第四纪研究  2015, Vol.35 Issue (6): 1412-1417   PDF    
MIS 5c向MIS 5b转换期亚洲夏季风的演变特征——万象洞石笋记录
王晓锋, 张平中 , 周鹏超, 白益军, 程海    
(① 兰州大学地质科学与矿产资源学院, 甘肃省西部矿产资源重点实验室, 兰州 730000; ② 西安交通大学全球变化研究院, 西安 710049)
摘要    根据亚洲季风边缘区武都万象洞一根长360mm石笋(WX0541A)的6个 230Th年代和828个 δ18O数据, 建立了104107~91858a B.P. 期间高分辨率和高精度亚洲夏季风变迁的时间序列。通过与中国东部季风腹地湖北三宝洞和现代西风控制区新疆科桑洞的石笋 δ18O记录对比发现, 三者的变化模式在研究时段内具有相似性。其中, 3个洞穴石笋同位素在MIS 5c中期相当于Greenland D/O 23暖阶段的偏负阶段, 从南到北显示出逐渐偏负的趋势, 是季风降水大陆效应的真实反映; 而在96495~92562a B.P. 之间的同位素偏重阶段, 万象洞和科桑洞石笋同位素组成相近并偏正于三宝洞石笋的 δ18O值, 偏离了亚洲夏季风的内陆入侵规律, 可能与MIS 5b太阳辐射降低时期万象洞和科桑洞地区可变的季节性降水或加入的西风降水有关。
主题词     万象洞    石笋    δ18O    MIS    5c    亚洲季风    
中图分类号     P532;P534.63+2                    文献标识码    A

1 前言

亚洲季风系统作为全球气候系统的重要分支,通过海-陆-气的相互作用制约着全球大约 1/2 人类的生存和发展[1]。以南京葫芦洞[2]、 湖北三宝洞[3, 4]、 贵州董哥洞[5]、 甘肃万象洞[6, 7]和新疆科桑洞[8] 为代表的亚洲季风区中国洞穴石笋高精度 230Th绝对定年和高分辨率同位素地球化学记录揭示出轨道-千年-世纪-十年尺度上过去亚洲夏季风强度及其所联系的降水变化与高北纬气候之间的密切联系。其中,葫芦洞石笋记录显示,末次冰期75~11ka B.P.期间千年时间尺度上亚洲夏季风强度变化[2]与Greenland 冰芯记录的20个D/O旋回及北大西洋6次冰筏事件密切耦合[9],即Greenland温度的升高/降低对应于亚洲夏季风加强/减弱; 同时,当北大西洋H事件发生时,亚洲夏季风也表现出极端减弱。然而,对于跨越MIS5d~5a大约在末次冰期开始和晚于75ka B.P. 之间Greenland冰芯记录的D/O 21~25暖事件及其一些极端冷事件在亚洲季风区仅仅以低分辨率或者片段式石笋记录出现在新疆科桑洞[8]、 甘肃万象洞[6]、 四川梭子洞[10]、 湖北三宝洞[3]、 贵州董哥洞[5, 11]和三星洞[12]、 西藏天门洞[13]和云南小白龙洞[14]中,使得我们不能更好地理解这期间亚洲季风变迁的区域模式。而且,这些研究大都位于季风降水较多的热带-亚热带季风区腹地,而对季风变化更为敏感、 受季风进退影响更为强烈的季风边缘地区则缺少高分辨率和高精度定年的石笋记录[6]。为此,本文以中国季风边缘半干旱地区黄土高原西部甘肃武都万象洞内生长于104107~91858a B.P. 时段的石笋WX0541A为研究对象,对其进行了高分辨率的石笋氧同位素(平均分辨率为15a)测试以及高精度的 230Th定年,研究亚洲季风在MIS5c/5b期间转换过程和表现模式,并与中国东南部季风腹地、 西北新疆干旱区洞穴石笋记录进行对比,探讨MIS5c向MIS5b转换期间亚洲季风变迁的区域特征,进一步认识亚洲季风气候在全球变化中的地位和作用。

2 样品与实验

万象洞(33°19′N,105°00′E;海拔1200m)[6, 7, 15, 16, 17]位于亚洲季风与西风急流相互作用[18, 19]最敏感地区的黄土高原西部,发育在石炭纪灰岩中,已开发的洞穴长约1400m。其所在的武都地区年均温为12.6℃,年均降水量489mm,约80%以上的降水集中在夏季风盛行的5~9月,属于典型的季风性半干旱气候。洞穴顶部覆盖有30~250m厚的石灰岩和约10m厚的黄土,植被以一年生草本植物为主,山顶部分地区分布有针阔混交林。洞穴内部次生碳酸盐发育良好且有大量现代沉积[20],洞内温度常年保持恒定,约为11℃,相对湿度接近100%,沉积环境稳定。

石笋样品(WX0541A,图 1a)于2005年采自万象洞内距离洞口约1000m深处,全长360mm,实际采样区域334mm。将其沿生长轴方向切开、 抛光后,纵剖面整体呈现半透明,伴随有少量棕黄-淡黄色条带出现,结晶致密,无明显后生变化,部分区段可见清晰的生长纹层。在其抛光面上用牙钻及刻刀相结合的方法沿生长轴方向并平行于生长纹层刮取同位素样品[21]。为防止样品交叉混层,采用间隔挑样的方法,共挑出828个样品用于碳氧同位素测试,测试工作在中国科学院南京地质古生物研究所同位素实验室完成。每10个样品内插一个标准样品监控,结果以VPDB标准给出,用符号 δ18O表示,δ18O=[(R样品/R标准)-1]×1000,其中R=18O/16O,分析误差(±2σ)优于0.05‰。

图 1 万象洞石笋WX0541A剖面及 230Th年代模型 (a)WX0541A剖面; (b)230Th年代模型, 误差棒表示 230Th测年误差(±2σ) Fig. 1 WX0541A profile and 230Th dating model from Wanxiang Cave

绝对 230Th年代样品用直径0.5mm的牙钻在生长轴附近平行于纹层钻取,在美国明尼苏达大学地质与地球物理系同位素实验室进行测定,分析仪器为MC-ICP-MS(Neptune),测年误差为±2σ测量统计误差[22]

3 结果与讨论 3.1 年代模式

石笋WX0541A的6个 230Th测年数据(表 1图 1)表明该石笋在334~0mm层段覆盖的104107~91858a B.P. 生长时段跨越了大部分MIS5c~MIS5b时期。表 1中第一列样品编号短线后的数字表示该样品的距顶距离(mm)。

表 1 石笋WX0541A的MC-ICP-MS铀系测年结果* Table 1 MC-ICP-MS U-series dating results for the stalagmite WX0541A

由于WX0541A 的 238U含量较高(4.3×10-6~9.1×10-6g/g),而碎屑 232Th含量较低(0.5×10-9~4.2×10-8 g/g),所以获得了绝对误差在274~364a之间(相对误差在0.29%~0.35%之间)平均值为302a的高精度年代数据,其精度分别高于三宝洞[3]和科桑洞[8]几个石笋在同时段年代误差的2.8倍和2.1倍(二者的平均误差分别为850a和629a)。根据 230Th实测年代计算出各个区段内的沉积速率,并以内插法建立WX0541A的年代标尺(图 1b)。

3.2 石笋WX0541A氧同位素时间序列及区域对比

石笋WX0541A 15a分辨率的 δ18O随时间变化序列(Ⅰ~Ⅴ)见图 2。其变化范围介于-7.28‰~-11.71‰ 之间,变幅达到4.43‰。

图 2 万象洞WX0541A石笋氧同位素时间序列(a) 与同时段新疆科桑洞(b)[8]和湖北三宝洞(c)[3, 4] 石笋 δ18O记录的对比 MIS5c和5b的年代范围根据Lisiecki和Raymo[23]的LR04数据; 灰色点线箭头指示了同位素变正/变负和夏季风减弱/加强趋势; 纯灰色阴影部分表示相当于Greenland的D/O 23升温事件[9]在各记录中的位置及持续时间; 点状灰色阴影部分表示MIS5b期间的季风极端减弱期 (a)WX51指示Johnson等[6]2006年出版的石笋数据,将其作为WX0541A在MIS 5b时段之后的延伸部分,用来与科桑洞和三宝洞比较; Ⅰ~Ⅴ指示了WX0541A石笋氧同位素时间序列的阶段划分; 实点及误差棒为各记录测年点及测年误差 Fig. 2 Comparison of δ18O records between Wanxiang, Kesang and Sanbao caves

研究表明,1)亚洲季风区石笋氧同位素与夏季风强度变化密切相关[3, 4, 5, 6]; 2)万象洞现代沉积氧同位素处于同位素平衡条件下,是与现代夏季风密切联系的夏/冬降水比率的指示[15, 16, 18]; 3)已经出版的多个万象洞化石石笋氧同位素记录在同时段具有重现性,即具有相同的变化模式[6, 7]; 4)万象洞所在地武都器测记录与现代沉积的石笋 δ18O对比[7]发现,武都地区降水主要为5~10月份的夏季风所带来,而且随着降雨量的增加,石笋 δ18O明显偏负。这些研究结果充分说明万象洞石笋沉积于同位素平衡条件下,其化石石笋氧同位素组成指示了夏季风强度波动导致的降水量变化,即夏季风越强,石笋 δ18O越偏负,反之则偏正。

WX0541A的同位素时间序列能被划分为5个阶段(图 2a),即在104107~103363a B.P. 之间的Ⅴ阶段,石笋 δ18O值从-9.73‰逐渐变负到-11.51‰(平均值-10.77‰),指示了亚洲夏季风在MIS5c中期的逐渐加强; 之后在Ⅳ阶段(103363~100884a B.P.)δ18O值在-11.71‰~-11.24‰之间波动,平均值达到-11.47‰,成为亚洲夏季风的最强时期; 然后在Ⅲ阶段内,δ18O值从100884a B.P. 的-11.37‰开始逐渐变得偏重,在经历了4389a后,δ18O从Ⅳ阶段平均值-11.47‰偏重到MIS5b期间96495~92562a B.P. 之间Ⅱ阶段季风极端减弱期平均值的-7.55‰(范围在-7.78‰~-7.28‰之间),偏重幅度达到3.92‰,指示了亚洲夏季风的大幅度减弱过程,最后石笋 δ18O值从Ⅰ阶段92562a B.P. 开始又逐渐变得偏负(范围在-8.00‰~-7.39‰,平均值-7.73‰),亚洲季风再次逐渐加强。

通过与湖北三宝洞(31°40′N,110°26′E;海拔1900m)[3, 4]和新疆科桑洞(42°52′N,81°45′E;海拔2000m)[8]记录(图 2b2c)对比发现,万象洞石笋氧同位素记录从104107a B.P. 到91858a B.P. 之间揭示的大部分MIS5c向MIS5b的季风阶段演化模式均具有一致性。以上3个洞穴石笋的 δ18O值首先逐渐偏负,在到达季风加强期的Ⅳ阶段时,石笋 δ18O值的平均值从季风腹地三宝洞的-11.16‰(100000~103500a B.P.)到季风边缘区万象洞的-11.47‰再到现代西风控制区的新疆科桑洞-12.45‰(101200~103400a B.P.),越深入内陆,氧同位素越偏负,是特征季风降水大陆效应的真实反映[24]。而在Ⅱ阶段季风极端减弱期内,三宝洞石笋 δ18O平均值为-8.39‰(在95830~91530a B.P. 之间的波动幅度较小仅为0.51‰),远远负于波动幅度相近(0.51‰)的万象洞石笋平均值-7.55‰和波动幅度较大(1.83‰)的科桑洞平均值-7.62‰,没有显示出明显季风降水变化的大陆效应。其次,在从MIS5c中期Ⅳ阶段季风强盛期向MIS5b季风极端减弱期(Ⅱ)的转换过程(Ⅲ)中,科桑洞以4.88‰大幅度的波动逐渐偏重,而万象洞居次(3.92‰),三宝洞最小仅为2.77‰(见图 2),这种MIS5c向MIS5b过渡的石笋同位素差异可能与洞穴所处海拔高程和所记录的夏/冬降水比率有关。

虽然,当代科桑洞所处位置及其邻近地区受西风带控制,夏季水汽主要来自大西洋、 地中海以及里海地区的局部环流,冬季水汽来源于西伯利亚高压的南下入侵,在年际-年代际尺度上,显示出大气温度与降水 δ18O呈现强烈的正相关关系,对降水 δ18O变化起主导作用[25]; 而且理论上在温暖的MIS5c期间,科桑洞石笋 δ18O应该强烈偏正,而在相对较冷的MIS5b期则应该偏负,但这种现代观测与科桑石笋结果不一致[8]。Cheng等[8, 26]研究发现轨道时间尺度上高纬北半球夏季太阳辐射的高值时段对应于石笋 δ18O的偏负期,同时石笋沉积的大都发生均在高太阳辐射期,被解释为亚洲夏季风的入侵,即太阳辐射增大夏季风增强时,其影响范围向中亚内陆扩展,覆盖了科桑洞及其邻近地区,大气环流因素取代温度成为影响石笋 δ18O变化的主导因素,从而使其石笋 δ18O具有季风区的特点。介于三宝洞和科桑洞之间处于季风边缘区万象洞石笋WX0541A的 δ18O值在大部分MIS5c~5b期间与科桑洞记录几乎相似的变化模式(见图 2)进一步证实了亚洲季风在间冰期的内陆入侵假说。这样的季风推进模式也与Winkler和Wang等[27]估算的亚洲季风最盛期季风降水到达的最远季风位置相似。然而,三宝洞、 万象洞和科桑洞的石笋 δ18O值在季风极端减弱期的Ⅱ阶段(96495~92562a B.P.)不符合季风向北推进的变负规律,同时万象洞和科桑洞石笋 δ18O的平均值在此阶段几乎相等,而且科桑洞石笋表现出的大幅度波动包括从季风强盛期向季风减弱期过渡的大幅度波动这种事实,则可能与MIS5b期间太阳辐射减少时期降水季节性变化所造成的夏/冬降水比例大幅度变化[19, 26, 28]或者降水源区的变化有关,如与地中海或者与北大西洋风暴相联系的西风降水源[29]

4 结论

高分辨率和高精度定年的万象洞石笋WX0541A的 δ18O时间序列揭示了跨越MIS5c~5b期间104107~91858a B.P. 时段亚洲夏季风变迁的规律。通过与季风强烈影响区的湖北三宝洞和现代西风控制区的新疆科桑洞对比发现,它们均呈现出一致的整体模式。在太阳辐射增强时期,从三宝洞到万象洞再过渡到到新疆的科桑洞石笋同位素组成,均表现出越深入内陆,石笋 δ18O值越偏负,是季风向中亚干旱区入侵的表现; 而在太阳辐射降低时,万象洞和科桑洞地区由于降水季节性的变化或者由于西风降水组分的加入使得3个洞穴同位素组成没有呈现出亚洲夏季风的入侵规律,这方面的研究还需要更多的石笋其他代用指标如过渡元素[30, 31, 32, 33, 34]δ17O 测定[35]的应用。

致谢 万象洞管理所对该项目提供了极大支持,匿名审稿专家和编辑部老师提出了有价值的建议,在此一并表示感谢!

参考文献(References)
1 Webster P J, Magaña V O, Palmer T N et al. Monsoons:Processes, predictability, and the prospects for prediction. Journal of Geophysical Research:Oceans, 1998, 103(C7):14451~14510
2 Wang Yongjin, Cheng Hai, Edwards R L et al. A high-resolution absolute-dated Late Pleistocene monsoon record from Hulu Cave, China. Science, 2001,294(5550):2345~2348
3 Wang Yongjin, Cheng Hai, Edwards R L et al. Millennial- and orbital-scale changes in the East Asian monsoon over the past 224,000-years. Nature, 2008,451(7182):1090~1093
4 Cheng Hai, Edwards R L, Wallace S B et al. Ice age terminations. Science, 2009,326(5950):248~252
5 Yuan Daoxian, Cheng Hai, Edwards R L et al. Timing, duration, and transitions of the last interglacial Asian monsoon. Science, 2004,304(5670):575~578
6 Johnson K R, Ingram B L, Warren D S et al. East Asian summer monsoon variability during Marine Isotope Stage 5 based on speleothem δ18O records from Wanxiang Cave, Central China.Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 236(1~2):5~19
7 Zhang Pingzhong, Cheng Hai, Edwards R L et al. A test of climate, sun, and culture relationships from an 1810-year Chinese cave record. Science, 2008,322(5903):940~942
8 Cheng Hai, Zhang Pingzhong, Spötl C et al. The climatic cyclicity in semiarid-arid Central Asia over the past 500,000 years. Geophysical Research Letters, 2012, 39:L01705, doi:10.1029/2011GL050202
9 NGRIP Project Members. High-resolution record of Northern Hemisphere climate extending into the last interglacial period. Nature, 2004,431(7005):147~151
10 Zhou Houyun, Zhao Jianxin, Zhang Pingzhong et al. Decoupling of stalagmite-derived Asian summer monsoon records from North Atlantic temperature change during marine oxygen isotope stage 5d. Quaternary Research, 2008,70(2):315~321
11 Kelly M J, Edwards, R L, Cheng H et al. High resolution characterization of the Asian monsoon between 146,000 and 99,000 years B.P. from Dongge Cave, China and global correlation of events surrounding Termination Ⅱ. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 236(1~2):20~38
12 姜修洋, 王晓艳, 杨邦等. 黔北石笋记录的MIS5d/5c季风突变过程. 科学通报, 2014,59(27):2698~2706
Jiang Xiuyang, Wang Xiaoyan, Yang Bang et al. Stalagmite-inferred abrupt climate change in the East Asian monsoon at MIS5d/5c in northern Guizhou Province. Chinese Science Bulletin, 2014,59(27):2698~2706
13 Cai Yanjun, Cheng Hai, An Zhisheng et al. Large variations of oxygen isotopes in precipitation over south-central Tibet during Marine Isotope Stage 5. Geology, 2010,38(3):243~246
14 Cai Yanjun, Fung I Y, Edwards R L et al. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252,000y.Proceedings of the National Academy of Sciences of the United States of America, 2015,112:10,2954~2959, doi:10.1073/pnas.1424035112
15 张平中, 陈一萌, Johnson K R等. 甘肃武都万象洞滴水与现代石笋同位素的环境意义. 科学通报, 2004,49(15):1529~1531
Zhang Pingzhong, Chen Yimeng, Johnson K R et al. Modern systematics and environmental significance of stable isotope variations in Wanxiang Cave, Wudu, Gansu, China. Chinese Science Bulletin, 2004,49(15):1649~1652
16 张德忠, 白益军, 桑文翠等. 末次冰消期亚洲季风强度变化的黄土高原西部万象洞石笋灰度记录. 第四纪研究, 2011,31(5):924~932
Zhang Dezhong, Bai Yijun, Sang Wencui et al. Asian monsoon intensity variations during the last deglaciation recorded by stalagmite grayscale from Wanxiang Cave, western Loess Plateau. Quaternary Sciences, 2011,31(5):924~932
17 安春雷, 张平中, 代志波等. 中国黄土高原西缘甘肃万象洞MIS5石笋 δ18O记录与南方地区石笋记录的对比研究. 第四纪研究, 2006,26(6):985~990
An Chunlei, Zhang Pingzhong, Dai Zhibo et al. Comparison of δ18O record during MIS5 in Wanxiang Cave stalagmite, Gansu Provence western Loess Plateau and those of Southern China stalagmites. Quaternary Sciences, 2006,26(6):985--990
18 Schiemann R, Lüthi D, Schär C. Seasonality and interannual variability of the Westerly Jet in the Tibetan Plateau region. Climate, 2009,22(11):2940~2957
19 Chiang J C H, Fung I Y, Wu Chihua et al. Role of seasonal transitions and westerly jets in East Asian paleoclimate. Quaternary Science Reviews, 2015,108:111~129
20 桑文翠, 张德忠, 王晓锋等. 甘肃武都万象洞方解石现代沉积控制因素分析. 第四纪研究, 2013,33(5):936~944
Sang Wencui, Zhang Dezhong, Wang Xiaofeng et al. Analysis of modern calcite deposition controlling factors in Wanxiang Cave from Wudu, Gansu. Quaternary Sciences, 2013,33(5):945~953
21 张德忠, 张平中, 桑文翠等. 石笋密度蕴含的过去气候变化信息:以末次冰消期黄土高原西部武都万象洞石笋为例. 科学通报, 2010,55(31):3040~3047
Zhang Dezhong, Zhang Pingzhong, Sang Wencui et al. Implications of stalagmite density for past climate change:An example from stalagmite growth during the last deglaciation from Wanxiang Cave, western Loess Plateau. Chinese Science Bulletin, 2010,55(31):3040~3047
22 Cheng Hai, Edwards R L, Shen Chuanchou et al. Improvements in 230Th dating, 230Th and234U half-life values, and U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry. Earth Planetary Science Letters, 2013, 371~372:82~91
23 Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 2005,20:PA1003, doi:10.1029/2004PA001071
24 Matthew J W, Chamberlain C P, Jeremy K C et al. Quantifying the isotopic 'continental effect'. Earth and Planetary Science Letters, 2014,406:123~133
25 Aizen V B, Aizen E M, Joswiak E M et al. Climatic and atmospheric circulation pattern variability from ice-core isotope/geochemistry records(Altai, Tien Shan and Tibet). Annals of Glaciology, 2006,43(1):49~60
26 Cheng Hai, Sinha A, Wang Xianfeng et al. The global paleomonsoon as seen through speleothem records from Asia and the Americas. Climate Dynamics, 2012,39(5):1045~1062
27 Winkler M G, Wang P K. The Late-Quaternary vegetation and climate of China. In:Winkler M G, Wang P K eds. Global Climates since the Last Glacial Maximum. Minneapolis:University of Minnesota Press, 1993. 221~264
28 Kutzbach J E, Chen G, Cheng H et al. Potential role of winter rainfall in explaining increased moisture in the Mediterranean and Middle East during periods of maximum orbitally-forced insolation seasonality. Climate Dynamics, 2014,42(3~4):1079~1095
29 Railsback L B, Xiao Honglin, Liang Fuyuan et al. A stalagmite record of abrupt climate change and possible westerlies-derived atmospheric precipitation during the Penultimate Glacial Maximum in Northern China.Palaeogeography, Palaeoclimatology, Palaeoecology, 2014,393:30~44
30 Bourdin C, Douville E, Genty D. Alkaline-earth metal and rare-earth element incorporation control by ionic radius and growth rate on a stalagmite from the Chauvet Cave, Southeastern France. Chemical Geology, 2011,290(1~2):1~11
31 Zhou Houyun, Greig A, Tang Jing et al. Rare earth element patterns in a Chinese stalagmite controlled by sources and scavenging from karst groundwater. Geochimica et Cosmochimica Acta, 2012,83:1~18
32 Zhou Houyun, Wang Qing, Zhao Jianxin et al. Rare earth elements and yttrium in a stalagmite from Central China and potential paleoclimatic implications.Palaeogeography, Palaeoclimatology, Palaeoecology, 2008,270(1~2):128~138
33 谭亮成, 蔡演军, 安芷生等. 石笋氧同位素和微量元素记录的陕南地区4200~2000a B.P. 高分辨率季风降雨变化. 第四纪研究, 2014,34(6):1238~1245
Tan Liangcheng, Cai Yanjun, An Zhisheng et al. High-resolution monsoon precipitation variations in southern Shaanxi, Central China during 4200~2000a B.P. as revealed by speleothem δ18O and Sr/Ca records. Quaternary Sciences, 2014,34(6):1238~1245
34 张振球, 刘殿兵, 汪永进等. 中全新世东亚季风年至10年际气候变率:湖北青天洞5.56~4.84ka B.P. 石笋年层厚度与地球化学证据. 第四纪研究, 2014,34(6):1246~1255
Zhang Zhenqiu, Liu Dianbing, Wang Yongjin et al. Annual- to decadal-scale variability of Asian monsoon climates during Mid-Holocene:Evidence from proxies of annual bands and geochemical behaviors of a speleothem from 5.56ka B.P. to 4.84ka B.P. in Qingtian Cave, Central China. Quaternary Sciences, 2014,34(6):1246~1255
35 Luz B, Barkan E. Variations of 17O/16O and 18O/16O in meteoric waters. Geochimica et Cosmochimica Acta, 2010,74(22):6276~6286
The evolution of Asian summer monsoon during MIS 5c~5b from a stalagmite record in Wanxiang Cave
Wang Xiaofeng, Zhang Pingzhong , Zhou Pengchao, Bai Yijun, Cheng Hai    
(① Key Laboratory of Mineral Resources in Western China, Gansu Province, College of Geology and Mineral Resources, Lanzhou University, Lanzhou 730000; ② Institute of Global Environmental Change, Xi'an Jiaotong University, Xi'an 710049)

Abstract

The main purpose of the past global climate change research is to provide reference for the prediction and simulation of future related study. Asian monsoon system, impacts the monsoon region humanity's livelihood and the agricultural development through the interaction of ocean-land-atmosphere, is an important part of the global climate system. Especially, most of the population and agricultural areas in our country are distributed in the monsoon region, the amount of monsoon rainfall is related to all aspects of the national economy and people's livelihood. Hence, the intensity of monsoon forecast will be very urgent and necessary. Here, we present a 360mm-long stalagmite(WX0541A) obtained from Wanxiang Cave, Gansu Province, China(33°19'N, 105°00'E; ca.1200m a.s.l.), located near the northern limit of the Asian summer monsoon(ASM). The ventilation of Wanxiang Cave is weak, with a temperature of 11℃ and the relative humidity 100% throughout the year. 828 oxygen isotopic measurements and 6230Th ages characterize high-resolution record of the ASM variability from ca.104~92ka B.P., which covers most part of marine isotope stage MIS 5c~5b. The results demonstrate that ASM shows a trend of gradual weakening during 104~92ka B.P. Comparison Wanxiang δ18O record with Sanbao(31°40'N, 110°26'E; 1900m a.s.l.) in Hubei Province and Kesang(42°52'N, 81°45'E; 2000m a.s.l.) in Xinjiang record shows that they exhibit a highly similar variation tendency during the most part of the study period, especially in the MIS 5c, when the ASM significantly enhanced. Hence, it seems reasonable that the fringe of the ASM was far northwest of its current position during the MIS 5c, with above-mentioned 3 caves included within the region controlled by the ASM at the time. However, those stalagmite records do not conform to the negative rule of ASM advance during the extreme weakening period, just like MIS 5b. One possible reason is that it is connected to the change of summer: winter precipitation ratio or the moisture source area.

Key words     stalagmite    MIS 5c~5b    Wanxiang Cave    D/O 23    Asian summer monsoon