第四纪研究  2015, Vol.35 Issue (3): 767-775   PDF    
日本中部地区上新世到更新世过渡时期的气候演变:来自水杉叶片化石稳定碳同位素及其形态性状的证据
王雨晴①②, 百原新, 孙梅①②, 王力, JulieLebreton-Anberrée①②, 周浙昆①④     
(① 中国科学院西双版纳热带植物园, 热带森林生态学重点实验室, 勐腊 666303;② 中国科学院大学, 北京 100049;③ 千叶大学, 园艺学院, 千叶 271-8510;④ 中国科学院昆明植物研究所, 生物多样性与生物地理学重点实验室, 昆明 650204)
摘要    晚上新世至更新世是地质历史时期中十分重要的阶段, 2.7Ma之后北半球由温暖湿润的气候进入冰期, 水杉叶片化石稳定碳同位素值、叶片面积和叶片长宽比在地质历史时期的变化可以推测该时期内环境的变化趋势、探索植物对环境变化的响应。本研究选取日本中部地区的5个化石点(泉南郡、八王子市、东近江市、十日町市和生驹市)的水杉叶片化石(3.00~0.95Ma)材料。这些化石点的化石叶片稳定碳同位素值在八王子市(2.6~2.7Ma, 晚上新世)出现最低值(-29.05 ‰ ±0.15 ‰), 明显低于其他化石点材料的稳定碳同位素值,并且在此期间化石叶片的面积为 7.45±1.31mm2, 大于其他时期; 同时, 叶片的长宽比较大, 为 4.22±0.67。这些结果相互印证共同指示出, 上新世与更新世交界时期存在一个间冰期; 之后, 气候逐渐变冷变干。并且本研究结果与日本古植物群落演替得出的结论相一致。
主题词     水杉    上新世    更新世    古气候    叶化石    碳同位素    
中图分类号     Q914.87;P597+.2;P534.62+2;P534.63+1                    文献标识码    A

1 前言

晚上新世-更新世交界处(2.7~2.4Ma)是地质历史时期中的一个重要阶段,在北半球,喜马拉雅和阿尔卑斯山脉的隆起以及第四纪冰期的形成,极大地改变了全球的气候环境[1]。有研究认为在3.6Ma之后全球年均温逐渐下降,至2.7Ma时北极冰川开始扩增[2, 3, 4]。然而也有研究表明在2.7Ma前后存在一个短暂的间冰期,之后全球温度才急剧下降[5]。但是这一观点并未得到广泛的认同,例如: 太平洋氧同位素的记录显示在2.7Ma前后气候已经开始变冷,北半球冰川开始扩增[6],并且日本海的海平面在2.7Ma前后下降也反映出当时温度有所降低[7]。因此这一间冰期是否存在仍需更多的研究证实,特别是利用不同技术手段得到的数据,以求从不同的角度证实这一事件的真实性。

利用稳定碳同位素(δ13C)恢复古气候是当今地球环境演变研究中的一个热点[8, 9]。但迄今为止,δ13C的研究多集中于利用黄土-古土壤[10, 11, 12, 13, 14]、 哺乳动物骨骼、 牙齿化石[15, 16]和湖泊相沉积中的δ13C值[17, 18, 19, 20, 21]来重建古环境,叶片化石同位素能否作为古气候重建的指标尚无定论。植物叶片化石中的δ13C值可以反映光合作用过程中碳固定的情况[22],而其光合作用又受环境因子如光照、 温度、 水分等的影响,所以植物叶片化石的δ13C值可以用来指示古气候。另外,植物化石的δ13C值能够记录和反映地质历史时期植物的生理状况[23, 24]。在现生植物研究中,植物组织中的δ13C值是评估C3植物叶片中胞间平均CO2浓度的有效方法,而胞间平均CO2浓度与水分利用效率密切相关,因此,现代植物叶片中的δ13C值被看作是反映植物水分利用效率的可靠指标[23, 24],而水分利用效率也直接受环境变化的影响。与古土壤与湖相沉积物的δ13C值不同,其反映的不是植物群落的变化情况而是特定物种的生理状态变化,因此可以从不同的层面反映古气候的变化。前人研究得到的欧洲中部、 日本新泻县和台湾木化石δ13C变化趋势与同时期有孔虫稳定碳同位素的变化趋势是一致的[25, 26],这也进一步说明了植物组织的δ13C值可以记录气候的变化并且作为重建古气候的代理指标。但到目前为止,古生物学上测定植物化石δ13C用以恢复古气候环境的研究多集中于木化石[27, 28, 29],而在其他植物组织化石上的研究较少。

叶片化石的形态性状能够反映气候特征及其演化趋势,同一种植物在不同的气候环境条件下,形态特征会发生相应的变化。反过来叶形态特征也就能够用于古气候的重建。由于大小和形状(叶相)在全球和区域尺度上也都与温度和湿度强相关,古植物学家很久以前就将这些叶片-气候相关性作为代理指标重建古气候[30, 31, 32]。这些方法的基本原理是将在现代植物群落中发现的规律应用于古植物群落中,从而反推古气候的演化。根据前人研究结果[33]可知在湿润条件下,植物的叶片面积会增大,并且在温暖条件下,植物叶片的长宽比会增加。由此,根据叶片化石面积和长宽比在地质历史时期中的变化可以推测出古气候变化的趋势。

水杉(Metasequoia glyptostroboides)是著名的活化石,目前仅存于我国华中一带。最早的水杉化石记录见于晚白垩世,之后的各地质时代均有水杉化石的报道。发现和报道的化石点有500个之多,范围几乎遍及整个北半球[34]。连续的化石记录和广泛的地史分布使得水杉化石及其稳定同位素中隐含了自晚白垩世以来的环境变化信息,使其成为研究全球变化的理想材料[34]。之前利用水杉化石重建古气候的研究多集中于利用其叶片气孔指数重建古大气CO2浓度[35, 36, 37],重建出的古CO2结果与利用其他代理指标重建的结果较为一致[36, 38],说明水杉化石可以有效的记录古气候的变化。例如,利用加拿大北极地区水杉叶片化石的气孔指数重建的始新世CO2浓度较高(约424ppmv)[36],而美国[35]、 中国中新世(约310~334ppmv)和日本更新世的CO2浓度则较低(约280ppmv)(王雨晴等未发表数据)。过去也有研究分析过水杉叶片化石的δ13C值[35, 36, 37],但其所用材料的时代集中于始新世和中新世,未曾有研究报道过晚上新世和更新世水杉叶片化石的δ13C用以指示古气候变化。

本研究所用材料均采集自日本中部地区,该地区晚上新世-更新世古植物群落的变化已经有详细报道[39-44],可以推测出该阶段气候变化,但是依然需要更多的证据支持,得到一个更加真实、 准确的气候演化历史。本研究选取来自晚上新世至更新世5个化石点的水杉叶片化石为研究材料,测量其稳定碳同位素、 叶片大小和叶片长宽比作为古气候变化的指示,综合这3种不同性状指标推测晚上新世至更新世气候变化的趋势以检验2.7Ma左右的间冰期是否存在。

2 试验材料

本研究所用水杉叶片化石材料均采于日本(图1)。根据叶片形态和其在小枝上对生的特点,化石材料被鉴定为水杉属植物,且其所属年代也已经过古地磁和钙质纳米浮游生物地层测年准确定年(表1)。八王子市、 东近江市和十日町市化石点水杉叶片化石的凭证标本存放于中国云南省昆明市中国科学院昆明植物研究所标本馆(KUN); 泉南郡和生驹市化石点水杉叶片化石的凭证标本存放于日本千叶县千叶大学园艺学院研究生部。

图 1 本研究水杉叶片化石的5个采样点, 晚上新世与更新世化石点分别用黑色和灰色图标区分 Fig. 1 Five localities where fossilized Metasequoia were obtained in Central Japan. Different colors correspond to the different ages of the localities: black for Late Pliocene and grey for Pleistocene

表 1 本研究所用材料信息表 Tab.1 Metasequoia samples used for reconstructing paleo-CO2
3 试验方法 3.1 样品预处理

在实验室中,首先对待测水杉叶片化石材料进行预处理。具体过程依次如下:1)10%~25%的稀盐酸浸泡约2个小时; 2)40%的氢氟酸浸泡约12个小时; 3)10%~25%的稀盐酸浸泡至少1个小时。之后,用去离子水清洗至其pH值接近7,得到干净的化石叶片。

3.2 准备同位素材料

为了保证结果的准确性,每个化石点视材料数量的不同,准备1~5份样品(表2),每份样品包含5~10片经预处理后的化石叶片(净重大于0.05g)。用研钵将化石材料磨成粉末后,放入离心管内置于50℃烘箱内烘干(24小时),然后寄送至德国(GeoZentrum Nordbayern,Friedrich Alexander Universität Erlangen Nürnberg)利用与ThermoFinnigan Delta V Plus射频质谱仪相连的元素分析仪(CE1110)进行化石叶片稳定碳同位素分析。同位素结果采用V-PDB标准,分析误差小于0.07‰(1个标准差)。由于生驹市的材料数量限制,该化石点只准备了1份稳定碳同位素测量材料,故没有方差数据。

表 2 本研究所用材料的样本量 Tab.2 Sample size of this study
3.3 观察化石叶片

利用数码相机对化石材料进行拍照之后,照片利用ImageJ(1.43μ,Wayne Rasband,http://rsb.info.nih. gov/ij/)图片处理软件对化石叶片进行长度和宽度的测量。每个化石点选取5片水杉叶片化石(生驹市除外)进行测量(表2),化石叶片面积(mm2)=化石叶片长度(mm)×化石叶片宽度(mm)。由于生驹市化石点化石叶片较为破碎,故无法获得叶片面积及叶片长宽比的数据。

4 试验结果

八王子市化石点和东近江市化石点水杉叶片化石的δ13C明显低于其他3个点,其中八王子市化石点的水杉叶片化石的δ13C为所有化石点中最低(-29.05‰)。而泉南郡化石点的水杉叶片化石的δ13C为本研究5个化石点中最高(-28.14‰)。东近江市、 十日町市和生驹市化石点水杉化石叶片的δ13C分别为-28.95‰、-28.39‰和-28.58‰(表3图2)。

表 3 本研究所测不同地质时期5个化石点水杉叶片化石的δ13C(A)、 叶片面积(B)和叶片长宽比值(C)(平均值±标准差) Tab.3 Leaf size, δ13C and leaf length/leaf width of fossilized Metasequoia during Late Pliocene to Pleistocene

图 2 水杉叶片化石的δ13C、 叶片面积和叶片长宽比自晚上新世至更新世的变化趋势 水平误差棒为对应指标的方差, 垂直误差棒为各化石点的定年范围 Fig. 2 Evolutionary trends of δ13C, leaf size and leaf length/leaf width of fossilized Metasequoia needles during Late Pliocene to Pleistocene. Horizontal error bars: standard deviation of δ13C, leaf size and leaf length/leaf width of each locality, and vertical error bars: standard deviation of materials' ages

八王子市化石点的水杉叶片化石的叶面积(7.45mm2)明显高于其他3个点,其中南泉郡化石点的水杉叶片化石的叶面积为所有化石点中最小(5.34mm2)。东近江市和十日町市化石点水杉叶片化石的面积分别为5.79mm2和5.77mm2(表3图2)。

水杉叶片化石的长宽比在晚上新世持续上升,晚上新世的东近江市化石点水杉叶片化石的长宽比(5.31)高于其他3个点,而南泉郡化石点的水杉叶片化石的长宽比为所有化石点中最低(3.76)。八王子市和十日町市化石点水杉叶片化石的长宽比分别为4.22和4.40(表3图2)。

5 讨论

植物叶片δ13C值的变化能够反映植物的生理变化,并且与植物生长的外界环境差异,尤其是水分和温度的差异紧密相关[55, 56, 57, 58]。植物叶片δ13C值代表植物叶片在生长过程中吸收的13C与12C的比值,其大小直接反映植物的长期水分利用效率,进而指示植物生长的外界环境状况[55, 59]。生长环境适宜时,植物能够吸收和同化更多的CO2,由于含12C的CO2被优先吸收和同化,因此光合产物中13C与12C的比值(δ13C值)较低; 反之,植物在较恶劣的生长条件下,叶片δ13C值较高[56, 60]。过去很多研究表明,植物的δ13C值与其生长地的降水状况显著相关。例如,Yang等[61]指出植物δ13C值与降水量呈负相关; Francey和Farquhar[62]证明,降雨量越大,红松叶子的δ13C值越低(负值越大); 陈拓和马健[63]对阜康典型荒漠中C3植物δ13C值与环境间相关关系的分析结果也表明: 降水可以改变叶片稳定碳同位素值的大小: 降水越多,叶片δ13C越负。由于降水影响土壤含水量,所以植物叶片δ13C值与土壤含水量之间也存在显著负相关。青藏高原北部植物叶片δ13C值随土壤含水量和土壤温度的变化而变化,土壤含水量越高,植物叶片δ13C值越小[64]。已经发表的大量研究都一致性地表明C3植物碳同位素值随降雨或水分的增加而降低[65]。另外,Farquhar等[56]和Andreeva等[66]也指出: 生长于湿润和半湿润条件下植物的δ13C值较低,这可能是由于降水增多导致空气湿度、 土壤含水量增加,植物叶片气孔导度增大,蒸腾速率增强,从而降低δ13C值。植物叶片δ13C值受温度影响也较明显[67, 68]。研究表明[69],中国北方多种C3植物的δ13C值与温度呈负相关。青藏高原现生禾本科植物的δ13C值随海拔的增加而升高,温度是引起该δ13C值随海拔高度变化的主要因素之一[70]。Yang等[71]指出现代水杉叶片的δ13C值为-28.93‰±0.15‰。该值略高于本研究中八王子市和东近江市化石点(2.6~2.7Ma)水杉化石叶片的δ13C值(表2),说明与现代水杉相比,晚上新世时期水杉的光合作用产物中固定的13C更少,说明其生长的环境较现代更为适宜,光合作用更为活跃。植物的δ13C值与降水和温度的直接关系也表明晚上新世的气候较现在更为温暖湿润。而与现在水杉叶片的δ13C值相比,本研究中南泉郡(3.0~2.8Ma)、 十日町市(1.85Ma)和生驹市(0.95Ma)化石点水杉化石叶片的δ13C(表2)较高(更接近正值),意味着这些时期的水杉植物叶片中δ13C较高,说明光合作用较弱,生长环境(温度和水分)较现代恶劣,即,当时的气候较现在气候更为寒冷干燥。水杉叶片化石δ13C值表明: 研究区在2.7~2.6Ma期间气候较为温暖湿润,可能为一个间冰期; 而这一时期相邻阶段的气候则相对较为寒冷干燥。

植物叶片的大小和形态指标也可以反映植物生长的外界环境状况以及植物对其所处环境变化的生理响应[72]。温度和降水是影响植物生长和植物叶片形态性状变化的主要因素,较低的温度和降水往往对应着较小的叶片面积[33, 73]。大多数植物叶片面积随海拔的升高显著降低,这是对较高海拔地区较低的温度和降水的典型响应[74, 75, 76]。在全球范围内,年均温和年降水量与植物叶片面积之间的正相关关系已经多次被证实[77-79]。Jacobs[80]对靠近赤道的30个植物群落植物叶片形态特征与气候因素格局的关系研究也表明这一点,并且叶片长宽比与年均降水量呈显著正相关。较低的温度和降水能够直接限制叶片的扩展,导致较小、 较短的叶片[81, 82];另外,低温增加水的粘性并减小酶的活性,可能导致严重的生理水分亏缺和较低的光合作用[75]。降低叶片大小能够增加叶片与外界环境接触的物理边界层导度,增加叶片的物理对流散热,减少植物在缺水环境下的蒸腾散热,进而减少叶片水分丧失[83]。对天山北坡不同种杨树功能性状的分析表明,胡杨单叶面积较其他种类最小,这即是该种为减少蒸发量,保存其植物体内水分,对外界缺水环境的适应[84]。王力[85]对现生水杉同一植株内叶片大小和形态变化的研究表明: 由同一水杉植株的下部至上部,单枝中部叶片的长度和长宽比有减小的趋势。造成这种现象的原因主要可能是植株上部可利用的水分较植株下部少。这也进一步印证了前人的结论[77, 78, 79]: 叶片的大小和长宽比与水分可获得性呈正相关,干旱的情况下叶片倾向于变小、 变短。应用此规律于本研究结果(表3图2),在2.7~2.6Ma期间较大的叶片长宽比和面积说明该阶段较其相邻时期更加的温暖湿润,这也与δ13C值所推测的结果一致。研究区δ13C值和水杉叶片形态演化的研究表明: 晚上新世-更新世交界处是一个较为温暖湿润的阶段,该阶段在约2.7Ma存在一个间冰期,而晚上新世之后,气候开始变冷变干。

这一结果也得到了古植被演变和古气候重建结果的证实。上新世-更新世交界处,大阪组植物群包含了大量的喜温类群,并且几乎没有适应低温的针叶类群,说明当时的温度可能较为温暖[39]。利用植物叶片化石气孔指数重建出的晚上新世-更新世CO2结果显示在2.7Ma时出现了一个峰值[86],而且这一短暂温暖的时期不仅仅在中纬度地区有报道,高纬度地区俄罗斯埃利格格特根湖(Lake Elgygytgyn)的孢粉、 生物硅等研究也表明了这样一个温暖时期的存在[87]。之后,植物大化石记录显示全球气候变冷。例如,晚上新世后,日本中部植物群落中的许多中国中南部地区的特有种类逐渐灭绝,而在现代寒冷地区和亚高山森林中占优势的物种开始出现或增加[40-42]; 晚上新世柳杉属在大阪组的出现也说明当时气候较为寒冷[43]; 2.2Ma时,睡菜属植物(Menyanthes)在新泻县出现,表明该时期温度降低[88]; 1.7Ma时,东海组(Tokai Group)植物群的化石记录中包含了富士山云杉(Picea maximowiczii),鱼鳞云杉(Picea jezoensis),和王桦(Betula maximowicziana)等寒温性及亚北极的树种,也表明该时期气候已经变冷[40, 44]。之后,约1.7~1.2Ma时,东海组植物群的优势种变为了分布于现代寒带林的富士山云杉,红松(Pinus koraiensis)和睡菜,进一步证明在这一时期为冰期的寒冷气候[40]

本研究利用采集于日本中部地区5个化石点的水杉叶片化石的δ13C、 叶片面积以及叶片长宽比作为古气候的替代性指标,定性估测了晚上新世-更新世期间的气候变化,认为在2.7Ma左右存在一个间冰期,并且这一结果支持前人根据孢粉学和化石叶片气孔指数的推测出的结果[86, 87]。并且日本中部地区晚上新世-更新世期间植物群落的变化也可以从侧面印证这一结论:2.7Ma前后,日本中部地区存有许多温带性的物种,而之后这些物种逐渐灭绝,由更加耐寒的物种取代。

参考文献(References)
1 An Z, Kutzbach J, Prell W et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature, 2001, 411 (6833):62~66
2 Bintanja R, Van de Wal R S W. North American ice-sheet dynamics and the onset of 100 000-year glacial cycles. Nature, 2001, 454 (7206):869~872
3 Haug G, Ganopolski A, Sigman D et al. North Pacific seasonality and the glaciation of North America 2.7 million years ago. Nature, 2005, 433 (7028):821~825
4 Maslin M, Haug G, Sarnthein M et al. The progressive intensification of Northern Hemisphere glaciation as seen from the North Pacific. Geologische Rundschau, 1996, 85 (3):452~465
5 Lisiecki L, Raymo M. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 2005, 20 (1):PA1003
6 Hennissen J, Head M, Schepper S et al. Palynological evidence for a southward shift of the North Atlantic Current at ~2.6Ma during the intensification of Late Cenozoic Northern Hemisphere glaciation. Paleoceanography, 2014, 29 (6):564~580
7 Cronin T, Kitamura A, Ikeya N et al. Late Pliocene climate change 3.4~2.3Ma:Paleoceanographic record from the Yabuta Formation, Sea of Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 108 (3~4):437~455
8 王国安. 稳定碳同位素在第四纪古环境研究中的应用. 第四纪研究, 2003, 23 (5).471~484
Wang Guo'an. Application of stable carbon isotope for paleo-environmental research. Quaternary Sciences, 2003, 23 (5):471~484
9 沈 吉, 王苏民, 羊向东. 湖泊沉积物中有机碳稳定同位素测定及其古气候环境意义. 海洋与湖沼, 1996, 27 (4):400~404
Shen Ji, Wang Sumin, Yang Xiangdong. Measurement of organic carbon stable isotope in lacustrine sediments and its significance on paleocliamte and environment. Oceanologia et Limnologia Sinca, 1996, 27 (4):400~404
10 饶志国, 张 晓, 薛 骞等. 西峰红粘土/黄土剖面有机碳同位素研究的初步结果. 第四纪研究, 2012, 32 (4):825~827
Rao Zhiguo, Zhang Xiao, Xue Qian et al. Primary organic carbon isotopic study result of Xifeng loess/red clay profile. Quaternary Sciences, 2012, 32 (4):825~827
11 张 晓, 贾 鑫, 饶志国等. 陇西黄土高原东南部地区末次冰期以来C3/C4植物相对丰度变化及其区域性剖面的对比研究. 第四纪研究, 2013, 33 (1):187~196
Zhang Xiao, Jia Xin, Rao Zhiguo et al. C3/C4 variation since the Last Glacial in the southeastern Longxi Loess Plateau and its comparison with other results. Quaternary Sciences, 2013, 33 (1):187~196
12 张 普, 刘卫国. 西峰、洛川黄土碳酸盐根茎体碳同位素分布特征及古环境意义探讨. 第四纪研究, 2013, 33 (1):179~186
Zhang Pu, Liu Weiguo. Carbon isotope composition and paleoenvironment information of rhizolith in Xifeng and Luochuan loess. Quaternary Sciences, 2013, 33 (1):179~186
13 张 瑜, 熊尚发, 丁仲礼等. 中新世以来六盘山邻区黄土-红粘土成土碳酸盐碳氧同位素记录及其对C4植物早期扩张的指示. 第四纪研究, 2011, 31 (5):800~811
Zhang Yu, Xiong Shangfa, Ding Zhongli et al. Carbon-oxygen isotope records of pedogenic carbonate from the Early Miocene-Pleistocene loess-red clay in the vicinity of the Liupanshan region and its implications for the early origin of C4 plants in the Chinese Loess Plateau. Quaternary Sciences, 2011, 31 (5):800~811
14 赵得爱, 吴海斌, 吴建育等. 过去典型增温期黄土高原东西部C3/C4植物组成变化特征. 第四纪研究, 2013, 33 (5):848~855
Zhao De'ai, Wu Haibin, Wu Jianyu et al. C3/C4 plants characteristics of the eastern and western parts of the Chinese Loess Plateau during Mid-Holocene and last interglacial. Quaternary Sciences, 2013, 33 (5):848~855
15 王 宁, 胡耀武, 宋国定等. 古骨中可溶性、不可溶性胶原蛋白的氨基酸组成和C、N稳定同位素比较分析. 第四纪研究, 2014, 34 (1):204~211
Wang Ning, Hu Yaowu, Song Guoding et al. Comparative analyses of amino acids and C, N stable isotopes between soluble collagen and insoluble collagen within archaeological bones. Quaternary Sciences, 2014, 34 (1):204~211
16 董明星, 张艳红, 张建国等. 石家庄地区早全新世冷湿气候的牙齿微磨痕和同位素证据. 第四纪研究, 2014, 34 (1):8~15
Dong Mingxing, Zhang Yanhong, Zhang Jianguo et al. Cold and/or wet Early Holocene in Shijiazhuang district:Evidences from tooth microwear and stable isotopes analyses. Quaternary Sciences, 2014, 34 (1):8~15
17 陈英勇, 鹿化煜, 张恩楼等. 浑善达克沙地地表沉积物有机碳同位素组成与植被-气候的关系. 第四纪研究, 2013, 33 (2):351~359
Chen Yingyong, Lu Huayu, Zhang Enlou et al. The relationship between organic carbon isotopic composition of surface sediment and vegetation-climate in Otindag dune field, Northern China. Quaternary Sciences, 2013, 33 (2):351~359
18 匡欢传, 周浩达, 胡建芳等. 末次盛冰期和全新世大暖期湖光岩玛珥湖沉积记录的正构烷烃和单体稳定碳同位素分布特征及其古植被意义. 第四纪研究, 2013, 33 (6):1222~1233
Kuang Huanchuan, Zhou Haoda, Hu Jianfang et al. Variations of n-alkanes and compound-specific carbon isotopes in sediments from Huguangyan Maar Lake during the Last Glacial Maximum and Holocene Optimum:Implications for paleovegetation. Quaternary Sciences, 2013, 33 (6):1222~1233
19 任雅琴, 王彩红, 李瑞博等. 有机质饱和烃和δ13 C org. 记录的博斯腾湖早全新世晚期以来生态环境演变. 第四纪研究, 2014, 34 (2):425~433
Ren Yaqin, Wang Caihong, Li Ruibo et al. Ecological environment change recorded by sediment n-alkane and δ13Corg. of Lake Bosten since late of Early Holocene. Quaternary Sciences, 2014, 34 (2):425~433
20 孙博亚, 岳乐平, 赖忠平等. 14ka B.P. 以来巴里坤湖区有机碳同位素记录及古气候变化研究. 第四纪研究, 2014, 34 (2):418~424
Sun Boya, Yue Leping, Lai Zhongping et al. Paleoclimate changes recorded by sediment organic carbon isotopes of Lake Barkol since 14ka B.P. Quaternary Sciences, 2014, 34 (2):418~424
21 孙伟伟, 沈 吉, 张恩楼等. 日本大沼湖沉积物碳氮比值、有机碳同位素特征及其近400年的古气候环境意义. 第四纪研究, 2014, 34 (6):1306~1313
Sun Weiwei, Shen Ji, Zhang Enlou et al. Characteristics of organic stable carbon isotope and C/N ration of sediments in Lake Onuma, Japna and their environmental implicationd for the last 400 years. Quaternary Sciences, 2014, 34 (6):1306~1313
22 Roy-Barman M, Jeandel C. Géochimie Marine Circulation Océanique, Cycle Du Carbone et Changement Climatique. Minster Jean-François:Vuibert Société Géologique de France, 2001. 1~362
23 Farquhar G, Richards R. Isotopic composition of plant carbon correlates with water-use efficiency of wheat genotypes. Australian Journal of Plant Physiology, 1984, 11 (6):539~552
24 Flanagan L, Farquhar G. Variation in the carbon and oxygen isotope composition of plant biomass and its relationship to water-use efficiency at the leaf-and ecosystem-scales in a northern Great Plains grassland. Plant, Cell & Environment, 2014, 37 (2):425~438
25 Bechtel A, Gratzer R, Sachsenhofer R et al. Biomarker and carbon isotope variation in coal and fossil wood of Central Europe through the Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology, 2008, 262 (3~4):166~175
26 Kobayashi Y, Hoyanagi K. Correlative relationship between stable carbon isotope ratios of fossil wood and global climate change. Journal of the Sedimentological Society of Japan, 2014, 73 (1):45~51
27 Duquesnay A, Bréda N, Stievenard M. Changes of tree-ring δ13 C and water-use efficiency of beech(Fagus sylvatica L.)in north-eastern France during the past century. Plant, Cell & Environment, 1998, 21 (6):565~572
28 Zhao Xingyun, Qian Junlong, Wang Jian. Using a tree ring δ13 C annual series to reconstruct atmospheric CO2 concentration over the past 300 years. Pedosphere, 2006, 16 (3):371~379
29 Tang Jingsong,Qian Junlong,Yin Zhuosi et al. Restructuring CO2 concentration by the tree-ring carbon isotopic ratios of west Tianmu Mountain. Journal of Nanjing Forestry University, 2000, 24 (3):45~48
30 Wilf P. When are leaves good thermometers?A new case for leaf margin analysis. Paleobiology, 1997, 23 (3):373~390
31 Royer D, Wilf P. Why do toothed leaves correlate with cold climates?Gas exchange at leaf margins provides new insights into a classic paleotemperature proxy. International Journal of Plant Sciences, 2006, 167 (1):11~18
32 Bailey I, Sinnott E. A botanical index of Cretaceous and Tertiary climates. Science, 1915, 41 (1066):831~834
33 Peppe D, Royer D, Cariglino B et al. Sensitivity of leaf size and shape to climate:Global patterns and paleoclimatic applications. New Phytologist, 2011, 190 (3):724~739
34 LePage B, Williams J, Yang H. The Geobiology and Ecology of Metasequoia. Netherlands:Springer, 2005. 1~434
35 Royer D, Wing S, Beerling D et al. Paleobotanical evidence for near present-day levels of atmospheric CO2 during part of the Tertiary. Science, 2001, 292 (2310):2310~2313
36 Doria G, Royer D, Wolfe A et al. Declining atmospheric CO2 during the late Middle Eocene climate transition. American Journal of Science, 2011, 311 (1):63~75
37 Maxbauer D, Royer D, LePage B. High Arctic forests during the Middle Eocene supported by moderate levels of atmospheric CO2. Geology, 2014, 42 (12):1027~1030
38 Royer D. Stomatal density and stomatal index as indicators of paleoatmospheric CO2 concentration. Review of Palaeobotany and Palynology, 2001, 114 (1~2):1~28
39 Momohara A. Stages of major flora and vegetation changes since the Latest Neogene in Central Europe and Central Japan in connection with climatic changes. The Quaternary Research(Daiyonki-Kenkyu), 2010, 49 (5):299~308
40 Momohara A. Floral and paleoenvironmental history from the Late Pliocene to Middle Pleistocene in and around Central Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 1994, 108 (3~4):281~293
41 Miki S. Floral remains in Kinki and adjacent districts since the Pliocene with description of 8 new species. Mineralogy and Geology(Kobutsu to Chishitsu), 1948, 2 :105~144
42 Miki S. On the change in flora of Japan since the Upper Pliocene and the floral composition at the present. Japanese Journal of Botany, 1938, 9 :214~251
43 Momohara A. Late Pliocene plant biostratigraphy of the lowermost part of the Osaka Group, Southwest Japan, with reference to extinction of plants. The Quaternary Research(Daiyonki-Kenkyu), 1992, 31 (2):77~89
44 Momohara A, Mizuno K, Tsuji S et al. Early Pleistocene plant biostratigraphy of the Shobudani Formation, Southwest Japan, with reference to extinction of plants. The Quaternary Research, 1990, 29 (1):1~15
45 Itihara M, Ichikawa K, Yamada N. Geology of the Kishiwada District with Geological Sheet Map at 1 : 50 000. Tsukuba:Geological Survey of Japan, 1986. 148
46 Satoguchi Y, Nagahashi Y. Tephrostratigraphy of the Pliocene to Middle Pleistocene series in Honshu and Kyushu Islands, Japan. Island Arc, 2012, 21 (3):149~169
47 Tomita Y, Kurokawa K. A widespread volcanic ash layer of about 2.7Ma in Central Japan:Correlation of the Habutaki I(Osaka Group), the MT2(Himi Group)and the Arg-2(Nishiyama Formation)ash layers. Journal of the Geological Society of Japan, 1999, 105 (1):63~71
48 Horiuchi J. Neogene flora of the Kanto district. Science Reports of the Institute of Geoscience Geological Sciences, Tsukuba University, Section B, Geological Sciences, 1996, 17 :109~208
49 Kimura T, Ohana T, Yoshiyama H. Fossil plants from the Tama and Azuyama Hills, Southern Kwanto, Japan. Transactions and Proceedings of the Paleontological Society of Japan, New Series, 1981, (122):87~104
50 Yamakawa C, Momohara A, Nunotani T et al. Paleovegetation reconstruction of fossil forests dominated by Metasequoia and Glyptostrobus from the Late Pliocene Kobiwako Group, Central Japan. Paleontological Research, 2008, 12 (2):167~180
51 Niigata Fossil Plant Research Group. Plant megafossils and pollen fossils from the Uonuma Group, Niigata Prefecture. Association of Geological Collaboration in Japan, Monograph, 1983, 26 :103~126
52 Yanagisawa Y, Kayahara K, Suzuki Y et al. Geology of the Tokamachi District with Geological Sheet Map at 1 : 50 000. Tsukuba:Geological Survey of Japan, 1985. 104
53 Mitamura M. Stratigraphy and geologic structure of the Osaka Group(Pliocene and Pleistocene)in Keihanna Hills, Kinki District, Japan. The Quaternary Research, 1992, 31 (3):159~177
54 Yoshikawa S, Mitamura M. Quaternary stratigrapy of the Osaka Plain, Central Japan and its correlation with oxygen isotope record from deep sea cores. The Geological Society of Japan, 1999, 105 (5):332~340
55 Ehleringer J, Cooper T. Correlations between carbon isotope ratio and microhabitat in desert plants. Oecologia, 1988, 76 (4):562~566
56 Farquhar G, O'leary M, Berry J. On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Functional Plant Biology, 1982, 9 (2):121~137
57 Farquhar G, Hubick K, Condon A et al. Carbon isotope fractionation and plant water-use efficiency. In:Rundel P, Ehleringer J, Nagy K eds. Stable Isotopes in Ecological Research. New York:Springer, 1989. 21~40
58 Kohn M. Carbon isotope compositions of terrestrial C3 plants as indicators of(paleo)ecology and(paleo)climate. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107 (46):19691~19695
59 Brienen R, Wanek W, Hietz P. Stable carbon isotopes in tree rings indicate improved water use efficiency and drought responses of a tropical dry forest tree species. Trees, 2011, 25 (1):103~113
60 Belmecheri S, Maxwell R, Taylor A et al. Tree-ring δ13 C tracks flux tower ecosystem productivity estimates in a NE temperate forest. Environmental Research Letters, 2014, 9 (7):074011
61 Yang Limin, Han Mei, Zhou Guangsheng et al. The changes in water-use efficiency and stoma density of Leymus chinensis along Northeast China Transect. Acta Ecologica Sinica, 2007, 27 (1):16~23
62 Francey R, Farquhar G. An explanation of 13 C/12 C variations in tree rings. Nature, 1982, 297 :28~31
63 陈 拓, 马 健. 阜康典型荒漠C3植物稳定碳同位素值的环境分析. 干旱区地理, 2002, 25 (4):342~345
Chen Tuo, Ma Jian. Environmental analysis of stable carbon isotope values in typical desert C3 plants of the Fukang, Xinjiang. Arid Land Geography, 2002, 25 (4):342~345
64 陈 拓, 冰虎元. 青藏高原北部植物叶片碳同位素组成的空间特征. 冰川冻土, 2003, 25 (1):83~87
Chen Tuo, Bing Huyuan. Spatial features of stable isotope of leaves from northern Tibetan Plateau. Journal of Glaciology and Crypedolocy, 2003, 25 (1):83~87
65 Warren C, McGrath J, Adams M. Water availability and carbon isotope discrimination in conifers. Oecologia, 2001, 127 (4):476~486
66 Andreeva D, Zechb M, Glaserc B et al. Stable isotope(δ13 C , δ 15 N, δ 18 O)record of soils in Buryatia, southern Siberia:Implications for biogeochemical and paleoclimatic interpretations. Quaternary International, 2013, 290~291 :82~94
67 O'Leary M. Carbon isotope fractionation in plants. Phytochemistry, 1981, 20 (4):553~567
68 胡启武, 吴 琴, 郑 林等. 青海云杉叶片稳定性碳同位素组成对水分温度变化的响应. 山地学报, 2010, 28 (6):712~717
Hu Qiwu, Wu Qin, Zheng Lin et al. Responses of leaf δ13 C of Picea crassifolia to moisture and temperature variations. Journal of Mountain Science, 2010, 28 (6):712~717
69 王国安, 韩家懋,周力平. 中国北方C3植物碳同位素组成与年均温度关系. 中国地质, 2002, 29 (1):55~57
Wang Guo'an, Han Jiamao,Zhou Liping. The annual average temperature in Northern China. Geology in China, 2002, 29 (1):55~57
70 旺 罗, 吕厚远, 吴乃琴等. 青藏高原现生禾本科植物的δ13 C 与海拔高度的关系. 第四纪研究, 2003, 23 (5):573~580
Wang Luo, Lü Houyuan, Wu Naiqin et al. Altitudinal trends of stable carbon isotope composition for Poeceae in Qinghai-Xizang Plateau. Quaternary Sciences, 2003, 23 (5):574~580
71 Yang H, Pagani M, Briggs D et al. Carbon and hydrogen isotope fractionation under continuous light:Implications for paleoenvironmental interpretations of the High Arctic during Paleogene warming. Oecologia, 2009, 160 (3):461~470
72 Sack L, Scoffoni C, McKown A et al. Developmentally based scaling of leaf venation architecture explains global ecological patterns. Nature Communications, 2012, 3 (837):1~10
73 Uhl D, Mosbrugger V. Leaf venation density as a climate and environmental proxy:A critical review and new data. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 149 (1~4):15~26
74 Cordell S, Goldstein G, Mueller-Dombois D et al. Physiological and morphological variation in Metrosideros polymorpha, a dominant Hawaiian tree species, along an altitudinal gradient: The role of phenotypic plasticity. Oecologia, 1998, 113 (2):188~196
75 Kouwenberg L, Kürschner W, McElwain J. Stomatal frequency change over altitudinal gradients: Prospects for paleoaltimetry. Reviews in Mineralogy and Geochemistry, 2007, 66 (1):215~241
76 Bresson C, Vitasse Y, Kremer A et al. To what extent is altitudinal variation of functional traits driven by genetic adaptation in European oak and beech?Tree Physiology, 2011:tpr 084
77 Wilf P, Wing S, Greenwood D et al. Using fossil leaves as paleoprecipitation indicators:An Eocene example. Geology, 1998, 26 (3):203~206
78 Webb J. Environmental relationships of the structural types of Australian rain forest vegetation. Ecology, 1968, 49 (2):296~311
79 Murphy M, Jordan G, Brodribb T. Acclimation to humidity modifies the link between leaf size and the density of veins and stomata. Plant, Cell & Environment, 2014, 37 (1):124~131
80 Jacobs B. Estimation of rainfall variables from leaf characters in tropical Africa. Palaeogeography, Palaeoclimatology, Palaeoecology, 1999, 145 (1~3):231~250
81 Magnani F, Borghetti M. Interpretation of seasonal changes of xylem embolism and plant hydraulic resistance in Fagus sylvatica. Plant, Cell & Environment, 1995, 18 (6):689~696
82 Hovenden M, Brodribb T. Altitude of origin influences stomatal conductance and therefore maximum assimilation rate in Southern Beech, Nothofagus cunninghamii. Functional Plant Biology, 2000, 27 (5):451~456
83 Nicotra A, Cosgrove M, Cowling A et al. Leaf shape linked to photosynthetic rates and temperature optima in South African Pelargonium species. Oecologia, 2008, 154 (4):625~635
84 徐庆华, 臧润国, 谢怀慈. 天山北坡4 种栽培杨树的功能性状分析. 干旱区研究, 2012, 29 (3):425~431
Xu Qinghua, Zang Runguo, Xie Huaici. Analysis on plant functional traits of Populus species in the Tianshan Mountains. Arid zone research, 2012, 29 (3):425~431
85 王 力. 水杉属叶形态特征及其环境指示意义——来自化石和活化石的证据. 北京: 中国科学院大学博士论文, 2010. 1~424
Wang Li. Morphology and Anatomy of Metasequoia Leaves and Their Environmental Indicative Values: Evidence from the Comparative Studies of "Living fossil" and Fossils. Beijing:The Ph. D Thesis of Chinese Academy of Sciences, 2010. 1~424
86 Bai Yunjun, Chen Liqun, Ranhotra P et al. Reconstructing atmospheric CO2 during the Plio-Pleistocene transition by fossil Typha. Global Change Biology, 2015, 21 (2):874~881
87 Brigham-Grette J, Melles M, Minyuk P et al. Pliocene warmth, polar amplification, and stepped Pleistocene cooling recorded in NE Arctic Russia. Science, 2013, 340 (6139):1421~1427
88 Arata Momohara. The Plio-Pleistocene floral exchange——A case of the Uonuma Group in the south-eastern part of Tokamachi, Niigata Prefecture. The Proceedings of the Japan Association for Quaternary Association Annual Meeting, 1988, 18 :140~141
Climate change of central Japan during Pliocene to Pleistocene:Evidence from stable carbon isotope and leaf morphology of fossil Metasequoia
Wang Yuqing①②, Bai Yuanxin, Sun Mei①②, Wang Li, JulieLebreton-Anberrée①②, Zhou Zhekun①④     
(① Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303; ② University of Chinese Academy of Sciences, Beijing 100049;③ Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo-Shi 271-8510, Japan; ④ Key Laboratory of Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650204)

Abstract

During the Plio-Pleistocene boundary (2.7~2.4Ma), the glaciation of the Northern Hemisphere started.Previous research reported the expansion of northern hemispheric continental ice sheet and the climate deterioration began at around 2.7Ma.On the contrary, other studies argued that 2.7Ma was an interglacial period.Therefore, more evidences are necessary to clarify the debate.Here we use organic carbon isotope(δ13C), leaf size and leaf length/leaf width ratio of fossil Metasequoia needles as the proxy of paleoenvironment to assess if 2.7Ma ago was an interglacial period or not.

The fossil Metasequoia needles were collected from five localities in central Japan:Sennan, Hachioji, Higashiomi, Tokamachi and Ikoma.The ages of these materials varies from 3.00Ma to 0.95Ma(Late Pliocene to Pleistocene).For each locality, we prepared 1~5 samples for δ13C analysis, and 5 leaves for leaf size and leaf length/leaf width ratio measurements.These three characters have been shown to be mainly affected by temperature and precipitation of the growth environment.δ13C values are negatively correlated with temperature and precipitation whereas leaf size and leaf length/leaf width ratio are positively correlated with temperature and precipitation.

The results of this research show that: the lowest δ13C value(-29.05 ‰)was measured for the period around 2.6~2.7Ma(Late Pliocene), indicating a warm and humid environment.The leaf area and leaf length/width ratio of fossil Metasequoia needles during 2.6~2.7Ma(Late Pliocene)are also larger(7.45mm2 and 4.22 respectively), supporting that 2.6~2.7Ma is a warm and humid period.Thus, our results indicate that there is an interglacial period at the Plio-Pleistocene boundary(around 2.7Ma).After that period, the climate deteriorated, as the environment became cooler and dryer.This climate change is corroborated by the mega fossil records, as the succession of floral assemblages during Pliocene to Pleistocene also indicated a similar trend.

Key words     Metasequoia    Pliocene    Pleistocene    paleo-climate    fossil leave    carbon isotope