第四纪研究  2015, Vol.35 Issue (6): 1320-1330   PDF    
15Ma以来海陆记录的轨道-构造尺度东亚季风的演化以及西北内陆的干旱化
马小林, 田军    
(同济大学海洋地质国家重点实验室, 上海 200092)
摘要    通过对比分析中国内陆、南海和西北太平洋15Ma以来的构造和气候记录, 本文探讨了构造和轨道尺度上东亚季风和西北内陆的干旱化历史。构造尺度上, 在中中新世以来全球变冷的格局下, 东亚冬季风逐步增强。而东亚夏季风表现出从10Ma开始逐渐减弱, 4Ma再次增强的阶段性变化。我们推测在11.16~7.00Ma, 由于青藏高原向东北方向的扩张, 导致高原东北缘和西秦岭之间可能存在水汽通道, 夏季风降水可以通过水汽通道到达青藏高原的东北缘。7~8Ma之后水汽通道可能全部关闭, 加上全球变冷和夏季风的减弱, 西北内陆全面干旱, 同时高原东北缘的隆升也提供了粉尘物源, 风尘开始大面积堆积。2.75Ma 以来, 在冰期-间冰期旋回上, 夏季风变化领先冬季风约30ka, 分析表明冬季风与北极冰盖的强迫联系紧密, 而夏季风同时受到高纬冰盖和低纬过程的驱动。
主题词     构造尺度    轨道尺度    季风    干旱化    海陆对比    
中图分类号     P542;P461+.2                    文献标识码    A

1 前言

东亚是一个特殊的气候区,东部和南部湿润区主要受东亚夏季风和西南季风控制,而西北地区主要受东亚冬季风和西风控制。由于中国西南地区为青藏高原,西边为天山和帕米尔高原,西南季风和西风带来的水汽大部分被阻挡,促进了西北内陆的沙漠化。在过去几十年,风尘和深海沉积物提供了研究东亚气候演化的良好材料[1, 2, 3, 4, 5, 6, 7]。大量证据表明,在24~22Ma,亚洲气候由行星风系主控的带状气候模式向季风主控的气候模式转换[8, 9, 10]。构造尺度上,中国内陆的古环境记录都含有青藏高原生长的信号[11]。但是,由于青藏高原的生长历史尚不清楚,使得东亚古气候的研究变得难以捉摸。鉴于此,我们试图分析已发表的气候和构造记录( 表 1图 1),从轨道和构造尺度探讨东亚气候在中中新世以来的时空演化。

表 1 中中新世以来古气候记录详细信息 Table 1 Detailed information about the paleoclimatic records since the Middle Miocene

图 1 研究站位和地形分布图中虚线为等降水量线,实线为山脉,圆点为研究站位分布 Fig. 1 Research sites and geographic features. The dashed lines represent the isohyetal lines; solid lines represent mountains; dots represent the research sites
2 中中新世以来全球变冷和青藏高原的生长

全球变冷和青藏高原的生长常常被用于解释东亚中新世以来构造尺度上的气候演化[1, 19, 20, 21, 22]。青藏高原在气候系统的能量、 大气和水循环中扮演着重要角色[11, 23, 24, 25]。一方面,青藏高原作为一个巨大的机械屏障,可以阻断高原南北的热量以及水汽交换,形成热隔绝[24, 26]; 另一方面,青藏高原通过热力作用来增强夏季风[25, 27]。在夏季,高原作为一个热源,形成一个热低压,在高原边缘形成爬升气流,同时在科氏力的作用下,形成一个逆时针气流,增强西南季风,在冬季相反。再者,青藏高原东北缘的隆升剥蚀可能为黄土高原粉尘的堆积提供物源[21]。全球变冷,一方面可以压缩低纬度气候带,在北半球,使降水带南移,或者使热带辐合带收缩; 另一方面,全球变冷也可以通过减弱蒸发,降低空气中的水汽含量。因此,全球变冷和高原隆升对于晚新生代亚洲气候变化起着重要作用。

2.1 中中新世以来全球变冷

首先,必须了解中中新世以来全球气候演化的整体趋势。深海综合底栖有孔虫 δ 18 O( 图 2a)、 浮游有孔虫Mg/Ca温度以及有机温度计很好地指示了15Ma以来的全球降温[28, 29, 30, 31]。约13.8Ma,中中新世适宜期(MMCO)结束,随后中中新世气候转型(MMCT)发生,南极冰盖扩张,深海底栖有孔虫 δ 18 O增重约1 ‰ [28, 29, 32]。浮游有孔虫Mg/Ca温度显示南大洋表层水体温度下降约6~7℃[33, 34]; 之后,经过一系列的阶段性降温事件(Mi3~Mi7)[32, 35]; 约在7Ma,北极冰盖开始发育[36]。之后全球持续降温,约2.7Ma,北极冰盖完全形成。从此,地球气候进入以冰期-间冰期旋回主导的气候状态[37]

图 2 15Ma以来构造尺度上海陆古气候记录对比 (a)全球深海综合底栖有孔虫氧同位素[28];(b)ODP 1146站浮游有孔虫深水种百分含量[12];(c)ODP 885/886 站风尘通量[5];(d)佳县黄土线性堆积速率[18];(e)ODP 1148站CRAT[2];(f)ODP 1143站赤铁矿与针铁矿比值[84];(g)酒西盆地针叶+木本百分含量[15]; (h)临夏针叶树孢粉含量[14];(i)朝那[16]和庄浪[17]磁化率 Fig. 2 Comparison of paleoclimatic records from land and sea since 15Ma on the tectonic timescale. (a)Global synthetic benthic foraminiferal δ 18 O;(b)the relative of abundance( % )of the planktonic foraminiferal deep-dwelling species at ODP 1146;(c)eollan flux at ODP 885/886;(d)linear sedimentation rate of Jiaxian section;(e)CRAT records from ODP 1148;(f)Hm/Gt ratio of ODP 1143;(g)conifers and forest percentage of western Jiuquan Basin pollen records;(h)conifer percentage of Linxia Basin pollen records;(i)magnetic susceptibility records of Chaona and Zhuanglang sections
2.2 青藏高原的区域性和阶段性生长

关于青藏高原的研究,无论是从地质记录还是数值模拟,很少关注青藏高原不同区域在不同时间段隆升所产生的气候效应[38]。中-晚中新世青藏高原向东北方向的快速生长得到了广泛承认[11, 21, 39, 40, 41, 42, 43, 44, 45]。青藏高原在这一时期大范围的扩张,可能确立了现代青藏高原的地貌格局[40]。Ma和Jiang[21]收集了37个青藏高原东北缘和南缘的构造活动记录,认为祁连山东部在15~9Ma构造运动较为活跃; 青藏高原东南部在11~6Ma构造运动较为活跃,8Ma活动范围最广。青藏南部在10Ma时出现了一次强烈的构造活动,而且很多证据表明高原南缘在中新世之前已经达到了3000~5000m[43, 44, 46, 47, 48, 49, 50, 51]。整个青藏高原的构造活动有从北向东发展的趋势,而且10Ma青藏高原的构造活动达到了一个相对较为活跃的时期。

阿尔金山山前粗颗粒、 磨拉石沉积以及较高的沉积速率证明了阿尔金山在13.7~9.0Ma快速隆升[52, 53],阿尔金断裂的走滑导致塔里木盆地的东北缘表面隆升速率达到100m/Ma[54]。而且对北祁连山沉积盆地综合分析发现,在13Ma以来地壳开始增厚,同时出现磨拉石堆积,祁连山表面开始抬升[55]。古地磁重建的线性堆积速率也显示了这一时期青藏高原北部持续或者间歇性较高的堆积速率[52, 53, 56, 57, 58, 59],同时大量的热年代学证据也支持这一时期地壳的快速冷却[54, 60, 61, 62]。青藏高原东南部的快速隆升发生在11~6Ma,8Ma构造活动的范围最广,而且研究也最为成熟[21]。11~6Ma,地壳的快速冷却以及堆积速率升高,在青藏高原的东缘普遍存在,例如龙门山[63, 64, 65]、 六盘山[66, 67]、 临夏盆地[68, 69]、 拉脊山[70, 71, 72]、 贵德盆地[73]和贡嘎山[74]。大渡河、 雅砻江以及长江在高原东缘流域在10Ma以来具有较高的河谷下切速率,也支持高原东北缘在这一时期的快速隆升[42, 75]

3 构造尺度上东亚气候演化的海陆对比 3.1 古气候的替代指标介绍

进行古气候的重建,选择合适的指标显得尤为重要。替代指标重建的记录可能包含了古气候信息以外的多种信息,一般需要多指标记录相结合,才能更好地区分和提取古气候信息。我们选择了CRAT(chlorite/chlorite+hematite+goethite)、 K/Al比值、 浮游有孔虫深水种丰度、 Hm/Gt(Hematite to goethite ratio),以及孢粉组合等记录进行对比分析,探索15Ma以来东亚的气候变化。CRAT是绿泥石与绿泥石、 赤铁矿和针铁矿加和的比值,对于湿度、 径流以及风化体系的变化极为敏感[2]。深海沉积物中的K和Al主要来源于粘土矿物,K易于在化学风化中溶于水被带走,而Al不易被带走,深海沉积物K/Al比值主要反映了粘土矿物伊利石和高岭石的丰度比值,可以用来指示风化[2]。ODP 1148站位于南海北部,中新世以来的沉积物主要来源于中国南部[76],而中国南部的降水主要由夏季风控制,因此ODP 1148站的CRAT和K/Al比值可以作为东亚夏季风或降水指标[2]。同样,来自南海ODP 1143站的Hm/Gt记录也被用来指示东亚夏季风的强度[7, 77, 78]。赤铁矿和针铁矿是土壤和湖海相沉积物中普遍存在的含铁矿物,而且沉积物的颜色也主要由铁化合物浓度体现出来,进而与颜色反射率可以对应[77]。赤铁矿是水合铁矿在暖干的气候条件下脱水形成,而针铁矿是在较湿润的环境中形成[78, 79, 80, 81, 82, 83]。因此,沉积物中这两种矿物的比值可以作为湿度的指标,而且在轨道尺度-千年时间尺度上有较好的应用[7, 78, 84]; 然而在长时间尺度上似乎并不适用。ODP1143站的K/Al[13]和Hm/Gt[7],在5Ma以来的长趋势上并不一致,这说明了Hm/Gt作为一个夏季风指标,可能不适用于指示长时间尺度上夏季风的演化。同样,黄土的磁化率被证明在轨道尺度上是一个有效的夏季风指标[85, 86, 87, 88]

不同属种的浮游有孔虫生活在不同的水深,浅水种生活在混合层,而深水种生活在温跃层以下[89, 90, 91, 92, 93]。由于温跃层的变化控制着水体营养的分布,当温跃层加深时,深水种由于生存空间、 营养以及光照受到限制,丰度会减少,反之亦然[92]。现代南海北部温跃层的深度与冬季风的变化联系紧密,当冬季风加强时,由于表层水体的搅混作用,温跃层加深; 冬季风变弱的时候,温跃层变浅。然而在南海北部上升流区,当冬季风增强,冷水上翻,会导致温跃层变浅[93, 94]。在构造尺度上,浮游有孔虫混合层种和深水种的相对丰度变化被用来指示上升流的强弱,进而可以作为构造尺度上冬季风的替代指标[12, 95, 96]。而在轨道尺度上,黄土的粒度是一个优秀的冬季风指标[97, 98]

3.2 构造尺度上东亚冬季风的演化和东亚夏季风的演化

浮游有孔虫深水种相对丰度的增加代表由冬季风驱动的上升流增强和温跃层变浅。ODP 1146站位于南海北部( 图 1),其深水种丰度变化在15Ma以来具有明显的阶段性,可以将东亚冬季风的演化分为4个阶段( 图 2b)[95],它们是15~11Ma、 11~8Ma、 8~4Ma和4~0Ma,这4个阶段深水种含量逐渐增加,与全球逐渐降温的步调基本一致( 图 2a)。在约11~12Ma,深水种的突然增加被解释为西太平洋暖池的出现[12, 95]

ODP 1148站的CRAT( 图 2e)、 K/Al和CIA(Chemical Index of Alteration)显示亚洲夏季风15~10Ma较为强盛,11~4Ma逐渐减弱,同时印度洋的Indus Marine A-1井的K/Al和CIA[2]以及记录中国南部植被黑碳的δ13 C[99]也支持这一时期逐渐弱化的夏季风。植被草本和木本相对含量的变化在一定程度上可以反应干湿变化。11~4Ma,临夏盆地和酒泉的西部孢粉草本和木本的相对变化[14, 15]与ODP 1148 站的CRAT变化非常相似,也显示了夏季风的逐渐减弱( 图 2g2h); 4~0Ma夏季风再次逐渐增强[2, 100],ODP 1143站的K/Al也显示了夏季风的逐渐增强[13]。然而ODP 1143的Hm/Gt( 图 2f)[84]和黄土高原的磁化率( 图 2i)[16, 17]表现的不尽相同。磁化率从4Ma上升到大约2.7Ma,之后表现出强烈的冰期-间冰期旋回。虽然Hm/Gt也存在冰期-间冰期的旋回[84],但是在4Ma以来体现出一种升高的趋势,与ODP 1148站和ODP 1143站风化指数重建的夏季风强度表现出相反的趋势。一方面说明了Hm/Gt不适用于构造尺度上夏季风的指标,另一方面也可能说明了海洋沉积物会受到一些潜在物理化学过程,以及南海同时受到高纬和低纬过程的影响。

构造尺度上东亚夏季风可以为西北内陆提供水汽,而冬季风可以为风尘堆积提供动力。因此,我国西北内陆的干旱化过程以及7~8Ma 风尘的大面积堆积与东亚季风之间的关系密不可分。

3.3 西北内陆的干旱化与7~8Ma风尘的大面积堆积

在新近纪东亚季风逐渐控制了亚洲气候,中国内陆的干旱化可能主要归因于3个因素:1)东亚夏季风、 西风环流以及周边区域能够提供多少水汽; 2)全球温度变化调控的空气中水汽质量; 3)地貌演化,特别是山脉隆升,对于水汽传输路径和强度的约束。

现代夏季多年平均风场矢量图表明中国南部以及内陆的水汽主要由西风和印度季风提供[101]。西风会受到天山、 青藏高原和帕米尔高原的阻挡。大量证据表明天山在中中新世之前已经隆起[102, 103, 104, 105, 106]。天山区3个孢粉记录显示,中中新世以来在天山出现了相对较为完整的垂直植被图谱,而且不同站位的植被面貌相差较大[20, 107, 108],可能说明天山至少在中新世之前已经能够在一定程度上阻挡西风带来的水汽形成雨影效应,那么西风为西北内陆提供的水汽有限。最新研究表明,塔克拉玛干沙漠的形成于26.7Ma到22.6Ma,与大范围的干旱以及与周围山体的快速剥蚀联系紧密[109],可能进一步表明由于帕米尔高原、 天山以及昆仑山等山体隆升导致的雨影效应增强,支持在晚中新世以来西风为西北内陆提供的水汽有限。

值得注意的是,酒泉地处西北内陆,青藏高原的北部( 图 1),在约11.16Ma,发生了草本向木本的快速转换( 图 2g)[15]。11.16Ma前后东亚夏季风一直处于较强盛的状态( 图 2e),并无剧烈的增强,而且临夏的植被也紧随亚洲夏季风的变化( 图 2h)[14]。酒泉草本和木本植被相对含量的快速转换可能与区域构造活动控制的地形有关,特别是秦岭和青藏高原东北缘的隆升。

秦岭东西展布约1500km,是中国南北干旱和半干旱区的分界线,几乎与800mm等降水量线重合( 图 1)。现代秦岭南北有明显的植被差异,但是秦岭的平均高度只有2000~3000m。这意味着在现代夏季风的强度下,2000~3000m可以阻挡东亚季风带来的大部分水汽进入中国西北内陆。秦岭是由于华南和华北地块的碰撞汇聚形成,大范围的岩浆活动以及地壳变形主要发生在中生代和新生代[110, 111, 112],新磷灰石裂变径迹记录表明50~10Ma 北秦岭发生了小幅度的变形和剥蚀,约10Ma之后才加速变形[113]。然而更为精细的多方法热年代学研究表明了西秦岭多相位的剥蚀历史,包括3期快速剥蚀,分别是120~11Ma(约30℃/Ma),25~22Ma(约5℃/Ma)和最后7Ma[112]。可能表明秦岭在中中新世之前已经达到了较高的高度。

前文2.2节中已经讨论了11~6Ma青藏高原东北缘的快速生长,并向西秦岭靠拢。那么可以推测在11Ma之前,青藏高原东北缘的位置较现在偏西,和西秦岭之间较为开阔,较强的东亚夏季风携带的水汽也很难跋涉较长的距离深入内陆,所以中国内陆大部分区域十分干旱( 图 2g)。由于青藏高原东北缘向东北持续生长,与西秦岭之间的距离不断缩小,可能形成了通道。在大致11.16Ma,通道宽度达到一个阈值,将水汽带到酒泉,酒泉的植被面貌快速转变为森林植被。最终,在约7~8Ma,通道可能全部关闭,同时夏季风的减弱和全球变冷促进了西北内陆全面干旱。ODP 885/886 站位于北太平洋西风带上,该站的风尘通量被解释为亚洲内陆的干旱化过程( 图 2c)[5],而黄土高原8Ma以来的风尘堆积速率( 图 2d)[18]与ODP 885/886 站风尘通量趋势一致。这可能说明风尘的堆积速率与物源区的干旱程度,范围或者西风有很大关系[21]; 加之,高原东北缘的隆升也提供了粉尘物源,进一步促使风尘在8Ma开始大面积堆积[21]。当然,这只是根据目前已有的构造和气候记录推测,需要高分辨率的模拟和更多的古气候记录验证。

4 5Ma 以来轨道尺度的海陆对比

2.75Ma以来,全球冰量和热带海区海水表层温度具有清晰的地球轨道周期( 图 3a3b3c); 约0.9Ma之前,底栖有孔虫 δ 18 O以较小振幅的斜率41ka为主要周期,之后以偏心率100ka的周期为主,这一转换被称为中更新世革命(MPR)( 图 3b)。底栖有孔虫 δ 18 O的功率谱也显示出0.9Ma之后的100ka的功率明显强于0.6~2.5Ma 的41ka周期[13]。ODP 1143站海水表层温度同样记录了MPR( 图 3c)。ODP 1148站的K/Al比值的演化谱显示出较多的噪音( 图 3d),可能与海洋沉积物会受到一些潜在物理化学过程,以及南海同时受到高纬和低纬过程的影响有关,但仍然有较强的轨道周期,也显示了南海区域的夏季风对于太阳辐射量的响应。

图 3 5Ma以来不同记录的连续小波分析 (a)ETP,ETP是标准化的偏心率(eccentricity)、 斜率(obliquity)和岁差(precession)的加和[114]; (b)全球综合底栖 δ 18 O记录[37]; (c)ODP 1143站海水表层温度(SST)[115]; (d)ODP 1143 XRF(X-ray Fluorescence)岩芯扫描的K/Al比值(11点滑动平均)[13]; (e)灵台风尘标准化的石英平均粒度(Qtz. GS)[116]; (f)灵台 风尘标准化的磁化率(MS)[116] Fig. 3 Wavelet power spectrum of different paleoclimatic records since 5Ma. (a)EPT(normalized eccentricity+ normalized obliquity+ normalized precession);(b)global synthetic δ 18 O; (c)sea surface temperature of ODP 1143; (d)K/Al ratio from XRF of ODP 1143; (e)normalized mean quartz grain size records of Lingtai loess; (f)normalized magnetic susceptibility records of Lingtai loess

黄土和古土壤的磁化率和粒度可以用来研究轨道尺度上东亚季风的演化[97, 117, 118]。非轨道调谐的3Ma以来风尘的磁化率和粒度具有地球轨道参数的周期[118],而后被追溯到7Ma并且以100ka的周期较为强烈( 图 3e图 4)[116]。至少表明7Ma以来东亚季风在轨道尺度上对于太阳辐射量有响应,而且东亚季风对于太阳辐射和冰盖的强迫是非瞬时非线性的[97]。黄土粒度记录显示5Ma以来都显示出较强的轨道周期。但是磁化率在2.75Ma以后轨道周期才变得较为明显( 图 3f图 4),表明夏季风对于北半球冰盖的变化较为敏感,可能是由于北极冰盖的进退会对ITCZ的南北摆动产生影响。在2.75Ma之后,粒度和磁化率记录的东亚冬季风和夏季风在岁差23ka的周期上,粒度领先磁化率 30°,在19ka周期上之后粒度滞后磁化率 50°,在斜率40ka周期上,粒度滞后磁化率45°( 图 4)。基本可以认为在东亚冬季风和夏季风在岁差和斜率周期上同相位。在偏心率100ka的周期上,磁化率领先粒度 110°。 也就是在冰期-间冰期旋回上,夏季风的变化领先冬季风的变化约30ka。这可能表明,夏季风即受到低纬度地区太阳辐射量驱动的蒸发强弱的影响,又受到北半球冰盖对夏季风位置的影响,而冬季风则主要响应于北极冰盖的变化,由于北极冰盖的生长滞后于北半球夏季太阳辐射量最大值,因此导致东亚夏季风的变化领先于东亚冬季风。

图 4 75Ma以来黄土粒度和磁化率的交叉频谱和相位分析 交叉频谱分析采用Tukey窗口,带宽0.0014ka-1,置信区间80 % Fig. 4 Cross-spectral coherence and phase wheel for magnetic susceptibility and mean quartz grain size records between 2.75Ma and 0Ma. Cross-spectral analyses use a Tukey window with 80 % confidence interval and 0.0014ka-1 bandwidth

东亚夏季风相对于东亚冬季风要复杂,夏季风不仅需要考虑风速还要考虑水汽多少。在5.00~2.75Ma,氧同位素的偏重主要是由于南极冰盖(现代体积约25.71×106km3)扩张的贡献,北极冰盖(现代体积约2.85×106km3)扩张相对较为缓慢,可能导致全球整个气候带的北移,同时热带辐合带(ITCZ)或者夏季季风降水的前缘也可能整体北移,导致中国内陆逐渐湿润,黄土的磁化率显示出逐渐上升的趋势。2.75Ma之后,北极冰盖逐渐大幅扩张,黄土磁化率在长趋势上显示出逐渐降低的趋势,并呈现出强烈的轨道周期( 图 3f)。此时分两种情况: 冰期的夏季,一方面空气中水汽含量较间冰期少,主要受夏季低纬度太阳辐射量的驱动,另一方面由于北极冰盖的存在,整个气候带南移,水汽进入黄土高原较少显示出较弱的季风; 间冰期的夏季,气候带整个北移,同时空气中水汽含量较高,所以较多的水汽进入黄土高原,显示出较强的夏季风。MPR之后,北极冰盖前缘在冰期-间冰期旋回上表现出经向非常大的进退,从而气候带也表现出较大的南北摆动,所以磁化率也在MPR表现出非常强的冰期-间冰期旋回。粒度反应的东亚冬季风相对于夏季风驱动机制上较为简单,主要受北极冰盖的控制,在冰期-间冰期尺度上振幅较强。

5 结论

15Ma以来构造尺度上东亚冬季风的演化分为4个阶段,分别是15~11Ma、 11~8Ma、 8~4Ma和4~0Ma,逐渐增强,与全球降温的步调基本一致。东亚夏季风演化分为3个阶段,15~11Ma强盛期、 11~4Ma逐渐弱化和4~0Ma再次增强。我们推测11.16~7.00Ma青藏高原东北缘和西秦岭之间存在水汽通道,7~8Ma水汽通道可能全部关闭,加上全球变冷和弱化的夏季风,西北内陆全面干旱,同时高原东北缘的隆升也提供了粉尘物源,风尘开始大面积堆积。

轨道尺度上,在2.75~0Ma表现出较强的轨道周期,夏季风领先冬季风约30ka,这可能表明,夏季风即受到低纬度地区太阳辐射量驱动的蒸发强弱的影响,又受到北半球冰盖对夏季风位置的影响,而冬季风则响应于北极冰盖的变化。在MPR(0.6Ma)之后100ka周期的振幅表现的更强烈。在冰期的夏季,一方面空气中水汽含量较间冰期少,另一方面由于北极冰盖的存在,整个气候带南移,水汽进入黄土高原较少显示出较弱的季风,间冰期相反。轨道尺度上热带海洋记录的夏季风较为复杂,可能由于风化指数受到一些潜在的物理化学过程,以及南海同时受到高纬和低纬过程的影响。在未来研究中,还需多指标记录相互印证与数值模拟相结合。

参考文献(References)
1 An Zhisheng, Kutzbach J E, Prell W L et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature, 2001,411(6833):62~66
2 Clift P D, Hodges K V, Heslop D et al. Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nature Geoscience, 2008,1(12):875~880
3 Ding Zhongli, Sun Jimin, Yang Shiling et al. Preliminary magnetostratigraphy of a thick eolian red clay-loess sequence at Lingtai, the Chinese Loess Plateau. Geophysical Research Letters, 1998,25(8):1225~1228
4 Guo Zhengtang, Ruddiman W F, Hao Qingzhen et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 2002,416(6877):159~163
5 Rea D K, Snoeckx H, Joseph L H. Late Cenozoic eolian deposition in the North Pacific:Asian drying, Tibetan uplift, and cooling of the Northern Hemisphere. Paleoceanography, 1998,13(3):215~224
6 Tian Jun, Wang Pinxian, Cheng Xinrong et al. Astronomically tuned Plio-Pleistocene benthic δ18O record from South China Sea and Atlantic-Pacific comparison. Earth and Planetary Science Letters, 2002,203(3):1015~1029
7 Zhang Yige, Ji Junliang, Balsam W et al. Mid-Pliocene Asian monsoon intensification and the onset of Northern Hemisphere glaciation. Geology, 2009,37(7):599~602
8 Guo Z, Sun B, Zhang Z et al. A major reorganization of Asian climate by the Early Miocene. Climate of the Past, 2008,4(3):153~174
9 刘东生, 郑绵平, 郭正堂. 亚洲季风系统的起源和发展及其与两极冰盖和区域构造运动的时代耦合性. 第四纪研究, 1998,(3):194~204
Liu Tungsheng, Zheng Mianping, Guo Zhengtang. Initiation and evolution of the Asian monsoon system timely coupled with the ice-sheet growth and the tectonic movements in Asia.Quaternary Sciences, 1998,(3):194~204
10 Sun X, Wang P. How old is the Asian monsoon system?-Palaeobotanical records from China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2005,222(3~4):181~222
11 Molnar P, Boos W R, Battisti D S. Orographic controls on climate and paleoclimate of Asia:Thermal and mechanical roles for the Tibetan Plateau.Annual Review of Earth and Planetary Sciences, 2010,38(1):77~102
12 Li B, Wang J, Huang B et al. South China Sea surface water evolution over the last 12 Myr:A south-north comparison from Ocean Drilling Program Sites 1143 and 1146. Paleoceanography, 2004,19(1):PA1009, 1~12
13 Tian J, Xie X, Ma W et al. X-ray fluorescence core scanning records of chemical weathering and monsoon evolution over the past 5 Myr in the southern South China Sea. Paleoceanography, 2011,26(4):PA4202, 1~17
14 Ma Yuzhen, Li Jijun, Fang Xiaomin. The pollen and climate record of red bed between 30.6 and 5.0Ma in the Linxia Basin. Chinese Science Bulletin, 1998,43(3):301~304
15 Ma Yuzhen, Fang Xiaolin, Li Jijun et al. The vegetation and climate change during Neocene and Early Quaternary in Jiuxi Basin, China. Science in China(Series D):Earth Sciences, 2005,48(5):676~688
16 Song Y, Fang X, Torii M et al. Late Neogene rock magnetic record of climatic variation from Chinese eolian sediments related to uplift of the Tibetan Plateau. Journal of Asian Earth Sciences, 2007,30(2):324~332
17 Qiang Xiaoke, An Zhisheng, Song Yougui et al. New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25Ma ago. Science China:Earth Sciences, 2011,54(1):136~144
18 Qiang X, Li Z, Powell C M et al. Magnetostratigraphic record of the Late Miocene onset of the East Asian monsoon, and Pliocene uplift of northern Tibet. Earth and Planetary Science Letters, 2001,187(1):83~93
19 Miao Y, Herrmann M, Wu F et al. What controlled Mid-Late Miocene long-term aridification in Central Asia?-Global cooling or Tibetan Plateau uplift:A review. Earth-Science Reviews, 2012,112(3):155~172
20 Tang Z, Ding Z, White P D et al. Late Cenozoic central Asian drying inferred from a palynological record from the northern Tian Shan. Earth and Planetary Science Letters, 302(3):439~447
21 Ma X, Jiang H. Combined tectonics and climate forcing for the widespread aeolian dust accumulation in the Chinese Loess Plateau since the early Late Miocene. International Geology Review, 2015,57(14):1861~1876
22 Jiang H, Ji J, Gao L et al. Cooling-driven climate change at 12~11Ma:Multiproxy records from a long fluviolacustrine sequence at Guyuan, Ningxia, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008,265(1):148~158
23 Kutzbach J, Guetter P, Ruddiman W et al. Sensitivity of climate to Late Cenozoic uplift in Southern Asia and the American west:Numerical experiments.Journal of Geophysical Research:Atmospheres(1984~2012), 1989,94(D15):18393~18407
24 Boos W R, Kuang Z. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature, 2010,463(7278):218~222
25 Wu G, Liu Y, Zhang Q et al. The influence of mechanical and thermal forcing by the Tibetan Plateau on Asian climate. Journal of Hydrometeorology, 2007,8(4):770~789
26 Boos W R, Kuang Z. Sensitivity of the South Asian monsoon to elevated and non-elevated heating. Scientific Reports, 2013,3(1192):1~4
27 Wu G. Thermal controls on the Asian summer monsoon. Scientific Reports, 2012,2(404):1~7
28 Zachos J, Pagani M, Sloan L et al. Trends, rhythms, and aberrations in global climate 65Ma to present. Science, 292(5517):686~693
29 Zachos J C, Dickens G R, Zeebe R E. An Early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 2008,451(7176):279~283
30 LaRiviere J P, Ravelo A C, Crimmins A et al. Late Miocene decoupling of oceanic warmth and atmospheric carbon dioxide forcing. Nature, 2012,486(7401):97~100
31 Zhang Y G, Pagani M, Liu Z. A 12-million-year temperature history of the tropical Pacific Ocean. Science, 2014,344(6179):84~87
32 Tian J, Zhao Q, Wang P, Li Q et al. Astronomically modulated Neogene sediment records from the South China Sea. Paleoceanography, 2008,23(3):PA3210, 1~20
33 Shevenell A E, Kennett J P, Lea D W. Middle Miocene southern ocean cooling and Antarctic cryosphere expansion. Science, 2004,305(5691):1766~1770
34 Knorr G, Lohmann G. Climate warming during Antarctic ice sheet expansion at the Middle Miocene transition. Nature Geoscience, 2014,7(5):376~381
35 Miller K G, Fairbanks R G, Mountain G S. Tertiary oxygen isotope synthesis, sea level history, and continental margin erosion. Paleoceanography, 1987,2(1):1~19
36 Larsen H, Saunders A, Clift P et al. Seven million years of glaciation in Greenland. Science, 1994,264(5161):952~955
37 Lisiecki L E, Raymo M E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 2005,20(1):PA1003, 1~17
38 Lu Huayu, Guo Zhengtang. Evolution of the monsoon and dry climate in East Asia during Late Cenozoic:A review. Science China:Earth Sciences, 2014,57(1):70~79
39 Molnar P, Rajagopalan B. Late Miocene upward and outward growth of eastern Tibet and decreasing monsoon rainfall over the northwestern Indian subcontinent since-10Ma. Geophysical Research Letters, 2012,39(9):L09702, 1~5
40 Molnar P, Stock J M. Slowing of India's convergence with Eurasia since 20Ma and its implications for Tibetan mantle dynamics. Tectonics, 2009,28(3):TC3001, 1~11
41 Mulch A, Chamberlain C P. Earth science:The rise and growth of Tibet. Nature, 2006,439(7077):670~671
42 Ouimet W, Whipple K, Royden L et al. Regional incision of the eastern margin of the Tibetan Plateau. Lithosphere, 2010,2(1):50~63
43 Rowley D B, Currie B S. Palaeo-altimetry of the Late Eocene to Miocene Lunpola basin, central Tibet. Nature, 2006,439(7077):677~681
44 Tapponnier P, Xu Z, Roger F et al. Oblique stepwise rise and growth of the Tibet Plateau. Science, 2001,294(5547):1671~1677
45 Yuan D Y, Ge W P, Chen Z et al. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics:A review of recent studies. Tectonics, 2013,32(5):1358~1370
46 Clift P D, Hodges K V, Heslop D et al. Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nature Geoscience, 2008,1(12):875~880
47 Currie B S, Rowley D B, Tabor N J. Middle Miocene paleoaltimetry of southern Tibet:Implications for the role of mantle thickening and delamination in the Himalayan orogen. Geology, 2005,33(3):181~184
48 Gébelin A, Mulch A, Teyssier C et al. The Miocene elevation of Mount Everest. Geology, 2013,41(7):799~802
49 Garzione C N, Quade J, DeCelles P G et al. Predicting paleoelevation of Tibet and the Himalaya from δ18O vs. altitude gradients in meteoric water across the Nepal Himalaya. Earth and Planetary Science Letters, 2000,183(1):215~229
50 Rowley D B, Pierrehumbert R T, Currie B S. A new approach to stable isotope-based paleoaltimetry:Implications for paleoaltimetry and paleohypsometry of the High Himalaya since the Late Miocene. Earth and Planetary Science Letters, 2001,188(1):253~268
51 Spicer R A, Harris N B, Widdowson M et al. Constant elevation of southern Tibet over the past 15 million years. Nature, 2003,421(6923):622~624
52 Sun J, Zhu R, An Z. Tectonic uplift in the northern Tibetan Plateau since 13.7Ma ago inferred from molasse deposits along the Altyn Tagh Fault. Earth and Planetary Science Letters, 2005,235(3):641~653
53 Wang X, Wang B, Qiu Z et al. Danghe area(western Gansu, China) biostratigraphy and implications for depositional history and tectonics of northern Tibetan Plateau. Earth and Planetary Science Letters, 2003,208(3~4):253~269
54 Ritts B D, Yue Y, Graham S A et al. From sea level to high elevation in 15 million years:Uplift history of the northern Tibetan Plateau margin in the Altun Shan. American Journal of Science, 2008,308(5):657~678
55 Bovet P M, Ritts B D, Gehrels G et al. Evidence of Miocene crustal shortening in the north Qilian Shan from Cenozoic stratigraphy of the western Hexi Corridor, Gansu Province, China. American Journal of Science, 2009,309(4):290~329
56 Fang X, Liu D, Song C et al. Oligocene slow and Miocene-Quaternary rapid deformation and uplift of the Yumu Shan and North Qilian Shan:Evidence from high-resolution magnetostratigraphy and tectonosedimentology. Geological Society, London, Special Publications, 2012,373(1):149~171
57 Fang X, Zhang W, Meng Q et al. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau. Earth and Planetary Science Letters, 2007,258(1):293~306
58 Lu H, Xiong S. Magnetostratigraphy of the Dahonggou section, northern Qaidam Basin and its bearing on Cenozoic tectonic evolution of the Qilian Shan and Altyn Tagh Fault. Earth and Planetary Science Letters, 2009,288(3):539~550
59 Zhang H P, Craddock W H, Lease R O et al. Magnetostratigraphy of the Neogene Chaka Basin and its implications for mountain building processes in the north-eastern Tibetan Plateau. Basin Research, 2012,24(1):31~50
60 Duvall A R, Clark M K, van der Pluijm B A et al. Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry. Earth and Planetary Science Letters, 2011,304(3):520~526
61 George A D, Marshallsea S J, Wyrwoll K H et al. Miocene cooling in the northern Qilian Shan, northeastern margin of the Tibetan Plateau, revealed by apatite fission-track and vitrinite-reflectance analysis. Geology, 2001,29(10):939~942
62 Zheng D, Clark M K, Zhang P et al. Erosion, fault initiation and topographic growth of the North Qilian Shan(northern Tibetan Plateau). Geosphere, 2010,6(6):937~941
63 Godard V, Pik R, Lavé J et al. Late Cenozoic evolution of the central Longmen Shan, eastern Tibet:Insight from(U-Th)/He thermochronometry. Tectonics, 2009,28(5):TC5009, 1~17
64 Kirby E, Reiners Peter W, Krol Michael A et al. Late Cenozoic evolution of the eastern margin of the Tibetan Plateau:Inferences from 40Ar/39Ar and(U-Th)/He thermochronology. Tectonics, 2002,21(1):1~20
65 Wang E, Kirby E, Furlong Kevin P et al. Two-phase growth of high topography in eastern Tibet during the Cenozoic. Nature Geoscience, 2012,5(9):640~645
66 Jiang H, Ding Z, Xiong S. Magnetostratigraphy of the Neogene Sikouzi section at Guyuan, Ningxia, China.Palaeogeography, Palaeoclimatology, Palaeoecology, 2007,243(1):223~234
67 Zheng D, Zhang P, Wan J et al. Rapid exhumation at-8Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology:Implications for growth of the northeastern Tibetan Plateau margin. Earth and Planetary Science Letters, 2006,248(1):198~208
68 Fang X, Garzione C, Van der Voo et al. Flexural subsidence by 29Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China.Earth and Planetary Science Letters, 2003,210(3):545~560
69 Zheng Dewen, Zhang Peizheng, Wan Jinglin et al. Late Cenozoic deformation subsequence in northeastern margin of Tibet——Detrital AFT records from Linxia Basin. Science in China(Series D):Earth Sciences, 2003,46(2):266~275
70 Hough B G, Garzione C N, Wang Z et al. Timing and spatial patterns of basin segmentation and climate change in northeastern Tibet. Geological Society of America Special Papers, 2014,507:SPE 507~07
71 Lease R O, Burbank, Douglas W Clark et al. Middle Miocene reorganization of deformation along the northeastern Tibetan Plateau. Geology, 2011,39(4):359~362
72 Lease R O, Burbank D W, Gehrels G E et al. Signatures of mountain building:Detrital zircon U/Pb ages from northeastern Tibet. Geology, 2007,35(3):239~242
73 Fang X, Yan M, Van der Voo et al. Late Cenozoic deformation and uplift of the NE Tibetan Plateau:Evidence from high-resolution magnetostratigraphy of the Guide Basin, Qinghai Province, China.Geological Society of America Bulletin, 2005,117(9~10):1208~1225
74 Clark M K, House M A, Royden L H et al. Late Cenozoic uplift of southeastern Tibet. Geology, 2005,33(6):525~528
75 Tian Y, Kohn B P, Hu S et al. Synchronous fluvial response to surface uplift in the eastern Tibetan Plateau:Implications for crustal dynamics. Geophysical Research Letters, 2014,42(1):28~35
76 Wang P, Prell W L, Blum P. Proceedings of the Ocean Drilling Program, Initial Reports 184. Texas:Texas A & M University, 2000. 6~11
77 Zhang Y G, Ji J, Balsam W L et al. High resolution hematite and goethite records from ODP 1143, South China Sea:Co-evolution of monsoonal precipitation and[JB(]El Niño[JB)] over the past 600,000 years. Earth and Planetary Science Letters, 2007,264(1):136~150
78 Ji J, Chen J, Balsam W et al. High resolution hematite/goethite records from Chinese loess sequences for the last glacial-interglacial cycle:Rapid climatic response of the East Asian monsoon to the tropical Pacific. Geophysical Research Letters, 2004,31(3):1~4
79 Kämpf N, Schwertmann U.Goethite and hematite in a climosequence in southern Brazil and their application in classification of kaolinitic soils. Geoderma, 1983,29(1):27~39
80 姜兆霞, 刘青松. 影响赤铁矿中铝替代量的因素及其环境意义探讨. 第四纪研究, 2012,32(4):608~614
Jiang Zhaoxia, Liu Qingsong. Factors controlling the Al content in Al-substituted hematite and its environmental significances. Quaternary Sciences, 2012,32(4):608~614
81 胡鹏翔, 刘青松. 磁性矿物在成土过程中的生成转化机制及其气候意义. 第四纪研究, 2014,34(3):443~458
Hu Pengxiang, Liu Qingsong. The production and transformation of magnetic minerals during pedogenesis and its paleoclimate significance. Quaternary Sciences, 2014,34(3):443~458
82 刘秀铭, 吕镔, 毛学刚等. 风积地层中铁矿物随环境变化及其启示. 第四纪研究, 2014,34(3):459~470
Liu Xiuming, Lü Bin, Mao Xuegang et al. Iron minerals of aeolian deposits vary with environment and its significances. Quaternary Sciences, 2014,34(3):459~470
83 Schwertmann U. Occurrence and Formation of Iron Oxides in Various Pedoenvironments, Iron in Soils and Clay Minerals. Berling:Springer, 1988.267~308
84 Ao H, Dekkers M J, Qin L et al. An updated astronomical timescale for the Plio-Pleistocene deposits from South China Sea and new insights into Asian monsoon evolution. Quaternary Science Reviews, 2011,30(13):1560~1575
85 Clemens S C, Prell W L, Sun Y et al. Southern Hemisphere forcing of Pliocene δ18O and the evolution of Indo-Asian monsoons. Paleoceanography, 2008,23(4), PA4210:1~15
86 刘现彬, 夏敦胜, 贾佳等. 兰州九州台黄土磁性特征及其古气候意义研究. 第四纪研究, 2012,32(4):761~770
Liu Xianbin, Xia Dunsheng, Jia Jia et al. Magnetic properties of Jiuzhoutai loess in Lanzhou and its significance of palaeoclimate. Quaternary Sciences, 2012,32(4):761~770
87 赵辉, 强小科, 敖红等. 黄土高原西部红粘土岩石磁学性质及其指示的亚洲内陆中中新世气候变化特征. 第四纪研究, 2012,32(4):690~699
Zhao Hui, Qiang Xiaoke, Ao Hong et al. Mid-Miocene climate in the Asian interior, based on the mineral-magnetic record of the red clay sequence on the western Chinese Loess Plateau. Quaternary Sciences, 2012,32(4):690~699
88 程瑜, 乔彦松, 刘宗秀等. 甘肃灵台邵寨红粘土的磁性地层及其色度记录. 第四纪研究, 2014,34(2):391~398
Cheng Yu, Qiao Yansong, Liu Zongxiu et al. Magnetostratigraphy and chorma records of a red clay formation near Lingtai County of Gansu Province. Quaternary Sciences, 2014,34(2):391~398
89 Fairbanks R G, Sverdlove M, Free R et al. Vertical distribution and isotopic fractionation of living planktonic foraminifera from the Panama Basin. Nature, 1982,298(5877):841~844
90 Hemleben C, Spindler M. Modern Planktonic Foraminifera. Berling:Springer-Verlag, 1989. 1~363
91 Ravelo A, Fairbanks R. Oxygen isotopic composition of multiple species of planktonic foraminifera:Recorders of the modern photic zone temperature gradient. Paleoceanography, 1992,7(6):815~831
92 Ravelo A, Fairbanks R, Philander S. Reconstructing tropical Atlantic hydrography using planktontic foraminifera and an ocean model. Paleoceanography, 1990,5(3):409~431
93 Huang B, Cheng X, Jian Z et al. Response of upper ocean structure to the initiation of the North Hemisphere glaciation in the South China Sea.Palaeogeography, Palaeoclimatology, Palaeoecology, 2003,196(3):305~318
94 Jian Z, Zhao Q, Cheng X et al. Pliocene-Pleistocene stable isotope and paleoceanographic changes in the northern South China Sea.Palaeogeography, Palaeoclimatology, Palaeoecology, 2003,193(3):425~442
95 Jian Z, Yu Y, Li B et al. Phased evolution of the south-north hydrographic gradient in the South China Sea since the Middle Miocene.Palaeogeography, Palaeoclimatology, Palaeoecology, 2006,230(3):251~263
96 Li Q, Li B, Zhong G et al. Late Miocene development of the western Pacific Warm Pool:Planktonic foraminifer and oxygen isotopic evidence.Palaeogeography, Palaeoclimatology, Palaeoecology, 2006,237(2):465~482
97 Sun Y, Clemens S C, An Z et al. Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau. Quaternary Science Reviews, 2006,25(1):33~48
98 Xiao J, Porter S C, An Z et al. Grain size of quartz as an indicator of winter monsoon strength on the Loess Plateau of Central China during the last 130,000 yr. Quaternary Research, 1995,43(1):22~29
99 Jia G, Peng P, Zhao Q et al. Changes in terrestrial ecosystem since 30Ma in East Asia:Stable isotope evidence from black carbon in the South China Sea. Geology, 2003,31(12):1093~1096
100 Wei G, Li X H, Liu Y et al. Geochemical record of chemical weathering and monsoon climate change since the Early Miocene in the South China Sea. Paleoceanography, 2006,21(4):PA4214, 1~11
101 Ding Y, Li C, Liu Y. Overview of the South China Sea monsoon experiment. Advances in Atmospheric Sciences, 2004,21(3):343~360
102 Charreau J, Chen Y, Gilder S et al. Neogene uplift of the Tian Shan Mountains observed in the magnetic record of the Jingou River section(Northwest China). Tectonics, 2009,28(2):TC2008, 1~22
103 Heermance R V, Chen J, Burbank D W et al. Chronology and tectonic controls of Late Tertiary deposition in the southwestern Tian Shan foreland, NW China. Basin Research, 2007,19(4):599~632
104 Hendrix M S, Graham S A, Carroll A R et al. Sedimentary record and climatic implications of recurrent deformation in the Tian Shan:Evidence from Mesozoic strata of the north Tarim, south Junggar, and Turpan basins, Northwest China. Geological Society of America Bulletin, 1992,104(1):53~79
105 Huang B, Piper John D A, Peng S et al. Magnetostratigraphic study of the Kuche Depression, Tarim Basin, and Cenozoic uplift of the Tian Shan range, Western China. Earth and Planetary Science Letters, 2006,251(3):346~364
106 Yin A, Nie S, Craig P et al. Late Cenozoic tectonic evolution of the southern Chinese Tian Shan. Tectonics, 1998,17(1):1~27
107 Sun J, Zhang Z. Palynological evidence for the Mid-Miocene climatic optimum recorded in Cenozoic sediments of the Tian Shan range, Northwestern China. Global and Planetary Change, 2008,64(1):53~68
108 Zhang Z, Sun J. Palynological evidence for Neogene environmental change in the foreland basin of the southern Tianshan range, Northwestern China. Global and Planetary Change, 2011,75(1):56~66
109 Zheng H, Wei X, Tada R et al. Late Oligocene-Early Miocene birth of the Taklimakan Desert.Proceedings of the National Academy of Sciences of the United States of America, 2015,112(25):7662~7667
110 张国伟, 张宗清, 董云鹏. 秦岭造山带主要构造岩石地层单元的构造性质及其大地构造意义. 岩石学报, 1995,11(2):101~114
Zhang Guowei, Zhang Zongqing, Dong Yunpeng. Nature of main tectono-lithostratigraphic units of the Qinling orogen:Implications for the tectonic evolution. Acta Petrologica Sinica, 1995,11(2):101~114
111 Dong Y, Zhang G, Neubauer F et al. Tectonic evolution of the Qinling orogen, China:Review and synthesis. Journal of Asian Earth Sciences, 2011,41(3):213~237
112 Heberer B, Anzenbacher T, Neubauer F et al. Polyphase exhumation in the western Qinling Mountains, China:Rapid Early Cretaceous cooling along a lithospheric-scale tear fault and pulsed Cenozoic uplift. Tectonophysics, 2014,617:31~43
113 Liu J, Zhang P, Lease R O et al. Eocene onset and Late Miocene acceleration of Cenozoic intracontinental extension in the north Qinling range-Weihe graben:Insights from apatite fission track thermochronology. Tectonophysics, 2013,584(0):281~296
114 Laskar J, Robutel P, Joutel F et al. A long-term numerical solution for the insolation quantities of the Earth. Astronomy & Astrophysics, 2004,428(1):261~285
115 Li L, Li Q, Tian J et al. A4-Ma record of thermal evolution in the tropical western Pacific and its implications on climate change. Earth and Planetary Science Letters, 2011,309(1):10~20
116 Sun Y, An Z, Clemens S C et al. Seven million years of wind and precipitation variability on the Chinese Loess Plateau. Earth and Planetary Science Letters, 2010,297(3):525~535
117 Ding Z, Yu Z, Rutter N et al. Towards an orbital time scale for Chinese loess deposits. Quaternary Science Reviews, 1994,13(1):39~70
118 Lu H, Zhang F, Liu X et al. Periodicities of palaeoclimatic variations recorded by loess-paleosol sequences in China. Quaternary Science Reviews, 2004,23(18):1891~1900
East Asian monsoon evolution and aridification of Northwest China viewed from land and sea on the tectonic-orbital time scale since 15Ma
Ma Xiaolin, Tian Jun    
(State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092)

Abstract

Through compiling and analyzing the paleoclimatic and tectonic records from East Asia since 15Ma, the results suggest the East Asian Winter Monsoon gradually strengthened consisting with global cooling. Asian Summer Monsoon progressively weakened from 10Ma and strengthen again since 4Ma. We speculated there was a water passage between eastern margin of the Tibetan Plateau and western Qinling Mountain during the period of 11.16Ma to 7.00Ma. The Asian Summer Monsoon precipitation could travel a long distance to the northeastern margin of the Tibetan Plateau through the passage. Subsequently, the water passage entirely closed after 8~7Ma resulted from the sustained eastward expansion of the Tibetan Plateau during the Late Miocene. In addition, global cooling and weakening summer monsoon promoted the dry climate in Northwest China and widespread aeolian dust accumulation. In the glacial-interglacial cycles, Asian Summer Monsoon led East Asian Winter Monsoon by 30ka in phase relationship since 2.75Ma. This could suggest that the East Asian Winter Monsoon was dominated by the Northern Hemisphere ice volume, while the Asian Summer Monsoon was forced by the combined effects of the Northern Hemisphere ice volume and low latitude processes.

Key words     orbital scale    tectonic scale    monsoon    aridification    comparison between land and sea