihua, Hou Guangliang. Reconstruction of precipitation pattern of China in the Holocene Megathermal. Scientia Geographica Sinica, 2011,31(11):1287~1295
14 侯光良, 鄂崇毅, 肖景义. 青藏高原全新世降水序列的集成重建. 地理科学进展, 2012,31(9):1117~1123
Hou Guangliang, E Chongyi, Xiao Jingyi. Synthetical reconstruction of the precipitation series of the Qinghai-Tibet Plateau during the Holocene. Progress in Geography, 2012,31(9):1117~1123
15 Chen C T A,Lan H C, Lou J Y et al. The dry Holocene Megathermal in Inner Mongolia. Palaeogeography, Palaeoclimatology, Palaeoecology, 2003,193(2):181~200
16 Rades E F, Hetzel R, Xu Q et al. Constraining Holocene lake-level highstands on the Tibetan Plateau by 10Be exposure dating:A case study at Tangra Yumco, southern Tibet. Quaternary Science Reviews, 2013,82:68~77
17 Morrill C, Overpeck J T, Cole J E et al. Holocene variations in the Asian monsoon inferred from the geochemistry of lake sediments in central Tibet. Quaternary Research, 2006,65(2):232~243
18 Zhu L P, Zhen X L, Wang J B et al. A-30,000-year record of environmental changes inferred from Lake Chen Co, southern Tibet. Journal of Paleolimnology, 2009,42(3):343~358
19 Chen Fahu, Wu Wei, Holmes J A et al. A Mid-Holocene drought interval as evidenced by lake desiccation in the Alashan Plateau, Inner Mongolia China. Chinese Science Bulletin, 2003,48(14):1401~1410
20 Shi Peijun, Song Changqing. Palynological records of environmental changes in the middle part of Inner Mongolia, China. Chinese Science Bulletin, 2003,48(14):1433~1438
21 Hudson A M, Quade J, Huth T E et al. Lake level reconstruction for 12.8~2.3ka of the Ngangla Ring Tso closed-basin lake system, southwest Tibetan Plateau. Quaternary Research, 2015,83(1):66~79
22 Yang X P, Scuderi L A, Wang X L et al. Groundwater sapping as the cause of irreversible desertification of Hunshandake sandy lands, Inner Mongolia, Northern China. Proceedings of the National Academy of Sciencesof the United States of America, 2015,112(3):702~706
23 Daut G, Mäusbacher R, Baade J et al. Late Quaternary hydrological changes inferred from lake level fluctuations of Nam Co(Tibetan Plateau, China). Quaternary International, 2010,218(1):86~93
24 Mügler I, Gleixner G, Günther F et al. A multi-proxy approach to reconstruct hydrological changes and Holocene climate development of Nam Co, Central Tibet. Journal of Paleolimnology, 2010,43(4):625~648
25 Long H, Lai Z P, Wang N A et al. Holocene climate variations from Zhuyeze terminal lake records in East Asian monsoon margin in arid Northern China. Quaternary Research, 2010,74(1):46~56
26 Zhao C, Yu Z, Zhao Y et al. Holocene millennial-scale climate variations documented by multiple lake-level proxies in sediment cores from Hurleg Lake, Northwest China. Journal of Paleolimnology, 2010,44(4):995~1008
27 Wen R L, Xiao J L, Chang Z G et al. Holocene precipitation and temperature variations in the East Asian monsoonal margin from pollen data from Hulun Lake in northeastern Inner Mongolia, China. Boreas, 2010,39(2):262~272
28 Rhode D, Haizhou M, Madsen D B et al. Paleoenvironmental and archaeological investigations at Qinghai Lake, Western China:Geomorphic and chronometric evidence of lake level history. Quaternary International, 2010,218(1):29~44
29 Shi Y F, Kong Z C, Wang S M et al. Mid-Holocene climates and environments in China. Global and Planetary Change, 1993,7(1):219~233
30 王绍武. 全新世大暖期. 气候变化研究进展, 2011,7(5):383~384
Wang Shaowu. The Holocene Megathermal. Advances in Climate Change, 2011,7(5):383~384
31 何元庆, 姚檀栋, 沈永平等. 冰芯与其他记录所揭示的中国全新世大暖期变化特征. 冰川冻土, 2003,25(1):11~18
He Yuanqing, Yao Tandong, Shen Yongping et al. Climatic differences in China during the Holocene indicated by the various climatic proxy data from different parts of China. Journal of Glaciology and Geocryology, 2003,25(1):11~18
32 Liu F G, Zhang Y L, Feng Z D et al. The impacts of climate change on the Neolithic cultures of Gansu-Qinghai region during the Late Holocene Megathermal. Journal of Geographical Sciences, 2010,20(3):417~430
33 Jiang D B, Tian Z P, Lang X M. Mid-Holocene net precipitation changes over China:Model-data comparison. Quaternary Science Reviews, 2013,82:104~120
34 Jiang D B, Lang X M, Tian Z P et al. Considerable model-data mismatch in temperature over China during the Mid-Holocene:Results of PMIP simulations. Journal of Climate, 2012,25(12):4135~4153
35 Yu Ge, Harrison S P, Xue Bin. Lake Status Records from China:Data Base Documentation. Gemany:Max Planck Institute for Biogeochemistry Technical Report 4,2001. 1~211
36 贾玉连, 施雅风, 王苏民等. 40ka 以来青藏高原的4次湖涨期及其形成机制初探. 中国科学(D 辑), 2001,31(B12):241~251
Jia Yulian, Shi Yafeng, Wang Sumin et al. Preliminary study of the four lake-expanding stages in the Qing-Zang Plateau and its mechanism. Science in China (Series D), 2001,31(B12):241~251
37 李栓科. 中昆仑山区封闭湖泊湖面波动及其气候意义. 湖泊科学, 1992,4(1):19~30
Li Shuanke. Fluctuation of closed lake level and its climatic significance on the middle Kunlun Mountains. Journal of Lake Sciences, 1992,4(1):19~30
38 贾玉连, 王苏民, 吴艳宏等. 24ka B.P. 以来青藏高原中部湖泊演化及古降水量研究——以兹格塘错与错鄂为例. 海洋与湖沼, 2003,34(3):283~294
Jia Yulian, Wang Sumin, Wu Yanhong et al. Preliminary study of lake evolution and precipitation of Zigetangco and Coe basins, central Qinghai-Xizang Plateau, since 24ka B.P. Oceanologia et Limnologia Sinica, 2003,34(3):283~294
39 春喜, 王宗礼, 夏敦胜等. 吉兰泰盐湖的形成及指示的环境意义. 盐湖研究, 2008,16(3):11~18
Chun Xi, Wang Zongli, Xia Dunsheng et al. Formation of Jilantai salt lake and its environmental significance. Journal of Salt Lake Research, 2008,16(3):11~18
40 邱维理, 翟秋敏, 扈海波等. 安固里淖全新世湖面变化及其环境意义. 北京师范大学学报(自然科学版), 1999,35(4):542~548
Qiu Weili, Zhai Qiumin, Hu Haibo et al. Holocene water level changes of Angulinao Lake and their environmental significance. Journal of Beijing Normal University (Natural Science), 1999,35(4):542~548
41 王云飞. 全新世高温期我国湖泊沉积. 湖泊科学, 1992,4(1):9~18
Wang Yunfei. Characteristics of lake sediment and natural environments in China during the Holocene Megathermal Period. Journal of Lake Sciences, 1992,4(1):9~18
42 Li D, Li Y, Ma B et al. Lake-level fluctuations since the Last Glaciation in Selin Co(lake), central Tibet, investigated using optically stimulated luminescence dating of beach ridges. Environmental Research Letters, 2009,4(4):045204
43 薛蕾, 张振卿, 刘维明等. 西藏色林错12ka 以来的湖泊退缩过程——基于古湖岸线的 OSL 测年. 地质科学, 2010,45(2):428~439
Xue Lei, Zhang Zhenqing, Liu Weiming et al. The shrinking process of Siling Co in the past 12ka:Based on OSL dating of past shorelines. Chinese Journal of Geology, 2010,45(2):428~439
44 Chen Y, Zong Y, Li B et al. Shrinking lakes in Tibet linked to the weakening Asian monsoon in the past 8.2ka. Quaternary Research, 2013,80(2):189~198
45 张虎才. 腾格里沙漠晚更新世以来湖相沉积年代学及高湖面期的初步确定. 兰州大学学报(自然科学版), 1997,33(2):87~91
Zhang Hucai. Preliminary study on the chronology of lacustrine deposits and determination of high palaeo-lake level in Tengger desert since Late Pleistocene. Journal of Lanzhou University (Natural Science), 1997,33(2):87~91
46 Pachur H J, Wünnemann B, Zhang H. Lake evolution in the Tengger Desert, Northwestern China, during the last 40,000 years. Quaternary Research, 1995,44(2):171~180
47 李文漪, 李家英, 梁玉莲. 西藏曼冬错硅藻土中的孢粉和硅藻分析. 见:李炳元, 王富葆, 张青松等主编. 西藏第四纪地质. 北京:科学出版社, 1983. 172~177
Li Wenyi, Li Jiaying, Liang Yulian. The pollen and diatom analysis from Mangdong Cuo diatomite sediments in Tibet. In:Li Bingyuan, Wang Fubao, Zhang Qingsong et al.eds. Quaternary Geology in Xizang. Beijing:Science Press, 1983. 172~177
48 Benson L V, Palaeoclimatic significance of lake-level fluctuations in the Lahontan basin. Quaternary Research, 1981,16(3):390~403
49 Hastenrath S, Kutzbach J E. Paleoclimatic estimates from water and energy budgets of East African lakes. Quaternary Research, 1983,19(2):141~153
50 Dixit S S, Cumming B F, Birks H J B et al. Diatom assemblages from Adirondack lakes(New York, USA) and the development of inference models for retrospective environmental assessment. Journal of Paleolimnology, 1993,8(1):27~47
51 董旭辉, 羊向东, 王荣等. 长江中下游地区湖泊硅藻-总磷转换函数. 湖泊科学, 2006,18(1):1~12
Dong Xuhui, Yang Xiangdong, Wang Rong et al. A diatom-total phosphorus transfer function for lakes in the middle and lower reaches of Yangtze River. Journal of Lake Sciences, 2006,18(1):1~12
52 Gasse F, Juggins S, Khelifa L B. Diatom-based transfer functions for inferring past hydrochemical characteristics of African lakes. Palaeogeography, Palaeoclimatology, Palaeoecology, 1995,117(1):31~54
53 Weckström J, Korhola A, Blom T. Diatoms as quantitative indicators of pH and water temperature in subarctic Fennoscandian lakes. Hydrobiologia, 1997,347(1~3):171~184
54 Reed J M. A diatom-conductivity transfer function for Spanish salt lakes. Journal of Paleolimnology, 1998,19(4):399~416
55 Roseacute P, Hall R, Korsman T et al. Diatom transfer-functions for quantifying past air temperature, pH and total organic carbon concentration from lakes in Northern Sweden. Journal of Paleolimnology, 2000,24(2):109~123
56 Kauppila T, Moisio T, Salonen V P. A diatom-based inference model for autumn epilimnetic total phosphorus concentration and its application to a presently eutrophic boreal lake. Journal of Paleolimnology, 2002,27(2):261~273
57 Mischke S, Almogi-Labin A, Ortal R et al. Quantitative reconstruction of lake conductivity in the Quaternary of the Near East(Israel) using ostracods. Journal of Paleolimnology, 2010,43(4):667~688
58 除多, 普穷, 拉巴卓玛等. 近40a 西藏羊卓雍错湖泊面积变化遥感分析. 湖泊科学, 2012,24(3):494~502
Chu Duo, Pu Qiong, Laba Zhuoma et al. Remote sensing analysis on lake area variations of Yamzho Yumco in Tibetan Plateau over the past 40a. Journal of Lake Sciences, 2012,24(3):494~502
59 除多, 普穷, 旺堆等. 1974~2009年西藏羊卓雍错湖泊水位变化分析. 山地学报, 2012,30(2):239~247
Chu Duo, Pu Qiong, Wang Dui et al. Water level variations of Yamzho Yumco Lake in Tibet and the main driving forces. Journal of Mountain Science, 2012,30(2):239~247
60 边多, 杜军, 胡军等. 1975~2006年西藏羊卓雍错流域内湖泊水位变化对气候变化的响应. 冰川冻土, 2009,31(3):404~409
Bian Duo, Du Jun, Hu Jun et al. Response of the water level of the Yamzho Yumco to climate change during 1975~2006. Journal of Glaciology and Geocryology, 2009,31(3):404~409
61 格桑卓玛, 拉巴. 近45 年羊卓雍湖西部流域气候的变化特征初探. 西藏科技, 2007,(1):52~53
Gesang Zhuoma, La Ba. Climatic variations of the western Yamzho Yumco Lake basin of Tibet over the last 45 years. Tibet science and technology, 2007,(1):52~53
62 丁永建, 刘时银, 叶柏生等. 近50a中国寒区与旱区湖泊变化的气候因素分析. 冰川冻土, 2006,28(5):623~632
Ding Yongjian, Liu Shiyin, Ye Baisheng et al. Climatic implications on variations of lakes in the cold and arid regions of China during the recent 50 years. Journal of Glaciology and Geocryology, 28(5):623~632
63 李亚威, 韩天成. 内蒙古湖泊水资源及主要环境问题. 内蒙古环境保护, 2000,12(2):17~21
Li Yawei, Han Tiancheng. Situation of lakes water resources and major environmental problems in Inner Mongolia. Inner Mongolia Environmental Protection, 2000,12(2):17~21
64 于瑞宏, 李畅游, 刘廷玺等. 乌梁素海湿地环境的演变. 地理学报, 2004,59(6):948~955
Yu Ruihong, Li Changyou, Liu Tingxi et al. Change of wetland environment in Wuliangsuhai. Acta Geographica Sinica, 2004,59(6):948~955
65 李旭英, 尚士友, 倪志华等. 内蒙古乌梁素海湿地演化遥感动态分析研究. 内蒙古农业大学学报, 2005,26(1):27~29
Li Xuying, Shang Shiyou, Ni Zhihua et al. The dynamic analysis of marsh land evolution process of Wuliangsuhai Lake in Inner Mongolia. Journal of Inner Mongolia Agricultural University, 2005,26(1):27~29
66 蒋庆丰, 沈吉, 刘兴起等. 西风区全新世以来湖泊沉积记录的高分辨率古气候演化. 科学通报, 2007,52(9):1042~1049
Jiang Qingfeng, Shen Ji, Liu Xingqi et al. A high-resolution climatic change since Holocene inferred from multi-proxy of lake sediment in westerly area of China. Chinese Science Bulletin, 2007,52(9):1042~1049
67 Lü H Y, Wu N Q, Liu K B et al. Phytoliths as quantitative indicators for the reconstruction of past environmental conditions in China Ⅱ:Palaeoenvironmental reconstruction in the Loess Plateau. Quaternary Science Reviews, 2007,26(5):759~772
68 唐领余, 沈才明, 廖淦标等. 末次盛冰期以来西藏东南部的气候变化——西藏东南部的花粉记录. 中国科学(D辑), 2004,34(5):436~442
Tang Lingyu, Shen Caiming, Liao Gaibiao et al. Climatic changes in the southeastern Qinghai-Tibetan Plateau during the Last Glacial Maximum——Pollen records from southeastern Tibet. Science in China (Series D), 2004,34(5):436~442
69 黄赐璇, 张青松, 刘福涛. 西藏日土县班公错地区晚更新世晚期植物群与古气候探讨. 自然资源学报, 1989,4(3):247~253
Huang Cixuan, Zhang Qingsong, Liu Futao. A preliminary study of paleovegetation and paleoclimate in the later period of Late Pleistocene in the Bangongcuo Lake region of Xizang. Journal of Natural Resources, 1989,4(3):247~253
70 贾铁飞. 中国北方季风气候与内陆气候过渡地带全新世环境演变. 内蒙古师范大学学报:自然科学版, 1995,(1):64~70
Jia Tiefei. Holocene environmental evolution in the transitional area of monsoon climate and inland climate in Northern China. Journal of Inner Mongolia Normal University: Natural Science, 1995,(1):64~70
71 贾玉连, 施雅风, 范云崎. 水能联合方程恢复流域古降水量时参数的确定方法及其应用——以青海湖全新世大暖期古降水量推算为例. 水科学进展, 2001,12(3):324~330
Jia Yulian, Shi Yafeng, Fan Yunqi. A method on determining the parameters of the hydrological and energy-balance model and its use:A case study of Qinghai Lake at Holocene Megathermal. Advances in Water Science, 2001,12(3):324~330
72 李容全, 贾铁飞. 根据内陆湖水面变化恢复古降水量的方法——以内蒙古岱海为例. 科学通报, 1992,37(14):1306~1309
Li Rongquan, Jie Tiefei. Estimates of the paleoprecipitation based on lake-level data——A case study of Daihai basin, China. Chinese Science Bulletin, 1992,37(14):1306~1309
73 李森, 孙武, 李孝泽等. 浑善达克沙地全新世沉积特征与环境演变. 中国沙漠, 1995,15(4):323~331
Li Sen, Sun Wu, Li Xiaoze et al. Sedimentary characteristics and environmental evolution of Otindag sandy land in Holocene. Journal of Desert Research, 1995,15(4):323~331
74 彭晓莹, 钟巍, 赵引娟等. 全新世大暖期气候环境特征及其机制的再认识. 华南师范大学学报(自然科学版), 2005,(2):52~60
Peng Xiaoying, Zhong Wei, Zhao Yinjuan et al. Preliminary research in the Holocene hypsithermal climate change. Journal of South China Normal University (Natural Science Edition), 2005,(2):52~60
75 施雅风, 孔昭宸, 王苏民等. 中国全新世大暖期的气候波动与重要事件. 中国科学(B辑), 1992,22(12):1300~1308
Shi Yafeng, Kong Zhaochen, Wang Sumin et al. The climatic fluctuations and important events in the Holocene Megathermal of China. Science in China (Series B), 1992,22(12):1300~1308
76 孙千里, 周杰, 沈吉等. 北方环境敏感带岱海湖泊沉积所记录的全新世中期环境特征. 中国科学(D辑), 2006,36(9):838~849
Sun Qianli, Zhou Jie, Shen Ji et al. Environmental characteristics of Mid-Holocene recorded by lacustrine sediments from Lake Daihai, north environment sensitive zone, China. Science in China (Series D), 2006,36(9):838~849
77 孙千里, 肖举乐, 刘韬. 岱海沉积物元素地球化学特征反映的末次冰期以来季风/干旱过渡区的水热条件变迁. 第四纪研究, 2010,30(6):1121~1130
Sun Qianli, Xiao Jule, Liu Tao. Hydrothermal status in the monsoon/arid transition belt of China since the last glaciation inferred from geochemical characteristics of the sediment cores at Daihai Lake. Quaternary Sciences, 2010,30(6):1121~1130
78 温锐林, 肖举乐, 常志刚等. 全新世呼伦湖植被和气候变化的孢粉记录. 第四纪研究, 2010,30(6):1105~1115
Wen Ruilin, Xiao Jule, Chang Zhigang et al. Holocene vegetation and climate changes reflected by the pollen record of Hulun Lake, north eastern Inner Mongolia. Quaternary Sciences, 2010,30(6):1105~1115
79 吴敬禄, 王苏民, 王洪道. 新疆艾比湖全新世以来的环境变迁与古气候. 海洋与湖沼, 1996,27(5):524~530
Wu Jinglu, Wang Sumin, Wang Hongdao. Characters of the evolution of climate and environment of Holocene in Aibi Lake basin in Xinjiang. Oceanologia et Limnologia Sinica, 1996,27(5):524~530
80 王富葆, 韩辉友, 阎革等. 青藏高原东北部30ka以来的古植被与古气候演变序列. 中国科学(D辑), 1996,26(2):111~117
Wang Fubao, Han Huiyou, Yan Ge et al. Sequence of palaeovegetational and palaeoclimatic changes in northeastern Tibetan Plateau during the last 30ka. Science in China (Series D), 1996,26(2):111~117
81 徐叔鹰. 青藏高原东北部的古土壤及其对环境变迁的反映. 地理科学, 1994,14(3):225~232
Xu Shuying. The paleosols and their reflections of the environmental changes in the northeast region of the Qinghai-Xizang Plateau. Scientia Geographica Sinica, 1994,14(3):225~232
82 羊向东, 王苏民. 呼伦湖、乌伦古湖全新世植物群发展与气候环境变化. 海洋与湖沼, 1996,27(1):67~72
Yang Xiangdong, Wang Sumin. The vegetation and climate-environmental changes in Hunlun Lake and Wulungu Lake during Holocene. Oceanologia et Limnologia Sinica, 1996,27(1):67~72
83 杨志荣. 内蒙古中西部地区全新世大暖期气候与环境初步研究. 地理科学, 1998,18(5):479~485
Yang Zhirong. The preliminary study on the climate and environment during the Megathermal of the Holocene in middle-west Inner Mongolia. Scientia Geographica Sinica, 1998,18(5):479~485
84 孙博亚, 岳乐平, 赖忠平等. 14ka B.P. 以来巴里坤湖区有机碳同位素记录及古气候变化研究. 第四纪研究, 2014,34(2):418~424
Sun Boya, Yue Leping, Lai Zhongping et al. Paleoclimate changes recorded by sediment organic carbon isotopes of Lake Barkol since 14ka B.P. Quaternary Sciences, 2014,34(2):418~424
85 姜雅娟, 王维, 马玉贞等. 内蒙古鄂尔多斯高原泊江海子全新世气候变化初步研究. 第四纪研究, 2014,34(3):654~665
Jiang Yajuan, Wang Wei, Ma Yuzhen et al. A preliminary study on Holocene climate change of Ordos Plateau, as inferred by sedimentary record from Bojianghaizi Lake of Inner Mongolia, China. Quaternary Sciences, 2014,34(3):654~665
86 赵凯华, 杨振京, 张芸等. 新疆艾丁湖区中全新世以来孢粉记录与古环境. 第四纪研究, 2013,33(3):526~535
Zhao Kaihua, Yang Zhenjing, Zhang Yun et al. Pollen records and paleoenvironment since Mid-Holocene in the Aydingkol Lake of Xinjiang. Quaternary Sciences, 2013,33(3):526~535
87 陶士臣, 安成邦, 赵家驹等. 新疆东部托勒库勒湖流域表土花粉初步分析. 第四纪研究, 2013,33(3):545~550
Tao Shichen, An Chengbang, Zhao Jiaju et al. The preliminary study of the surface pollen from Tuolekule Lake basin, eastern Xinjiang, China. Quaternary Sciences, 2013,33(3):545~550
88 赵强, 李秀梅, 王乃昂. 6700~5800a B.P. 期间石羊河流域的水量平衡. 干旱区资源, 2007,21(6):84~91
Zhao Qiang, Li Xiumei, Wang Nai'ang. Water balance of Shiyang River drainage during 6700~5800yr BP. Journal of Arid Land Resources and Environment, 2007,21(6):84~91
89 任雅琴, 王彩红, 李瑞博等. 有机质饱和烃和δ13Corg. 记录的博斯腾湖早全新世晚期以来生态环境演变. 第四纪研究, 2014,34(2):425~433
Ren Yaqin, Wang Caihong, Li Ruibo et al. Ecological environment change recorded by sediment n-alkane andδ13Corg. of Lake Bosten since late of Early Holocene. Quaternary Sciences, 2014,34(2):425~433
90 宋木, 刘卫国, 郑卓等. 西北干旱区湖泊沉积物中长链烯酮的古环境意义. 第四纪研究, 2013,33(6):1199~1210
Song Mu, Liu Weiguo, Zheng Zhuo et al. Paleoenvironmental implications of long chain alkenones in arid regions, Northwestern China. Quaternary Sciences, 2013,33(6):1199~1210
91 冯晗, 鹿化煜, 弋双文等. 末次盛冰期和全新世大暖期中国季风区西北缘沙漠空间格局重建初探. 第四纪研究, 2013,33(2):252~259
Feng Han, Lu Huayu, Yi Shuangwen et al. The border changes of the deserts/sand field in the East Asian monsoon marginal region during the last glacial maximum and Holocene optimum. Quaternary Sciences, 2013,33(2):252~259
92 徐志伟, 鹿化煜, 弋双文等. 末次盛冰期和全新世大暖期毛乌素沙地的空间变化. 第四纪研究, 2013,33(2):218~227
Xu Zhiwei, Lu Huayu, Yi Shuangwen et al. Spatial variations of the Mu Us dune field(north Central China) during the last glacial maximum and Holocene optimum. Quaternary Sciences, 2013,33(2):218~227
93 周亚利, 鹿化煜, 张小艳等. 末次盛冰期和全新世大暖期浑善达克沙地边界的变化. 第四纪研究, 2013,33(2):228~242
Zhou Yali, Lu Huayu, Zhang Xiaoyan et al. Chang of the border of Otindag sand field(North China) during the last glacial maximum and Holocene optimum. Quaternary Sciences, 2013,33(2):228~242
94 弋双文, 鹿化煜, 曾琳等. 末次盛冰期以来科尔沁沙地古气候变化及其边界重建. 第四纪研究, 2013,33(2):206~217
Yi Shuangwen, Lu Huayu, Zeng Lin et al. Paleoclimate changes and reconstruction of the border of Horqin dune field(Northeastern China) since the last glacial maximum. Quaternary Sciences, 2013,33(2):206~217
95 张家诚, 林之光. 中国气候. 上海:上海科学技术出版社, 1985. 206~221
Zhang Jiacheng, Lin Zhiguang. The Climate in China. Shanghai:Shanghai Science and Technology Press, 1985. 206~221
96 张成君, 陈发虎, 尚华明等. 中国西北干旱区湖泊沉积物中有机质碳同位素组成的环境意义——以民勤盆地三角城古湖泊为例. 第四纪研究, 2004,24(1):88~94
Zhang Chengjun, Chen Fahu, Shang Huaming et al. The paleoenvironmental significance of organic carbon isotope in lacustrine sediments in the arid China:An example from Sanjiaocheng palaeolake in Minqin. Quaternary Sciences, 2004,24(1):88~94
97 王富葆, 马春梅, 夏训诚等. 罗布泊地区自然环境演变及其对全球变化的响应. 第四纪研究, 2008,28(1):150~153
Wang Fubao, Ma Chunmei, Xia Xuncheng et al. Environmental evolution in Lop Nur since Late Pleistocene and its response to the global changes. Quaternary Sciences, 2008,28(1):150~153
98 汪文先. 罗布泊及邻近地区第四纪与湖泊发育史研究简况. 中国第四纪研究, 1986,(2):75~86
Wang Wenxian. A study on the development history of the Quaternary deposites of the Lop-Nur Lake and its adjacent area. Quaternary Sciences, 1986,(2):75~86
99 Fontes J C, Melieres F, Gibert E et al. Stable isotope and radiocarbon balances of two Tibetan lakes(Sumxi Co, Longmu Co) from 13,000BP. Quaternary Science Reviews, 1993,12(10):875~887
100 Morrill C, Overpeck J T, Cole J E et al. Holocene variations in the Asian monsoon inferred from the geochemistry of lake sediments in central Tibet. Quaternary Research, 2006,65(2):232~243
101 Gasse F, Fontes J C, Van Campo E et al. Holocene environmental changes in Bangong Co basin(Western Tibet). Part 4:Discussion and conclusions. Palaeogeography, Palaeoclimatology, Palaeoecology, 1996,120(1):79~92
102 Wu Y H, Andreas L, Zhang D J et al. Holocene climate development on the central Tibetan Plateau:A sedimentary record from Cuoe Lake. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006,234(2):328~340
103 Zhu L P, Wu Y H, Wang J B et al. Environmental changes since 8.4ka reflected in the lacustrine core sediments from Nam Co, central Tibetan Plateau, China. The Holocene, 2008,18(5):831~839
104 Wang R L, Scarpitta S C, Zhang S C et al. Later Pleistocene/Holocene climate conditions of Qinghai-Xizhang Plateau(Tibet) based on carbon and oxygen stable isotopes of Zabuye Lake sediments. Earth and Planetary Science Letters, 2002,203(1):461~477
105 Zhao Y, Yu Z C, Chen F H et al. Holocene vegetation and climate history at Hurleg Lake in the Qaidam Basin, Northwest China. Review of Palaeobotany and Palynology, 2007,145(3):275~288
106 Zhang J F, Liu C L, Wu X H et al. Optically stimulated luminescence and radiocarbon dating of sediments from Lop Nur(Lop Nor), China. Quaternary Geochronology, 2012,10:150~155
107 吴艳宏, 王苏民, 周力平等. 岱海14C测年的现代碳库效应研究. 第四纪研究, 2007,27(4):507~510
Wu Yanhong, Wang Sumin, Zhou Liping et al. Modern reservoir age for 14C Dating in Daihai Lake. Quaternary Sciences, 2007,27(4):507~510
108 汪勇, 沈吉, 吴健等. 湖泊沉积物14C年龄硬水效应校正初探——以青海湖为例. 湖泊科学, 2007,19(5):504~508
Wang Yong, Shen Ji, Wu Jian et al. Hard-water effect correlation of lacustrine sediment ages using the relationship between 14C levels in lake waters and in the atmosphere:The case of Lake Qinghai. Journal of Lake Sciences, 2007,19(5):504~508
109 侯居峙, D'Andrea William J, 柳中晖. 湖泊碳库效应对青藏高原气候变化解释的影响探讨. 第四纪研究, 2012,32(3):441~453
Hou Juzhi, D'Andrea William J, Liu Zhonghui. Geochronological limitations for interpreting the paleoclimatic history of the Tibetan Plateau. Quaternary Sciences, 2012,32(3):441~453
110 王宗礼, 何建华, 陈亚东. 湖泊碳库效应及校正方法. 中国沙漠, 2014,34(3):683~688
Wang Zongli, He Jianhua, Chen Yadong. The reservoir effect of radiocarbon dating in lake sediment system. Journal of Desert Research, 2014,34(3):683~688
RECONSTRUCTION OF LAKE AREAS DURING THE HOLOCENE MEGATHERMAL IN THE TIBET PLATEAU AND INNER MONGOLIA-XINJIANG REGION
Zhang Fengju①② , Xue Bin , Yao Shuchun, Li Shanying①②, Wang Xiaocui①②    
(① State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008; ② University of Chinese Academy of Sciences, Beijing 100049)

Abstract

Fluctuations of the ancient lake area can provide information of precipitation and humidity at a given period. It is an important way to assess and validate the palaeoclimate models as well as predict the future. In this paper, 21 lakes with lake area and precipitation records in the Tibet Plateau and Inner Mongolia-Xinjiang region during the Holocene Megathermal(6±0.5ka B.P.) were collected from published books and papers. Combined with modern lake area and precipitation records of the 21 lakes, the relationship of lake area/precipitation between the Holocene Megathermal and the present was quantified by SPSS 19.0. Then this relationship was applied to reconstruct lake areas of other lakes in these two lake regions during the Holocene Megathermal. In addition, Yamdrok Lake and Wuliangsuhai Lake which are located in these two regions were assigned to validate the reliability of the reconstructed model. The relatively small errors between the predicted lake areas and the observed data during the past several decades suggested that the reconstructed model was reliable. The results showed that the total lake areas of the Tibet Plateau and Inner Mongolia-Xinjiang Region were ca.8.8×104km2 and 4.1×104km2 during the Holocene Megathermal respectively, approximately 2.1 and 3.2 times larger than today.

Key words     Holocene Megathermal    lake areas    Tibet Plateau    Inner Mongolia-Xinjiang region