﻿ 新型摆式倾斜仪的信号调理方法
 文章快速检索 高级检索
 大地测量与地球动力学  2023, Vol. 43 Issue (5): 538-542  DOI: 10.14075/j.jgg.2023.05.018

### 引用本文

YAN Bolin, ZHOU Yunyao, LÜ Yongqing. A Signal Conditioning Method for New Pendulum Tiltmeter[J]. Journal of Geodesy and Geodynamics, 2023, 43(5): 538-542.

### Foundation support

National Key Research and Development Program of China, No. 2022YFC3003804.

### Corresponding author

ZHOU Yunyao, PhD, professor, majors in seismic observation technology and instrument, E-mail: joewhcn@126.com.

### 第一作者简介

YAN Bolin, postgraduate, majors in seismic observation technology, E-mail: yanbailin20@mails.ucas.ac.cn.

### 文章历史

1. 中国地震局地震研究所，武汉市洪山侧路40号，430071;
2. 中国地震局地震大地测量重点实验室，武汉市洪山侧路40号，430071;
3. 湖北省地震局，武汉市洪山侧路48号，430071

1 信号调理原理

 $a(t)=\cos \left(\frac{2 \pi}{N} t+\varphi_0\right)$ (1)

 $x(t)=b(t) s(t) \cos (\varphi(t))$ (2)

 $\begin{gathered} x(t) \cos (\varphi(t))=\frac{1}{2} b(t)s(t)+ \\ \frac{1}{2} b(t) s(t) \cos (2 \varphi(t)) \end{gathered}$ (3)

 $X(t)=\sum\limits_{i=1}^M B_i(t) s_i(t)+\sum\limits_{i=1}^M C_i(t)$ (4)

 $\left\{\begin{array}{l} y_1=a_{1 i}+b_{1 i} X+c_{1 i} X^2+d_{1 i} X^3 \\ y_2=a_{2 i}+b_{2 i} X+c_{2 i} X^2+d_{2 i} X^3 \end{array}\right.$ (5)

 $\boldsymbol{S}=\left[\begin{array}{cccc} s_1 & s_2 & \cdots & s_n \\ s_2 & s_3 & \cdots & s_{n+1} \\ & \vdots & & \\ s_m & s_{m+1} & \cdots & s_M \end{array}\right]$ (6)

 $\mathit{\boldsymbol{S}} = \mathit{\boldsymbol{U \boldsymbol{\varSigma} }}{\mathit{\boldsymbol{V}}^{\rm{T}}}$ (7)

 $U_S(t)=\frac{L_S(t)}{L_0} U_C(t)$ (8)

 $L_S(t)=\frac{L_0 U_S(t)}{b(t) \cos \left(2 \pi f_c t\right)}$ (9)
 $L_S(t)=s^{\prime}(t) L_0$ (10)

 图 1 信号调理和处理工作原理 Fig. 1 Principle of signal conditioning and processing
2 电路设计与性能测试

 $f_{\mathrm{cos}}=f_{\mathrm{clk}} \frac{m}{2^N}$ (11)
 图 2 电路设计原理 Fig. 2 Principle of circuit design

 图 3 算法测试结果 Fig. 3 Algorithm test results
3 实验结果与分析

 图 4 台网P波初至段数据降噪结果 Fig. 4 Denoising results of P-arrival data

 图 5 台网倾斜仪数据及处理结果 Fig. 5 Data and processing results of tiltmeter

 图 6 实验输出结果 Fig. 6 Results of experiment output

4 结语

 [1] Furst S, Chéry J, Mohammadi B, et al. Joint Estimation of Tiltmeter Drift and Volume Variation during Reservoir Monitoring[J]. Journal of Geodesy, 2019, 93(8): 1 137-1 146 DOI:10.1007/s00190-019-01231-3 (0) [2] 肖峻. 高精度垂直摆倾斜仪及其应用研究[D]. 武汉: 中国科学院测量与地球物理研究所, 2002 (Xiao Jun. High Precision Vertical Pendulum Tiltmeter and Its Application[D]. Wuhan: Institute of Geodesy and Geophysics, CAS, 2002) (0) [3] Ma W G, Wu Y X, Zhao H Q. Comparison of VP Broadband Tiltmeter and VS Vertical Pendulum Tiltmeter[J]. Geodesy and Geodynamics, 2015, 6(3): 226-232 DOI:10.1016/j.geog.2015.02.002 (0) [4] Bashilov I P, Volosov S G, Zubko Y N, et al. Portable Digital Seismometer[J]. Seismic Instruments, 2011, 47(1): 80-88 DOI:10.3103/S074792391101004X (0) [5] Zhang X P, Wei X Y, Wang T D, et al. A Digital Low-Frequency Geophone Based on 4th-Order Sigma-Delta Modulator and Single-Coil Velocity Feedback[J]. Sensors and Actuators A: Physical, 2020, 312: 112074 DOI:10.1016/j.sna.2020.112074 (0) [6] 尚雪义, 李夕兵, 彭康, 等. 基于EMDSVD的矿山微震与爆破信号特征提取及分类方法[J]. 岩土工程学报, 2016, 38(10): 1 849-1 858 (Shang Xueyi, Li Xibing, Peng Kang, et al. Feature Extraction and Classification of Mine Microseism and Blast Based on EMD-SVD[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1 849-1 858) (0) [7] 黄艳林. SVD与EMD联合去噪方法在地震勘探数据处理中的研究与应用[J]. 地震工程学报, 2016, 38(2): 323-326 (Huang Yanlin. Application of Joint Denoising Using Empirical Mode Decomposition and Singular Value Decomposition in Seismic Data Processing[J]. China Earthquake Engineering Journal, 2016, 38(2): 323-326 DOI:10.3969/j.issn.1000-0844.2016.02.0323) (0) [8] Tierney J, Rader C, Gold B. A Digital Frequency Synthesizer[J]. IEEE Transactions on Audio and Electroacoustics, 1971, 19(1): 48-57 DOI:10.1109/TAU.1971.1162151 (0) [9] Wu Z H, Huang N E. Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41 DOI:10.1142/S1793536909000047 (0) [10] Zhang G, Xu B B, Zhang K S, et al. Research on a Noise Reduction Method Based on Multi-Resolution Singular Value Decomposition[J]. Applied Sciences, 2020, 10(4): 1 409 DOI:10.3390/app10041409 (0) [11] Amini A, Trifunac M. Analysis of a Force Balance Accelerometer[J]. International Journal of Soil Dynamics and Earthquake Engineering, 1985, 4(2): 82-90 DOI:10.1016/0261-7277(85)90003-8 (0) [12] Hu X Y, Peng S L, Hwang W L. EMD Revisited: A New Understanding of the Envelope and Resolving the Mode-Mixing Problem in AM-FM Signals[J]. IEEE Transactions on Signal Processing, 2012, 60(3): 1 075-1 086 DOI:10.1109/TSP.2011.2179650 (0) [13] Chen M C, He Y X. Wire Rope Weak Defect Signal Processing Methods Based on Improved SVD and Phase Space Reconstruction[J]. Information Technology and Control, 2021, 50(4): 752-768 DOI:10.5755/j01.itc.50.4.28105 (0)
A Signal Conditioning Method for New Pendulum Tiltmeter
YAN Bolin1     ZHOU Yunyao1,2,3     LÜ Yongqing1,2,3
1. Institute of Seismology, CEA, 40 Hongshance Road, Wuhan 430071, China;
2. Key Laboratory of Earthquake Geodesy, CEA, 40 Hongshance Road, Wuhan 430071, China;
3. Hubei Earthquake Agency, 48 Hongshance Road, Wuhan 430071, China
Abstract: We propose an integrated signal conditioning method to adapt the pendulum tiltmeter to the needs of stability and light weight. The method uses FPGA and ARM circuits to implement modulation and demodulation of signals, filtering, and noise reduction. The experimental results show that the signal circuit has strong anti-interference capability, high integration and is worth of continuing theoretical and applied research.
Key words: pendulum tiltmeter; signal conditioning; empirical mode decomposition; singular value decomposition