第四纪研究  2015, Vol.35 Issue (2): 390-400   PDF    
MIS6期以来热带西太平洋降雨与ITCZ的关系
张帅①, ②, 李铁刚 , 常凤鸣, 俞宙菲①, ②, 王海霞    
(①. 中国科学院海洋研究所, 海洋地质与环境重点实验室, 青岛  266071;②. 中国科学院大学, 北京  100049;③. 宁波市国土资源局鄞州分局, 宁波  315100)
摘要    通过Ontong-Java海台KX97322-4孔沉积物中浮游有孔虫表层种Globigerinoides ruber的Mg/Ca海表温度(SST)并结合其 δ18O得到过去约200ka B.P. 以来当地水文(盐度和降雨)指标,结果表明从MIS 6期以来,热带太平洋暖池区温度变化存在明显的冰期-间冰期波动,降温幅度超过3℃.通过与赤道东太平洋对比表明热带太平洋在过去冰消期和冰期中的升温阶段呈现出类 El Niño 的状态,向两极输送水汽和热量.在冰消期,热带太平洋纬向温度梯度降低,全球升温,全球冰量下降.在冰期中升温阶段(MIS 6)热带太平洋纬向温度梯度降低时全球冰量却持续增加,可能此时输送热量不足以使两极冰川融化,带来的水汽又促进了两极冰川的形成.通过与中国石笋记录和热带降雨记录对比,表明热带太平洋纬向温度梯度的变化与热带辐合带(ITCZ)的移动密切相关,并且影响到东亚夏季风的降雨状况,热带太平洋类ENSO过程可能对ITCZ的变化存在内部系统调谐的作用.
主题词     西太平洋暖池核心区    热带海表温度    热带辐合带    类ENSO过程    
中图分类号     P721;P732.6;P534.63+2                    文献标识码    A

1 引言

在全球升温的背景下,为了在大范围的边界条件下更细致和准确的描绘、模拟海气过程和预测未来,我们需要去了解长期的环境历史记录。许多研究表明,热带太平洋现代厄尔尼诺-南方涛动(ENSO)过程对全球气候具有重要作用[1, 2, 3, 4, 5],且在过去也存在类似于现代ENSO的变化[6, 7, 8, 9, 10]。要了解ENSO的变化趋势,需要积累多种指标来指示时间跨度长且连续的类ENSO过程[11]。暖池核心区是指西太平洋暖池内位于巴布亚新几内亚北部,年均温超过29℃的海区。该海区海气相互作用强烈,是驱动全球大气环流的最大水汽源和热源,其海区水文变化影响着ENSO和热带辐合带(ITCZ)的变动,与东亚季风也存在一定关系[1, 12, 13, 14]。年际上,暖池降水与ITCZ季节性移动和北部冬季风向赤道寒流紧密相关[15, 16],其时空变化强烈影响着ITCZ的位移和东亚(夏)季风[17, 18, 19, 20],海洋表层温度(SST)的微弱变化都可能导致全球气候模式的动态变化[21],因而了解暖池SST变化的控制过程是了解全球气候变化的关键[22]。但是暖池区水文变动、ENSO过程和ITCZ变动在过去冰期-间冰期旋回中都很复杂,各自本身的变化特征和相互关系一直都存在着很多争议。因为热带太平洋海区沉积速率低、样品难以获取等原因造成之前对其研究比较匮乏,资料也较少[11],所以有必要加强研究,增强对其在全球变化中作用的认识。

在末次盛冰期(Last Glacial Maximum,简称LGM)暖池区降温问题上,早期生物转换函数等方法得到SST相对于全新世低 1±2℃[23, 24],但改进的生物转换函数研究支持比CLIMAP低2℃或者更低,如Uk37数据表明降温2~3℃[25]。有孔虫壳体Mg/Ca法得到平均区域下降约3℃[7, 26],经盐度矫正的Mg/Ca法得到约为4℃的变化[27],与二元同位素指标结果一致[28],一些模型研究也支持上述温度较大降幅的观点[29, 30]。Koutavas等[31]利用Mg/Ca得到暖池区在LGM呈现El Niño状态,但Dubois等[32]利用U37k得到的温度空间分布表明东太平洋冷舌降温更剧烈,表明信风加强并且上升流加强,代表着LGM时期类似La Niña状态。Martínez等[33]通过有孔虫种群研究得到LGM热带东太平洋的SST经向梯度变大表明其La Niña状态以及东、西温跃层梯度加强[34]。de Garidel-Thoron等[26]运用多指标重建暖池古海洋环境并没有显示出在末次冰消期类ENSO气候变化的证据。ITCZ的平均位置主要受经向SST梯度的控制,并且影响着暖池的水文变动和东亚季风活动,但ITCZ和ENSO之间的关系一直没有得到清楚的认识[13]。由于种种矛盾的存在,热带太平洋在驱动冰期-间冰期气候变化中的角色问题一直没有解决。本文拟利用暖池核心区沉积物浮游有孔虫壳体的地球化学指标与其他指标对比来探讨过去20万年来暖池区的水文变动及其与ENSO、ITCZ和东亚季风之间的关系。

2 材料与方法

研究采用岩芯为KX97322-4孔(00°01′S,159°14′E),该站位于赤道西太平洋Ontong-Java海台(图1),由2008年暖池区专题航次利用重力取样器获得。站位水深2362m,处于海区溶跃面(CCD)(约3400m)以上,样品主要成分为有孔虫软泥[35],对柱状样上部3.2m按2cm间距取样进行有孔虫壳体Mg/Ca分析,共取160个样品。样品的年代地层框架是利用张帅等[36]基于本孔Globigerinoides ruber壳体的 δ 18 O(记作 δ 18 Oc)与RL04标准曲线对比及G. ruber(pink)的末现面(120ka B.P. )建立,底部达到MIS 6期,年龄约为188ka。

图1 KX97322-4站位和对比站位的位置,以及热带辐合带(ITCZ)的夏季位置(蓝线)[35] Fig.1 The location of core KX97322-4 and other cores mentioned,the blue line represents the position of ITCZ in summer[35]

KX97322-4孔样品中G. ruber壳体Mg/Ca分析,先在实体显微镜下挑选完整无损、洁净的G.ruber壳体20枚,壳径为250~300μm。利用Barker等[37]的Mg清洗方法,通过压碎后加乙醇超声去粘土、加1 % 的H2O2碱性缓冲溶液去有机质、镜下去杂质、HNO3(0.001M)稀酸淋洗等步骤处理样品[38]。后利用中国科学院海洋研究所海洋地质与环境重点实验室电感耦合等离子发射光谱仪(ICP-OES,Thermo iCAP 6300 Radial)进行测试获得结果,分析精度约0.44 % (1σ,RSD),相对误差约0.42 %。

由于有孔虫在成壳过程中受周围环境水体化学状态的影响,其壳体的 δ 18 Oc会记录当时周围海水温度(SST)和盐度(主要反映于海水 δ 18 O,记作 δ 18 Osw)的变化,而 δ 18 Osw变化又主要受当地水文和全球冰量变化即海平面变化控制[39]。前人研究表明[40]有孔虫壳体的Mg/Ca与海水温度之间存在着较稳定的函数关系Mg/Ca(mmol/mol)=B×exp[A×T(℃)],其中A和B是两个指数常量,A代表Mg/Ca对温度的敏感程度,即随温度增加的速率,B代表属种特异性。因而可利用壳体的 δ 18 Oc去除温度和全球冰体积变化来估算当地水文变化(当蒸发大于降雨时海水H216 O 减少同时海表盐度上升)[41, 42]。参照张帅等[36, 38]G. ruber壳体的 δ 18 Oc和Mg/Ca结果,通过Thunell等[3]改进的Bemis等[43]利用浮游有孔虫Orbulina universa在低光度实验环境下的推算公式(1)来计算当地海区的 δ 18 Osw。本文利用Waelbroeck等[44]代表过去海平面变化的全球平均 δ 18 Osw记录,来去除全球冰体积变化对KX97322-4记录的影响,并记为 δ 18 Osw-iv

利用Anand等[40]沉积物捕获器建立的Mg/Ca公式(2)估算G. ruber壳体Mg/Ca指示的表层海水温度(SST),其总结了前人的研究并考虑影响Mg/Ca比值变化的其他因素,如实验室误差等等。

表层海水盐度(SSS)估算利用LeGrande和Schmidt[45]的经验公式:

3 结果与讨论 3.1 表层海水温盐变化

Mg/Ca古温度计相对于其他指标有其独特的优势,从深海岩芯得到的同源有孔虫壳体的Mg/Ca和 δ 18 Oc使分离SST和 δ 18 Osw变化的幅度和时间成为可能,且适用于赤道西太平洋这样高温贫营养的海区[40, 46, 47, 48]。暖池核心区的季节性温盐差异很小,表层浮游有孔虫G. ruber壳体几乎不受季节变化影响,主要反映其生存环境的年均变化。对KX97322-4孔G. ruber壳体Mg/Ca通过公式(2)得到该海区MIS6以来的SST变化(图2b)。样品表层的SST估算结果为29.17℃,与现代该海区表层海水温度29.2℃[7]基本一致。暖池核心区SST变化整体呈现出良好的冰期-间冰期旋回特征,在冰期MIS2~MIS5d和MIS6期都呈现出明显变冷,相应的降温幅度分别可达3.3℃和3.6℃。冰消期都表现出快速增温现象,几乎都是从一个极小值在短时间内快速上升到极高值,然后在间冰期又逐渐下降。SST在末次冰期(MIS2~4)阶段温度波动剧烈,变化范围在26~28℃之间,在67.3ka B.P. 出现最低值25.9℃,在MIS5e达到200ka以来的最高值,为30.17℃。SST在MIS6期呈多次阶梯式升温。

图2 MIS 6以来KX97322-4孔 δ 18 Oc(a)、SST(b)、 δ 18 Osw(d)与 δ 18 Osw-iv(e)的变化,其中虚线(c) 为Waelbroeck等[44]全球平均 δ 18 Osw Fig.2 The variation of indexes of Core KX97322-4 since MIS 6,including δ 18 Oc(a),SST(b),δ 18 Osw (d) and δ 18 Osw-iv (e); the dash curve (c) represents the global mean δ 18 O[44]sw

末次盛冰期(LGM)时,SST在20.1ka B.P. 出现最低值26.2℃,约比现今下降 2.9±0.7℃(图2b),与邻近站位ODP806B[7]、MD97-2138[26]和WP7[49]等的Mg/Ca估算结果具有很好的一致性,而Tripati等[28]利用二元同位素指标得到的结果甚至超过4℃,巩固了暖池在LGM时期降温幅度并不小于2℃的论断。根据KX97322-4孔G. ruber的SST与 δ 18 Oc之间的关系(图2a2b)可以看出,在整体趋势上,两者表现出很好的一致性,都呈现出间冰期高冰期低的特点; 但在冰期及间冰期时暖池核心区的SST变化却和 δ 18 Oc值的变化存在一定差异。在LGM时,δ 18 Oc值达到了最低值,但是此时的暖池核心区的SST尽管很低,并没有出现末次冰期的最低值,而是持续处于低温状态,相对于整个末次冰期而言保持稳定。在MIS 4~MIS 5e之间,δ 18 Oc有一个明显的正偏过程,但SST却没有发现这种明显地阶梯变化。在MIS 6期,暖池核心区SST变化和 δ 18 Oc值之间的变化呈明显地相反趋势,δ 18 Oc值在MIS 6期呈阶梯状正偏,而SST却呈阶梯状上升。

利用公式(1)得到的 δ 18 Osw主要反映当地SSS的变化,表层样品的 δ 18 Osw为0.46 ‰ ,利用公式(3)重建的盐度值为34.48 ‰ ,与海区现代 δ 18 Osw值0.3 ‰ [50]和SSS值34.6 ‰ 相近[7]。LGM时 δ 18 Osw值约为1.36 ‰ ,估算的SSS值为36.75 ‰ ,相对于全新世上升了约2.27 ‰。从 图2c2d可以看出暖池区海水盐度总体上呈现出冰期高间冰期低、冰消期快速升高的特点,近似于Waelbroeck等[44]的全球平均 δ 18 Osw变化趋势,但是在各个时期却又与其存在着明显地差异。暖池区 δ 18 Osw的最高值和最低值出现在MIS 6期(大约147.1ka B.P.)和末次间冰期MIS 5e期(大约117.7ka B.P. ),分别为1.76 ‰ 和0.35 ‰ ,与MIS 6和MIS 5e全球平均 δ 18 Osw的最高值和最低值的出现一致,体现了全球冰量的变化特征:MIS 6期全球冰体积可能比LGM时期还要大、MIS 5e期全球冰体积要比现在还要小。

3.2 东、西太平洋温盐差异

KX97322-4站位的结果与邻近站位ODP806B[7]对比(图3)整体上都存在着很好的对应关系,细微差异可能缘于样品分辨率差异。西太平洋暖池KX97322-4和ODP806B站位的结果[7]与东太平洋冷舌TR163-19站位的结果[7]进行对比(图3),200ka以来暖池区与冷舌区G. ruber壳体的 δ 18 Oc在间冰期差值较小,但是在冰期差值较大。在MIS 6期,整体上暖池处于升温状态。在大约170~180ka B.P. ,赤道纬向温度梯度高,δ 18 Oc负偏。而在大约135~150ka B.P.,赤道纬向温度梯度降低,δ 18 Oc正偏。模拟实验表明MIS 6期受 El Niño 主导,高纬降温冰盖建造可能在热带太平洋变暖时加速[51, 52],此时暖池可能作为一个重要的水汽源向两极输送水汽以促进冰席的增长。冰川的建造源于能量向海洋供给的增加导致蒸发和水汽循环加强并输送到冷的极区,一定阈值内的升温并不能带来冰川的瓦解[53]。由于受日射率变化的影响,MIS 6期高纬处于异常冷的状态[52],因而主要受南部高纬控制[10, 54]的赤道东太平洋SST也维持在较低水平。SST数据表明西太平洋暖池区从MIS 6以来SST都高于东太平洋冷舌区,并且两者温度梯度在冰期和间冰期幅度基本相似,但在冰消期两者温度梯度最小,可能在冰消期全球升温的背景下赤道东、西太平洋同时增温,且东太平洋的增温速率和幅度要高于西太平洋造成的[6]。在现代全球变暖过程中极端 El Niño 事件发生频率会增加或翻倍[4],其原因在于赤道东太平洋表层升温快于周围海区(赤道快于赤道外,东赤道快于西赤道),ITCZ向赤道移动[55],促进东赤道区域大气对流频繁发生[56, 57]。许多模型研究表明东赤道太平洋升温要比西赤道太平洋多[2, 58],东太平洋表层升温要比西太平洋更加敏感[59]。Sun[59]对观察的热带太平洋热平衡数据分析表明 El Niño 是热带太平洋向极传热的主要机制——向极传热是间歇性的,这些阶段和 El Niño 的发生相呼应。冰消期阶段,赤道地区夏季日射率幅度明显增大(图4c中虚线),促进赤道海区的快速升温,而这种赤道东、西太平洋温度梯度的减小,可能揭示在这种升温时期热带太平洋整体上呈现出一种类似 El Niño 的状态并且通过这种状态促使全球升温,热带太平洋在全球变化中可能起着积极的推动作用。

图3 赤道东、西太平洋表层水体各指标对比
赤道西太平洋KX97322-4孔和ODP806B孔与赤道东太平洋TR163-19孔有孔虫壳体氧同位素 δ 18 Oc (a)、SST (c) 以及海水氧同位素 δ 18 Osw (e)对比[7]; (b)和(d)分别为东、西太平洋SST差值和 δ 18 Osw差值; ΔSST越小越趋向于类 El Niño 状态
Fig.3 The comparison of the surface water proxies between the Western and Eastern Equatorial Pacific. The comparison of δ 18 Oc (a),SST (c) and δ 18 Osw (e) between the Western Equatorial Pacific and the Eastern Equatorial Pacific. The core KX97322-4 and ODP 806 in the Western Equatorial Pacific and core TR163-19 in the Western Equatorial Pacific[7],(b) and (d) represent the differences between the SST and δ 18 Osw,when ΔSST becomes smaller,it likely to be in the El Niño -like status

图4 热带西太平洋和东亚季风降雨记录对ITCZ位移的指示
(a)中国石笋 δ 18 O记录[62];(b)MD05-2920孔 ln(Ti/Ca)[63];(c)MIS 6以来KX97322-4孔降雨变化;(d)KX97322-4孔热带SST记录、全球平均δ18Osw[44]和南极Dome C冰芯δD记录[64];(a,c)虚线为日射率变化曲线
Fig.4 The indication of the ITCZ position from the precipitation records of Western Tropical Pacific and East Asia. (a)δ 18 O record of Chinese caves[62]; (b)the ln (Ti/Ca) record of core MD05-2920[63]; (c)the precipitation record of core KX97322-4; (d)tropical SST,global mean δ 18 Osw[44] and Antarctic Dome C ice core δD records[64]. (a,c)Dash lines represent the variation of insolation

现代西太平洋暖池和东太平洋冷舌的 δ 18 Osw分别为0.3 ‰ 和-0.1 ‰ [50],存在着0.4 ‰ 的差异。对比东、西太平洋之间的 δ 18 Osw变化(图3d)可以发现,两者盐度梯度在MIS 2~4较小、近乎相等,在间冰期(MIS 1和MIS 5)较大,差值在0.3 ‰ ~0.6 ‰ 之间。对比全球平均 δ 18 Osw可以发现在赤道东太平洋更趋近于冰期-间冰期全球平均的状态,而赤道西太平洋在冰期 δ 18 Osw与东太平洋冷舌相比偏负,即盐度相对偏低。赤道东、西太平洋SST差值也较大,这种变化可能是由于西太平洋降雨量增加所造成的,暖池区在冰期可能经历着类似 La Niña 的状态,冰期由于东、西太平洋温度梯度大信风加强导致向西输送水汽增加从而使暖池区降雨增加[7, 34]。 de Garidel-Thoron等[26]研究表明西太平洋暖池区在冰期阶段表层水更淡并且存在一个长期的盐度降低过程。而张帅等[35]通 过对KX97322-4孔的温跃层深度重建得到暖池区温跃层在过去冰期间冰期循环中一直处在不断变化之中,总趋势上在MIS 6时期加深,与有孔虫表层种相对丰度变化一致; 而在末次冰期变浅,与有孔虫表层种相对丰度变化相反。Sagawa等[9]利用暖池区多种有孔虫壳体研究表明在冰期暖池区温跃层比表层水多降温1~2℃,温跃层变浅,并且暖池区的低盐度是由于低SST抑制蒸发造成的,而上层沃克环流并不强,即不存在强的大气输送; 其他降水指标记录[60]和现代模拟实验[61]也证明此时降雨没有增强。Stott等[8]则提出在冷期暖池区可能处于 El Niño 状态,而此时大气对流从印度尼西亚向东移动使该海区降雨加强。MIS 6期尽管属于冰期,但是赤道东、西太平洋之间的盐度差异却不稳定,此时西太平洋暖池呈现出阶梯式升温过程,而每次快速升温时(约150ka B.P. 和170ka B.P.),都对应着盐度差值的增大,类似于冰消期变化,暖池区可能因向两极输送水汽[51]而使得当地盐度增大。过去模拟研究表明在MIS 6期暖池区 El Niño 占主导地位[52],MIS 6期 El Niño 发生频率高于MIS 5e期[51]。海区的盐度变化不仅受当地水文的变化影响,还受全球冰体积的变化影响,因而只能反映海区盐度的变化。

综上所述,在冰消期和冰期升温阶段,热带太平洋呈现出类 El Niño 状态,热带向两极释放热量、输送水汽。MIS 6期赤道西太平洋SST呈现出阶梯式升温状态,此时热带向两极输送水汽促进了当时两极冰盖的建造从而使得全球冰体积进一步扩大化。

3.3 暖池核心区降雨与ITCZ的关系

δ 18 Osw去除全球冰量变化对其的影响可以得到暖池核心区当地水文变化的情况,海区上升流很弱[47],表层水主要受降雨-蒸发的差异控制。当 δ 18 Osw-iv值正偏时,表明此时蒸发去除H216 O的作用较强,水汽向暖池外运移,当地降雨量减少,而 δ 18 Osw-iv值负偏时则表明此时水汽从热带外向暖池输运,降雨量增大[41, 42]。整体上最近两个冰期 (MIS 2~5d和MIS 6)δ 18 Osw-iv值相对较轻(图4c中实线),暖池区冰期降雨量普遍较大,而在间冰期相反。而冰期暖池区SST也明显低于间冰期,且此时赤道东、西太平洋表层温差也较大,信风强劲,外来水汽输入多,热带太平洋海区水汽蒸发不足,从而造成冰期 δ 18 Osw-iv处于低值期。

KX97322-4站位处于ITCZ控制区[65],位于ITCZ主轴线以南[12, 13, 66, 67]。北半球夏季ITCZ北移,该海区的降雨量会有所减少,北半球夏季风携带水汽向北输运促使降雨增加[60]。从McGee等[67]对ITCZ变动的研究可知,从 100°~170°E之间ITCZ的南北变动是同向的。在冰期(间冰期),ITCZ收缩(扩张),边界向赤道收缩(向两极移动); 在冰阶(间冰阶),ITCZ南移(北移)[65]。巴布亚新几内亚北部沿岸降雨径流指标ln(Ti/Ca)显示(图4b),ITCZ的移动与当地降雨变化具有对应关系,当ITCZ南移时,暖池区降雨量会增加[63]。通过KX97322-4孔 δ 18 Osw-iv与巴布亚新几内亚MD05-2920孔ln(Ti/Ca)[63]对比(图4)发现两指标的峰谷值之间(MIS 1~2和MIS 5~6)具有很好的对应关系,当ITCZ南移,暖池区降雨量增加时,巴布亚新几内亚岛的地表径流相应加强,从而使得Ti输入增多。但两指标之间却也存在着幅度和变化上(MIS 3~4)的一些差异,KX97322-4孔位于暖池核心区的中部,而MD05-2920孔则位于核心区的边缘,并且受海陆相互作用较大,陆地因素较多,可能造成二者指标变幅呈现一定的不一致。

中国洞穴石笋(葫芦洞、三宝洞和董哥洞)、韩国石笋和西太平洋沉积记录表明受ITCZ移动控制北半球中纬降雨与南半球之间存在跷跷板关系[62, 68, 69],北半球中纬水文变化与北半球季风变化一致[65, 70]。暖池核心区的 δ 18 Osw-iv及ln(Ti/Ca)与中国石笋记录[62]对比发现他们之间具有明显的相关性(图4),当暖池核心区降雨减弱时,对应着ITCZ北移、北半球石笋季风降雨记录的增强,并伴随着夏季日射率的增大,此时全球气温和暖池SST也处于相对较高水平。说明ITCZ的变动对暖池区的水文变化有着很大的影响,且与岁差控制的日射率变化相关。对婆罗洲石笋研究也发现热带太平洋水文对两半球高纬气候过程和外部辐射驱动敏感[60],当北半球处于冷事件时,ITCZ南移使印澳季风降雨加强[20, 71],暖池核心区降雨的强弱与东亚季风的变化存在跷跷板的关系。

由于ITCZ对暖池水文变化有影响,因而暖池区水文变化既反映ENSO也反映ITCZ的变化。最近两个冰消期,全球升温背景下由于东太平洋的快速升温减弱纬向温度梯度[6],暖池区呈现出类似 El Niño 的状态,此时暖池区降雨量呈现减少趋势,水汽蒸发向外输送,ITCZ处于扩张状态[65],南界南移北界北移,使得南北半球降雨增强。在两个冰期阶段(MIS 2和MIS 6)热带西太平洋ln(Ti/Ca)值较大[63, 72],而δ 18 Osw-iv值较低,分别达到-2.3、-2.6(图4b)和-0.05 ‰ 、0.17 ‰ (图4c),赤道太平洋纬向SST梯度维持在3℃左右(图3b),暖池区降雨量维持在较高水平,而此时ITCZ向赤道收缩[65],暖池区可能呈现出类似 La Niña 的状态,沃克环流较强,降雨量较大。一些模拟实验表明ITCZ对半球间温度梯度敏感[73, 74],冰期南北半球温差大,ITCZ多位于赤道北部[73],因而可以维持北半球夏季风的强度。而暖池区的相对高温可能使ITCZ的南缘依然在赤道附近加强降雨,使暖池一直处于 La Niña 状态。而在冰期内,当日射率强度较高时,赤道外升温幅度要大于赤道,从而促使ITCZ进一步北移(图4)。而此时赤道太平洋纬向温度梯度减弱(在143~152ka B.P. 温差从4.7℃到2.2℃; 170~180ka B.P. 温差从2.6℃到1.4℃)(图3b),使暖池偏向 El Niño 状态,降雨少而蒸发多,其水汽向赤道外输运从而增加中高纬季风降雨、促进两极冰盖建造使全球冰体积逐步变大(全球平均 δ 18 Osw从0.7 ‰ 到1.0 ‰ 、0.57 ‰ 到0.64 ‰ [44])(图4d)。在间冰期,赤道太平洋纬向温度梯度也较高(图3b),类似于冰期,而此时如南极冰心δD和热带SST记录指示(图4d),全球处在一种逐步降温的状态。在这种状态下,ITCZ处于逐渐萎缩且向南偏移的过程。当日射率处于低值时,全球降温加速,暖池 La Niña 状态又促进ITCZ南偏加强,北半球夏季风减弱,降雨减少,中国洞穴石笋 δ 18 O升高[62]; 但当日射率处于高值时,全球又开始升温,La Niña 状态被缓和,ITCZ向北移动加强北半球夏季风,中国洞穴石笋 δ 18 O降低[62]

从冰期-间冰期尺度上看,暖池的变动明显受全球冰量变化控制,即在幅度上受地球轨道的偏心率控制。而从岁差驱动的日射率与暖池区降雨和北半球季风的关系来看,岁差驱动的日射率的变动明显超前于后两者,说明暖池区降雨和季风变动明显受岁差驱动[75]。北半球夏季日射率增加可以产生强的半球间表层温度梯度并导致南半球夏季风系统降雨减少,北半球热带水文循环加强。低纬度海区ENSO的变动也主要受岁差控制[1]。ENSO主导着热带气候的变化,与ITCZ的位置相关[18, 19, 76]。由此可见,暖池区在全球升温过程中可能处于类似 El Niño 状态,而降温过程中则可能处于类似 La Niña 的状态。ITCZ和ENSO主要受外部辐射驱动控制,而ENSO可能对ITCZ则起着内部系统调谐的作用。

5 结论

(1)MIS 6以来冰期间冰期旋回中暖池核心区SST也存在着较大的波动,MIS 2~5d和MIS 6期分别达3.3℃和3.6℃。LGM时SST最低值为26.2℃,比现今下降 2.9±0.7℃。在MIS 6期,暖池核心区SST变化和 δ 18 Oc值之间的变化呈明显地相反趋势,δ 18 Oc值在MIS 6期呈阶梯状下降,而SST却呈阶梯状上升。δ 18 Osw在MIS 6出现最大值1.76 ‰ ,在MIS 5e达到最小值0.35 ‰。

(2)在冰消期和冰期升温阶段,热带太平洋呈现出类 El Niño 状态,热带向两极释放热量、输送水汽。MIS 6期赤道西太平洋SST呈现出阶梯式升温状态,此时热带向两极输送水汽促进了当时两极冰盖的建造从而使得全球冰体积进一步扩大化。

(3)过去热带太平洋类ENSO过程可能与ITCZ的移动和变化之间存在着重要的关系,进而与东亚夏季风降雨之间存在密切的联系,ENSO可能对ITCZ则起着内部系统调谐的作用。

致谢 感谢审稿专家提出的富有建设性的修改意见; 感谢杨美芳老师的认真负责和在文章修改中给予的帮助。

参考文献(References)
1 Cane M A. Climate change:A role for the tropical pacific. Science, 1998, 282 (5386):59~61
2 Tett S. Simulation of El Niño -Southern Oscillation-like variability in a global AOGCM and its response to CO2 increase. Journal of Climate, 1995, 8 (6):1473~1502
3 Thunell R, Tappa E, Pride C et al. Sea-surface temperature anomalies associated with the 1997-1998 El Niño recorded in the oxygen isotope composition of planktonic foraminifera. Geology, 1999, 27 (9):843~846
4 Cai Wenju, Borlace S, Lengaigne M et al. Increasing frequency of extreme El Niño events due to greenhouse warming. Nature Climate Change, 2014, 4 (2):111~116
5 汪品先. 低纬过程的轨道驱动. 第四纪研究, 2006, 26 (5):694-701
Wang Pinxian. Orbital forcing of the low-latitude processes. Quaternary Sciences, 2006, 26 (5):694~701
6 Rodbell D T, Seltzer G O, Anderson D M et al. An-15,000-year record of El Niño -driven alluviation in Southwestern Ecuador. Science, 1999, 283 (5401):516~520
7 Lea D W, Pak D K, Spero H J. Climate impact of Late Quaternary Equatorial Pacific sea surface temperature variations. Science, 2000, 289 (5485):1719~1724
8 Stott L, Poulsen C, Lund S et al. Super ENSO and global climate oscillations at millennial time scales. Science, 2002, 297 (5579):222~226
9 Sagawa T, Yokoyama Y, Ikehara M et al. Shoaling of the Western Equatorial Pacific thermocline during the Last Glacial Maximum inferred from multispecies temperature reconstruction of planktonic foraminifera. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, 346 (3470):120~129
10 Cabarcos E, Flores J-A, Sierro F J. High-resolution productivity record and reconstruction of ENSO dynamics during the Holocene in the Eastern Equatorial Pacific using coccolithophores. The Holocene, 2014, 24 (2):176~187
11 常凤鸣, 李铁刚. 西太平洋暖池区古海洋学研究. 地球科学进展, 2013, 28 (8):847-858
Chang Fengming, Li Tiegang. Progress in the paleoceanography of the Western Pacific Warm Pool:A review. Advances in Earth Science, 2013, 28 (8):847~858
12 Leduc G, Vidal L, Tachikawa K et al. ITCZ rather than ENSO signature for abrupt climate changes across the Tropical Pacific. Quaternary Research, 2009, 72 (1):123~131
13 Schmidt M W, Spero H J. Meridional shifts in the marine ITCZ and the tropical hydrologic cycle over the last three glacial cycles. Paleoceanography, 2011, 26 (1):PA1206
14 Qiu Xiaohua, Li Tiegang, Chang Fengming et al. Sea surface temperature and salinity reconstruction based on stable isotopes and Mg/Ca of planktonic foraminifera in the Western Pacific Warm Pool during the last 155ka. Chinese Journal of Oceanology and Limnology, 2014, 32 (1):187~200
15 An Zhisheng. The history and variability of the East Asian paleomonsoon climate. Quaternary Science Reviews, 2000, 19 (1-5):171~187
16 熊尚发, 刘东生, 丁仲礼. 东亚冬、夏古季风变化的相位差及热带太平洋在季风变化中的驱动. 第四纪研究, 1996,(3):202-210
Xiong Shangfa, Liu Tungsheng, Ding Zhongli. Phase-difference between summer and winter paleomonsoon variations over East Asia and the tropical forcing of monsoon evolution. Quaternary Sciences, 1996,(3):202~210
17 Li Chongyin, Mu Mingquan, Zhou Guangqing. The variation of warm pool in the Equatorial Western Pacific and its impacts on climate. Advances in Atmospheric Sciences, 1999, 16 (3):378~394
18 王 跃, 翦知湣, 赵 平. 末次盛冰期热带降雨对低纬表层海温的敏感性. 第四纪研究, 2011, 31 (2):244-255
Wang Yue, Jian Zhimin, Zhao Ping. Sensitivity tropical precipitation caused by the low latitude Sea Surface Temperature during Last Glacial Maximum. Quaternary Sciences, 2011, 31 (2):244~255
19 王 跃, 翦知湣, 赵 平. 末次盛冰期太平洋赤道辐合带对暖池外热带海表温度变化的敏感性. 第四纪研究, 2009, 29 (2):221-231
Wang Yue, Jian Zhimin, Zhao Ping. Sensitivity of Equatorial Pacific Convergence Zone to revised tropical sea surface temperature/tide. Quaternary Sciences, 2009, 29 (2):221~231
20 隋伟辉, 赵 平. 末次盛冰期西太平洋海温差异对亚洲夏季风影响的数值模拟. 第四纪研究, 2005, 25 (5):645-654
Sui Weihui, Zhao Ping. Modeling the impact of the Western Pacific sea surface temperature difference on the Asian summer monsoon climate at the Last Glacial Maximum. Quaternary Sciences, 2005, 25 (5):645~654
21 Palmer T N, Mansfield D A. Response of two atmospheric general circulation models to sea-surface temperature anomalies in the tropical East and West Pacific. Nature, 1984, 310 (5977):483~485
22 Cronin M F, McPhaden M J. The upper ocean heat balance in the Western Equatorial Pacific warm pool during September-December 1992. Journal of Geophysical Research:Oceans, 1997, 102 (C4):8533~8553
23 Crowley T J. CLIMAP SSTs re-revisited. Climate Dynamics, 2000, 16 (4):241~255
24 Waelbroeck C, Paul A, Kucera M et al. Constraints on the magnitude and patterns of ocean cooling at the Last Glacial Maximum. Nature Geoscience, 2009, 2 (2):127~132
25 Pelejero C, Kienast M, Wang Luejiang et al. The flooding of Sundaland during the last deglaciation:Imprints in hemipelagic sediments from the southern South China Sea. Earth and Planetary Science Letters, 1999, 171 (4):661~671
26 de Garidel-Thoron T, Rosenthal Y, Beaufort L et al. A multiproxy assessment of the Western Equatorial Pacific hydrography during the last 30 kyr. Paleoceanography, 2007, 22 (3):PA3204
27 Mathien-Blard E, Bassinot F. Salinity bias on the foraminifera Mg/Ca thermometry:Correction procedure and implications for past ocean hydrographic reconstructions. Geochemistry, Geophysics, Geosystems, 2009, 10 (12):Q12011
28 Tripati A K, Sahany S, Pittman D et al. Modern and glacial tropical snowlines controlled by sea surface temperature and atmospheric mixing. Nature Geoscience, 2014, 7 (3):205~209
29 Mix A C, Bard E, Schneider R. Environmental processes of the ice age:Land, oceans, glaciers(EPILOG). Quaternary Science Reviews, 2001, 20 (4):627~657
30 Bush A B G, Philander S G H. The role of ocean-atmosphere interactions in tropical cooling during the Last Glacial Maximum. Science, 1998, 279 (5355):1341~1344
31 Koutavas A, Lynch-Stieglitz J, Marchitto T M et al. El Niño -like pattern in ice age tropical Pacific sea surface temperature. Science, 2002, 297 (5579):226~230
32 Dubois N, Kienast M, Normandeau C et al. Eastern Equatorial Pacific cold tongue during the Last Glacial Maximum as seen from alkenone paleothermometry. Paleoceanography, 2009, 24 (4):PA4207
33 Martínez I, Keigwin L, Barrows T T et al. La Niña -like conditions in the Eastern Equatorial Pacific and a stronger Choco jet in the northern Andes during the last glaciation. Paleoceanography, 2003, 18 (2):1033
34 Andreasen D J, Ravelo A C. Tropical Pacific Ocean thermocline depth reconstructions for the Last Glacial Maximum. Paleoceanography, 1997, 12 (3):395~413
35 Schneider T, Bischoff T, Haug G H. Migrations and dynamics of the Intertropical Convergence Zone. Nature, 2014, 513 (7516):45~53
36 张 帅, 李铁刚, 常凤鸣等. 西太平洋暖池核心区360ka来上部水体的演变. 海洋地质与第四纪地质, 2013, 33 (2):87-96
Zhang Shuai, Li Tiegang, Chang Fengming et al. The evolution of upper water in the center of west Pacific Warm Pool during the last 360kyr. Marine Geology&Quaternary Geology, 2013, 33 (2):87~96
37 Barker S, Greaves M, Elderfield H. A study of cleaning procedures used for foraminiferal Mg/Ca paleothermometry. Geochemistry, Geophysics, Geosystems, 2003, 4 (9):8407
38 张 帅. 西太平洋暖池核心区360ka来上部水体温度和结构演变. 北京: 中国科学院大学硕士学位论文, 2013. 1-65
Zhang Shuai. The Upper Water Temperature and Structure Evolution in the Center West Pacific Warm Pool during the Last 360kyr. Beijing:The Master's Degree Thesis of University of Chinese Academy of Sciences, 2013. 1~65
39 Lea D W, Martin P A, Pak D K et al. Reconstructing a 350 ky history of sea level using planktonic Mg/Ca and oxygen isotope records from a Cocos Ridge core. Quaternary Science Reviews, 2002, 21 (1-3):283~293
40 Anand P, Elderfield H, Conte M H. Calibration of Mg/Ca thermometry in planktonic foraminifera from a sediment trap time series. Paleoceanography, 2003, 18 (2):1050
41 Rosenthal Y, Oppo D W, Linsley B K. The amplitude and phasing of climate change during the last deglaciation in the Sulu Sea, Western Equatorial Pacific. Geophysical Research Letters, 2003, 30 (8):1428
42 Stott L, Cannariato K, Thunell R et al. Decline of surface temperature and salinity in the western tropical Pacific Ocean in the Holocene epoch. Nature, 2004, 431 (7004):56~59
43 Bemis B E, Spero H J, Bijma J et al. Reevaluation of the oxygen isotopic composition of planktonic foraminifera:Experimental results and revised paleotemperature equations. Paleoceanography, 1998, 13 (2):150~160
44 Waelbroeck C, Labeyrie L, Michel E et al. Sea-level and deep water temperature changes derived from benthic foraminifera isotopic records. Quaternary Science Reviews, 2002, 21 (1-3):295~305
45 LeGrande A N, Schmidt G A. Global gridded data set of the oxygen isotopic composition in seawater. Geophysical Research Letters, 2006, 33 (12):L12604
46 Barker S, Cacho I, Benway H et al. Planktonic foraminiferal Mg/Ca as a proxy for past oceanic temperatures:A methodological overview and data compilation for the Last Glacial Maximum. Quaternary Science Reviews, 2005, 24 (7-9):821~834
47 Kawahata H, Suzuki A, Ohta H. Export fluxes in the Western Pacific Warm Pool. Deep Sea Research Part Ⅰ:Oceanographic Research Papers, 2000, 47 (11):2061~2091
48 李铁刚, 赵京涛, 孙荣涛等. 250ka B.P. 以来西太平洋暖池中心区——Ontong Java海台古生产力演化. 第四纪研究, 2008, 28 (3):447-457
Li Tiegang, Zhao Jingtao, Sun Rongtao et al. Paleoproductivity evolution in the Ontong Java Plateau——Center of the Western Pacific Warm Pool during the last 250ka. Quaternary Sciences, 2008, 28 (3):447~457
49 路 波, 李铁刚, 于心科等. 末次冰期最盛期热带西太平洋的海洋表层温度. 海洋地质与第四纪地质, 2010, 30 (4):31-38
Lu Bo, Li Tiegang, Yu Xinke et al. Sea surface temperature variation during Last Glacial Maximum at West Tropical Pacific. Marine Geology&Quaternary Geology, 2010, 30 (4):31~38
50 Schmidt G A. Forward modeling of carbonate proxy data from planktonic foraminifera using oxygen isotope tracers in a global ocean model. Paleoceanography, 1999, 14 (4):482~497
51 Kukla G J, Clement A C, Cane M A et al. Last interglacial and early glacial ENSO. Quaternary Research, 2002, 58 (1):27~31
52 Chang Ping, Wang Bin, Li Tim et al. Interactions between the seasonal cycle and the Southern Oscillation——Frequency entrainment and chaos in a coupled ocean-atmosphere model. Geophysical Research Letters, 1994, 21 (25):2817~2820
53 Huybers P, Wunsch C. Obliquity pacing of the Late Pleistocene glacial terminations. Nature, 2005, 434 (7032):491~494
54 Feldberg M J, Mix A C. Sea-surface temperature estimates in the Southeast Pacific based on planktonic foraminiferal species:Modern calibration and Last Glacial Maximum. Marine Micropaleontology, 2002, 44 (1-2):1~29
55 Lengaigne M, Vecchi G. Contrasting the termination of moderate and extreme El Niño events in coupled general circulation models. Climate Dynamics, 2010, 35 (2-3):299~313
56 Xie Shangping, Deser C, Vecchi G A et al. Global warming pattern formation:Sea surface temperature and rainfall. Journal of Climate, 2010, 23 (4):966~986
57 Tokinaga H, Xie Shangping, Deser C et al. Slowdown of the Walker Circulation driven by tropical Indo-Pacific warming. Nature, 2012, 491 (7424):439~443
58 Knutson T R, Manabe S. Time-mean response over the Tropical Pacific to increased CO2 in a Coupled Ocean-Atmosphere Model. Journal of Climate, 1995, 8 (9):2181~2199
59 Sun Dezheng. A possible effect of an increase in the Warm-Pool SST on the magnitude of El Niño warming. Journal of Climate, 2003, 16 (2):185~205
60 Partin J W, Cobb K M, Adkins J F et al. Millennial-scale trends in West Pacific Warm Pool hydrology since the Last Glacial Maximum. Nature, 2007, 449 (7161):452~455
61 Kitoh A, Murakami S. Tropical Pacific climate at the mid-Holocene and the Last Glacial Maximum simulated by a Coupled Ocean-Atmosphere General Circulation Model. Paleoceanography, 2002, 17 (3):1047
62 Cheng Hai, Zhang Pengzhong, Sptl C et al. The climatic cyclicity in semiarid-arid Central Asia over the past 500,000 years. Geophysical Research Letters, 2012, 39 (1):L01705
63 Tachikawa K, Timmermann A, Vidal L et al. CO2 radiative forcing and Intertropical Convergence Zone influences on Western Pacific Warm Pool climate over the past 400ka. Quaternary Science Reviews, 2014, 86 :24~34
64 Augustin L, Barbante C, Barnes P R F et al. Eight glacial cycles from an Antarctic ice core. Nature, 2004, 429 (6992):623~628
65 Jo K, Woo K S, Yi S et al. Mid-latitude interhemispheric hydrologic seesaw over the past 550,000 years. Nature, 2014, 508 (7496):378~382
66 Ivanochko T S, Ganeshram R S, Brummer G A et al. Variations in tropical convection as an amplifier of global climate change at the millennial scale. Earth and Planetary Science Letters, 2005, 235 (1-2):302~314
67 McGee D, Donohoe A, Marshall J et al. Changes in ITCZ location and cross-equatorial heat transport at the Last Glacial Maximum, Heinrich Stadial 1, and the mid-Holocene. Earth and Planetary Science Letters, 2014, 39 :69~79
68 褚智慧, 翦知湣, 乔培军等. 末次盛冰期以来苏拉威西海区上层海水对快速气候变化的响应. 第四纪研究, 2011, 31 (2):256-264
Chu Zhihui, Jian Zhimin, Qiao Peijun et al. Responses of the Sulawesi Sea upper ocean water to the rapid climate changes since the Last Glacial Maximum. Quaternary Sciences, 2011, 31 (2):256~264
69 金海燕, 翦知湣, 谢 昕等. 南海北部晚第四纪高分辨率元素比值反映的东亚季风演变. 第四纪研究, 2011, 31 (2):207-215
Jin Haiyan, Jian Zhimin, Xie Xin et al. Late Quaternary East Asian monsoonal evolution recorded by high resolution elemental ratios in the northern South China Sea. Quaternary Sciences, 2011, 31 (2):207~215
70 何璐瑶, 胡超涌, 黄俊华等. 石笋氧同位素指示东亚季风大尺度环流特征. 第四纪研究, 2009, 29 (5):950-956
He Luyao, Hu Chaoyong, Huang Junhua et al. Characteristics of large-scale circulation of East Asian monsoon indicated by oxygen isotope of stalagmites. Quaternary Sciences, 2009, 29 (5):950~956
71 Denniston R F, Wyrwoll K-H, Asmerom Y et al. North Atlantic forcing of millennial-scale Indo-Australian monsoon dynamics during the Last Glacial period. Quaternary Science Reviews, 2013, 72 :159~168
72 周 超, 金海燕, 翦知湣. 赤道西太平洋晚第四纪古生产力变化: 来自元素比值的证据. 第四纪研究, 2011, 31 (2):276-283
Zhou Chao, Jin Haiyan, Jian Zhimin. Variations of the Late Quaternary paleo-productivity in the Western Equatorial Pacific:Evidence from the elemental ratios. Quaternary Sciences, 2011, 31 (2):276~283
73 Broccoli A J, Dahl K A, Stouffer R J. Response of the ITCZ to Northern Hemisphere cooling. Geophysical Research Letters, 2006, 33 (1):L01702
74 Chiang J C H, Friedman A R. Extratropical cooling, interhemispheric thermal gradients, and tropical climate change. Annual Review of Earth and Planetary Sciences, 2012, 40 (1):383~412
75 Masson-Delmotte V, Schulz M, Abe-Ouchi A et al. Information from paleoclimate archives. In:Stocker T F, Qin Dahe, Plattner G-K et al.eds. Climate Change, 2013:The Physical Science Basis. Contribution of Working Group 1 to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA:Cambridge University Press, 2013.385~435
76 Thompson L G, Mosley-Thompson E, Davis M E et al. Annually resolved ice core records of tropical climate variability over the past -1800 years. Science, 2013, 340 (6135):945~950
THE RELATIONSHIP BETWEEN THE TROPICAL PACIFIC PRECIPITATION AND THE ITCZ VARIATION SINCE MIS 6
Zhang Shuai①②, Li Tiegang , Chang Fengming, Yu Zhoufei①②, Wang Haixia    
(①. Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071;②. University of Chinese Academy of Sciences, Beijing 100049;③. Ningbo City Land Resources Bureau Yinzhou Branch, Ningbo 315100)

Abstract

The Western Tropical Pacific plays a critical role in global water vapor and heat transport. Many studies had shown the strong correlation between tropical climate and high latitude climate variability, in particular, the Intertropical Convergence Zone (ITCZ) migration. But there is still little known about how they cooperate with each other. In this work, we studied the top 320cm gravity core at site KX97322-4(00°01'S, 159°14'E, water depth 2362m) at 2cm steps, which was recovered from the Ontong-Java Plateau in the Western Equatorial Pacific (WEP), the center of the Western Pacific Warm Pool (WPWP), where now the annual average temperature is more than 29℃. The age model is based on the correlation of the planktonic foraminiferal δ18O record with the LR04 reference benthic stack and the last occurrence (LO) (ca.120ka B.P.) of Globigerinoides ruber(pick)[35]. The bottom age could be ca.188ka B.P.(MIS 6). By combining planktonic foraminifera G. rubercalcite Mg/Ca and δ18O, we obtained the local Sea Surface Temperature(SST)and Salinity (SSS) over the past ca.200ka. In general, the WPWP SST swift culminated in deglacial then declined until the next deglacial. During the last two glacial (MIS 2~5d, MIS 6), the Western Tropical Pacific SST cooling could be 3.3℃ and 3.6℃ respectively. During MIS 2~4, the SST was 26~28℃ and got it's minimum value 25.9℃ in 67.3ka B.P. During MIS 6 SST was warming multisteply and attended its maximum value 30.17℃ in MIS 5e. In the Last Glacial Maximum (LGM), the SST minimum value in the center of WPWP was 26.2℃, about 2.9±0.7℃ cooler than now. We use the sea water δ18O(δ18Osw) value minus the global mean δ18Osw to remove the influence from ice volume change to get the local precipitation history. The maximum and the minimum value of the δ18Osw is 1.76 ‰ and 0.35 ‰, respectively in the MIS 6 and MIS 5e. By comparing the SST records of WEP with the Eastern Equatorial Pacific (EEP) since MIS 6, we find that the Tropical Pacific was more likely in the phase of El Niño -like during Terminations and warming stage in glacial stage (MIS 6). Meanwhile, more water vapor and heat had been transported to dipolar areas. During the Terminations, when the globe was warming, the zonal gradient of tropical pacific and global ice volume decreased. In the warming stage of MIS 6, the zonal gradient was lower, whereas the global ice volume sustained growth, maybe the heat was not enough to promote the melting of glacier at this moment, but the water vapor transport contributed to the glacier building in polars. Due to numerous factors can influence the salinity change, with the results of the comparation of the δ18Osw between the WEP and EEP, we can not draw out the precipitation difference. By comparing the WEP precipitation records from KX97322-4 and MD05-2920 with Chinese cave stalagmite records, we find that the tropical pacific was bound up with the ITCZ changes and even could influence East Asia Monsoon precipitation. When the isolation became stronger, the globe was warming and the WEP precipitation declined and evaporation enhanced, the ITCZ with more moisture shifted from the near equator to the temperate latitude, then the East Asia precipitation was strengthened. Our finding provide new evidence to the relationship between the WEP sea surface water variation and the East Asia precipitation, the Tropical Pacific zonal variation during the global warming and the ITCZ change during the past ca.200ka.

Key words     central Western Pacific Warm Pool    Sea Surface Temperature    ENSO-like process    Intertropical Convergence Zone