﻿ 基于褶积滤波的山丹地电阻率归一化速率异常特征分析
 文章快速检索 高级检索
 大地测量与地球动力学  2023, Vol. 43 Issue (9): 950-956  DOI: 10.14075/j.jgg.2023.09.013

### 引用本文

LI Na, FENG Jiangang, GAO Shude, et al. Analysis of the Abnormal Characteristics of Shandan Resistivity Normalization Rate Based on Convolution Filtering[J]. Journal of Geodesy and Geodynamics, 2023, 43(9): 950-956.

### Foundation support

The Youth Science Foundation of Gansu Province, No. 20JR5RA001; Excellent Business and Technical Team of Gansu Earthquake Agency.

### 第一作者简介

LI Na, engineer, majors in fixed point data of geophysical field, E-mail: 931464685@qq.com.

### 文章历史

1. 甘肃省地震局，兰州市东岗西路450号，730000

1 山丹观测站基本情况

 图 1 山丹地电阻率观测站附近构造特征 Fig. 1 Tentonic characteristics of Shandan resistivity station

 图 2 山丹地电阻率布极 Fig. 2 Measurement electrode distribution of Shandan resistivity station
2 褶积滤波去降雨分析

 $\begin{gathered} \rho_s(t)=R(t) \times C_R(t)= \\ \sum\limits_{\tau=0}^t R(\tau) C_R(t-\tau) \end{gathered}$ (1)

 $\begin{gathered} &R(t)=\\ &\left\{\begin{array}{l} 0, t \leqslant 0 \\ A_0+A_1 t, 0N \end{array}\right. \end{gathered}$ (2)

 $\boldsymbol{X}=\left[A_0, A_1, A_2, A_3, A_4, A_5\right]^{\mathrm{T}}$
 $\boldsymbol{K}=\left[\begin{array}{cccccc} \sum\limits_{\tau=0}^M C_R\left(t_1-\tau\right) & \sum\limits_{\tau=0}^M \tau C_R\left(t_1-\tau\right) & \sum\limits_{\tau=M}^N C_R\left(t_1-\tau\right) & \sum\limits_{\tau=M}^N \tau C_R\left(t_1-\tau\right) & \sum\limits_{\tau=M}^N \tau^{-1} C_R\left(t_1-\tau\right) & \sum\limits_{\tau=M}^N \tau^{-2} C_R\left(t_1-\tau\right) \\ \sum\limits_{r=0}^M C_R\left(t_2-\tau\right) & \sum\limits_{\tau=0}^M \tau C_R\left(t_2-\tau\right) & \sum\limits_{\tau=M}^N C_R\left(t_2-\tau\right) & \sum\limits_{\tau=M}^N \tau C_R\left(t_2-\tau\right) & \sum\limits_{\tau=M}^N \tau^{-1} C_R\left(t_2-\tau\right) & \sum\limits_{\tau=M}^N \tau^{-2} C_R\left(t_2-\tau\right) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \sum\limits_{\tau=0}^M C_R\left(t_n-\tau\right) & \sum\limits_{\tau=0}^M \tau C_R\left(t_n-\tau\right) & \sum\limits_{\tau=M}^N C_R\left(t_n-\tau\right) & \sum\limits_{\tau=M}^N \tau C_R\left(t_n-\tau\right) & \sum\limits_{\tau=M}^N \tau^{-1} C_R\left(t_n-\tau\right) & \sum\limits_{\tau=M}^N \tau^{-2} C_R\left(t_n-\tau\right) \end{array}\right]$

2.1 降雨对地电阻率的短期变化影响

 图 3 日降雨量对山丹地电阻率短期变化影响 Fig. 3 Effect of daily rainfall on short-term variation of the Shandan resistivity
2.2 降雨对地电阻率的季节性影响

 图 4 月降雨量对山丹地电阻率年变形态的影响 Fig. 4 Effect of monthly rainfall on annual variation of the Shandan resistivity
3 归一化月速率分析

4 去降雨后地电阻率映震效能分析

 图 5 山丹去降雨后NS测道归一化结果 Fig. 5 Normalized results after removing rainfall of Shandan NS measuring way

 图 6 山丹去降雨、去周期后归一化结果 Fig. 6 Normalized results after removing rainfall and removing the cycle of Shandan station

5 结语

 [1] 张学民, 王志贤, 臧明珍, 等. 降雨对地电阻率干扰的分析[J]. 华北地震科学, 1996, 14(4): 71-75 (Zhang Xuemin, Wang Zhixian, Zang Mingzhen, et al. Analysis of Interference of Rainfall on Earth Resistivity[J]. North China Earthquake Sciences, 1996, 14(4): 71-75) (0) [2] 张伟峰, 王远, 潘洁, 等. 嘉山台地电阻率与降雨关系探究[J]. 华南地震, 2015, 35(1): 84-89 (Zhang Weifeng, Wang Yuan, Pan Jie, et al. Exploration on the Relationship of the Rainfall and Earth Resistivity in Jiashan Seismic Station[J]. South China Journal of Seismology, 2015, 35(1): 84-89) (0) [3] 刘允秀, 陈华静, 程瑞年, 等. 地电阻率与地下水位、大气降水关系研究[J]. 中国地震, 1999, 15(2): 184-189 (Liu Yunxiu, Chen Huajing, Cheng Ruinian, et al. The Study of Relationship between Earth Resistivity and Groundwater Level, Precip Itation[J]. Earthquake Research in China, 1999, 15(2): 184-189) (0) [4] 宋晓磊, 黄清华. 应用褶积滤波和多元回归分析降雨对地电阻率的干扰[C]. 中国地球物理学会第21届年会, 长春, 2005 (Song Xiaolei, Huang Qinghua. Application of Convolution Filtering and Multiple Regression Analysis on the Interference of Rainfall on Ground Resistivity[C]. The 21st Annual Meeting of Chinese Geophysics, Changchun, 2005) (0) [5] 李姜, 乔子云, 张国苓, 等. 华北地区地电阻率归一化速率异常分析[J]. 地震地磁观测与研究, 2019, 40(6): 62-71 (Li Jiang, Qiao Ziyun, Zhang Guoling, et al. Anomalies of Normalized Rate of Geoelectric Resistivity in North China[J]. Seismological and Geomagnetic Observation and Research, 2019, 40(6): 62-71) (0) [6] 张国苓, 茅远哲, 乔子云, 等. 降雨对昌黎台地电阻率的干扰分析[J]. 地震, 2019, 39(4): 110-117 (Zhang Guoling, Mao Yuanzhe, Qiao Ziyun, et al. Quantitative Analysis of Rainfall Effects on Earth Resistivity in Changli Seismic Station[J]. Earthquake, 2019, 39(4): 110-117) (0) [7] 石富强, 张国强, 方炜, 等. 陕西周至地电台地电阻率年变特征分析[J]. 地震学报, 2014, 36(6): 1 113-1 123 (Shi Fuqiang, Zhang Guoqiang, Fang Wei, et al. Annual Variation Characteristics of Georesistivity at Zhouzhi Geoelectric Station, Shaanxi Province[J]. Acta Seismologica Sinica, 2014, 36(6): 1 113-1 123) (0) [8] 番绍辉, 缪素秋, 黎朕灵, 等. 降雨对腾冲地震台地电阻率的干扰分析[J]. 高原地震, 2021, 33(3): 33-40 (Fan Shaohui, Miao Suqiu, Li Zhenling, et al. Analysis of Influence of Rainfall on Geoelectric Resistivity of Tengchong Seismic Station[J]. Plateau Earthquake Research, 2021, 33(3): 33-40) (0) [9] 张彩艳, 闫勋, 薛汶汶, 等. 基于归一化月速率法的甘肃四○四地震台地电阻率异常分析[J]. 山西地震, 2022(1): 36-39 (Zhang Caiyan, Yan Xun, Xue Wenwen, et al. Analysis of Earth Resistivity Anomaly at Gansu 404 Seismic Station Based on Normalized Monthly Rate Method[J]. Earthquake Research in Shanxi, 2022(1): 36-39) (0) [10] 杜学彬, 阮爱国, 范世宏, 等. 强震近震中区地电阻率变化速率的各向异性[J]. 地震学报, 2001, 23(3): 289-297 (Du Xuebin, Ruan Aiguo, Fan Shihong, et al. Anisotropy of the Variation Rate of Apparent Resistivity near the Epicentral Region of Strong Earthquakes[J]. Acta Seismologica Sinica, 2001, 23(3): 289-297) (0) [11] 杜学彬. 在地震预报中的两类视电阻率变化[J]. 中国科学: 地球科学, 2010, 40(10): 1 321-1 330 (Du Xuebin. Two Types of Changes in Apparent Resistivity in Earthquake Prediction[J]. Science China: Earth Science, 2010, 40(10): 1 321-1 330) (0) [12] 杜学彬, 孙君嵩, 陈军营. 地震预测中的地电阻率数据处理方法[J]. 地震学报, 2017, 39(4): 531-548 (Du Xuebin, Sun Junsong, Chen Junying. Processing Methods for the Observation Data of Georesistivity in Earthquake Prediction[J]. Acta Seismologica Sinica, 2017, 39(4): 531-548) (0) [13] 李相平, 张建国, 李晓鹏, 等. 强震前视电阻率月速率变化特征分析[J]. 华北地震科学, 2016, 34(3): 68-72 (Li Xiangping, Zhang Jianguo, Li Xiaopeng, et al. Research on Normalized Variation Characteristics of Apparent Resistivity before Strong Earthquakes[J]. North China Earthquake Sciences, 2016, 34(3): 68-72) (0) [14] 郝臻, 杜学彬, 王静波. 地电学地震预报方法软件系统(GSEP)[J]. 西北地震学报, 2000, 22(2): 154-159 (Hao Zhen, Du Xuebin, Wang Jingbo. Geoelectricity Software for Earthquake Prediction[J]. Northwestern Seismological Journal, 2000, 22(2): 154-159) (0) [15] 杜学彬. 地震地电阻率数据应用中的归一化变化速率方法[C]. 中国地震学会地震电磁技术专业委员会地震电磁新技术新方法研讨会, 西宁, 2016 (Du Xuebin. The Normalization Rate of Change Method in the Application of Seismic Resistivity Data[C]. The New Technology and New Method of Seismic Electromagnetism Research Committee of the Seismological Society of China, Xining, 2016) (0) [16] 魏焕, 邓柏昌, 于立业. 地震地电阻率各向异性前兆异常特征研究[C]. 中国地震学会第11次学术大会, 大理, 2006 (Wei Huan, Deng Baichang, Yu Liye. Study on Precursory Anomaly Characteristics of Seismic Resistivity Anisotropy[C]. The 11th Conference of Seismological Society of China, Dali, 2006) (0) [17] 邓柏昌, 魏焕, 于立业, 等. 地电阻率各向异性前兆异常特征及其与地震的关系[J]. 华南地震, 2007, 27(1): 31-37 (Deng Baichang, Wei Huan, Yu Liye, et al. The Research of Precursor Anomaly Characteristic of Ground Resistivity Anisotropy and Its Physical Mechanism in Earthquake[J]. South China Journal of Seismology, 2007, 27(1): 31-37) (0) [18] 解滔. 地电阻率长趋势变化及机理解释[D]. 兰州: 中国地震局兰州地震研究所, 2011 (Xie Tao. The Long-Trend Variations of Geo-Resistivity and the Explanation on the Variations[D]. Lanzhou: Lanzhou Institute of Seismology, CEA, 2011) (0)
Analysis of the Abnormal Characteristics of Shandan Resistivity Normalization Rate Based on Convolution Filtering
LI Na1     FENG Jiangang1     GAO Shude1     ZHANG Liqiong1
1. Gansu Earthquake Agency, 450 West-Donggang Road, Lanzhou 730000, China
Abstract: We use the convolution filtering method to eliminate rainfall correction processing for the resistivity of Shandan ground, and then carry out seismic response efficiency statistics on the original data and the data after rainfall removal respectively through the combination of different processing methods before the normalized monthly rate analysis, so as to select the optimal data processing method before the normalized rate analysis. The results show that the NS channel is suitable for decanting and deperiodic processing. Both EW and NW channels are suitable for deperiodic processing, and the seismic performance of each channel after the removal of rainfall is better than that before, indicating that rainfall has a great interference effect on the extraction of resistivity anomalies of Shandan station. Since the Qilian mountain seismic zone showed an unprecedented level of activity in 2022 and gradually recovered to a calm level in August, we select the rate overlimit anomaly of Shandan resistivity before moderate strong seismic activity in the Qilian mountain seismic zone and its vicinity from 2014 to 2022 to summarize the seismic response index. We predict the seismic risk of the gradually quiet Qilian mountain seismic belt by using the rate overlimit anomaly of the Shandan resistivity from August to December, and determine whether the seismic activity level near the Shandan observation station is really reduced. The results show that the rate overlimit anomaly still exists in the Shandan resistivity, which indicates that the seismic risk still exists in the Qilian mountain seismic zone and the seismic activity level has not weakened.
Key words: Shandan resistivity; convolution filtering; normalized monthly rate analysis; Qilian mountain seismic zone