文章快速检索     高级检索
  大地测量与地球动力学  2022, Vol. 42 Issue (2): 111-114, 138  DOI: 10.14075/j.jgg.2022.02.001

引用本文  

张捍卫, 张华, 李鹏杰. 缔合勒让德函数的标准向前按列递推公式[J]. 大地测量与地球动力学, 2022, 42(2): 111-114, 138.
ZHANG Hanwei, ZHANG Hua, LI Pengjie. The Standard Forward Column Recurrence Formula of ALFs[J]. Journal of Geodesy and Geodynamics, 2022, 42(2): 111-114, 138.

项目来源

国家自然科学基金(42074002, 41931075)。

Foundation support

National Natural Science Foundation of China, No. 42074002, 41931075.

第一作者简介

张捍卫,博士,教授,博士生导师,主要从事大地测量学教学与研究,E-mail: zhanwei800@163.com

About the first author

ZHANG Hanwei, PhD, professor, PhD supervisor, majors in geodesy, E-mail: zhanwei800@163.com.

文章历史

收稿日期:2021-05-11
缔合勒让德函数的标准向前按列递推公式
张捍卫1     张华1     李鹏杰1     
1. 河南理工大学测绘与国土信息工程学院,河南省焦作市世纪大道2001号,454000
摘要:针对推导扇谐项(次等于阶的项)和准扇谐项(次等于阶减1的项)存在不严谨性的问题,给出基于fnALFs的2个导数定积分按列递推公式,结果与已有的研究结论完全一致,但推导过程更简明,且该定积分公式可从第2阶开始递推。另外,本文还给出另外2个fnALFs定积分计算公式。
关键词缔合勒让德函数完全规格化缔合勒让德函数fnALFs定积分标准向前按列递推公式

研究地球重力场需要计算fnALFs数值及其各阶导数和定积分数值,使用的递推公式目前主要有标准向前按列或行递推公式[1-2]、贝尔科夫递推公式[3]及跨阶次递推公式[4]等。随着卫星重力学研究的发展,需要计算超高阶的fnALFs数值,目前主要通过选择合适的计算方法和修正语言编程2种途径来提高计算速度和扩展递推阶次,如傅里叶级数展开法[5-7]和多项式逼近法[8]等。

标准向前按列递推公式的应用很广泛[9-12],但这些研究都是通过对算法进行改进来扩展递推阶次。本文不讨论算法,只是在Paul[1]理论研究的基础上完善扇谐项和准扇谐项推导的严谨性,基于fnALFs的2个导数公式给出推导fnALFs定积分递推公式的新方法,且本文给出的递推公式可从第2阶开始递推。

1 关于fnALFs及其积分的按列递推公式

首先给出完善后的fnALFs标准按列递推公式:

$ \begin{gathered} \overline{\boldsymbol{P}}{}_{n}^{m}(\cos \theta)= \\ \left\{\begin{array}{l} A_{1} \cos \theta \overline{\boldsymbol{P}}{}_{n-1}^{m}(\cos \theta)-A_{2} \overline{\boldsymbol{P}}{}_{n-2}^{m}(\cos \theta), \\ \ \ \ \ 0 \leqslant m \leqslant(n-2) \\ A_{3} \cos \theta \overline{\boldsymbol{P}}{}_{n-1}^{n-1}(\cos \theta), m=n-1 \\ A_{4} \sin \theta \overline{\boldsymbol{P}}{}_{n-1}^{n-1}(\cos \theta), m=n \end{array}\right. \end{gathered} $ (1)

式中,θ∈[0, π]。其中,

$ \left\{ {\begin{array}{*{20}{l}} {{A_1} = \sqrt {\frac{{(2n - 1)(2n + 1)}}{{(n - m)(n + m)}}} }\\ {{A_2} = \sqrt {\frac{{(2n + 1)(n - m - 1)(n + m - 1)}}{{(2n - 3)(n - m)(n + m)}}} }\\ {{A_3} = \sqrt {2n + 1} }\\ {{A_4} = \sqrt {\frac{{2n + 1}}{{2n}}} } \end{array}} \right. $

fnALFs定积分的标准按列递推公式为:

$ \begin{gathered} \overline{\boldsymbol{I}}{}_{n}^{m}\left(\theta_{1}, \theta_{2}\right)= \\ \left\{\begin{array}{l} B_{1} \overline{\boldsymbol{I}}{}_{n-2}^{m}\left(\theta_{1}, \theta_{2}\right)+B_{2} \overline{\boldsymbol{Z}}{}_{n-1}^{m}\left(\theta_{1}, \theta_{2}\right), \\ \ \ \ \ 0 \leqslant m \leqslant(n-2) \\ B_{3} \overline{\boldsymbol{Z}}{}_{n-1}^{n-1}\left(\theta_{1}, \theta_{2}\right), m=n-1 \\ B_{4} \overline{\boldsymbol{I}}{}_{n-2}^{n-2}\left(\theta_{1}, \theta_{2}\right)-B_{5} \overline{\boldsymbol{Z}}{}_{n-1}^{n-2}\left(\theta_{1}, \theta_{2}\right), m=n \end{array}\right. \end{gathered} $ (2)

式中,$\mathit{\boldsymbol{\overline Z}} _n^m\left( {{\theta _1}, {\theta _2}} \right)$由式(11)确定,其中,

$ \left\{\begin{array}{l} B_{1}=\frac{(n-2)}{(n+1)} \times \\ \ \ \ \ \ \ \ \ \sqrt{\frac{(2 n+1)(n-m-1)(n+m-1)}{(2 n-3)(n-m)(n+m)}} \\ B_{2}=\frac{1}{(n+1)} \sqrt{\frac{(2 n-1)(2 n+1)}{(n-m)(n+m)}} \\ B_{3}=\frac{1}{(n+1)} \sqrt{(2 n+1)} \\ B_{4}=\frac{n}{2(n+1)} \sqrt{\frac{\left(2-\delta_{0}^{n}\right)(2 n-1)(2 n+1)}{\left(2-\delta_{0}^{n-2}\right)(n-1) n}} \\ B_{5}=\frac{1}{2(n+1)} \sqrt{\frac{\left(2-\delta_{0}^{n}\right)(2 n+1)}{\left(2-\delta_{0}^{n-2}\right)(n-1) n}} \end{array}\right. $

当积分区间很小时,可采用式(3):

$ \begin{array}{c} \overline{\boldsymbol{I}}{}_{n}^{n}\left(\theta_{1}, \theta_{2}\right)=\sqrt{\frac{2(2 n+1) !}{\left(2^{n} n !\right)^{2}}}(\sin \theta)^{n+2} \times\\ \left.\sum\limits_{j=0}^{\infty} \frac{(2 j) !(\sin \theta)^{2 j}}{\left(2^{j} j !\right)^{2}(n+2 j+2)}\right|_{\theta_{1}} ^{\theta_{2}} \end{array} $ (3)

以上公式的精度评定见文献[1]。

2 关于式(1)的证明

关于n阶的勒让德函数[13-15]为:

$ \begin{gathered} \boldsymbol{P}_{n}(\cos \theta)=\frac{1}{2^{n} n !} \frac{\mathrm{d}^{n}\left(\cos ^{2} \theta-1\right)^{n}}{\mathrm{~d}(\cos \theta)^{n}}= \\ \sum\limits_{k=0}^{\text {int}\left[\frac{n}{2}\right]} \frac{(-1)^{k}}{2^{n}(n-k) ! k !} \frac{(2 n-2 k) !}{(n-2 k) !}(\cos \theta)^{n-2 k} \end{gathered} $ (4)

式中,int[·]表示取整数,n=0, 1, 2, …。

关于nm次的ALFs[13-15]为:

$ \begin{gathered} \boldsymbol{P}_{n}^{m}(\cos \theta)=\sin ^{m} \theta \frac{\mathrm{d}^{m} \boldsymbol{P}_{n}(\cos \theta)}{\mathrm{d}(\cos \theta)^{m}}= \\ \sum\limits_{k=0}^{\text {int}\left[\frac{(n-m)}{2}\right]} \frac{(-1)^{k}(2 n-2 k) ! \sin ^{m} \theta(\cos \theta)^{n-m-2 k}}{2^{n}(n-k) ! k !(n-m-2 k) !} \end{gathered} $ (5)

显然,当m=0时,式(5)等同于式(4)。关于fnALFs的定义[13-15]为:

$ \begin{gathered} \overline{\boldsymbol{P}}{}_{n}^{m}(\cos \theta)=N_{n}^{m} \boldsymbol{P}_{n}^{m}(\cos \theta)= \\ \sqrt{\frac{\left(2-\delta_{0}^{m}\right)(2 n+1)(n-m) !}{(n+m) !}} \boldsymbol{P}_{n}^{m}(\cos \theta) \end{gathered} $ (6)

规格化的目的是使不同阶次的$\mathit{\boldsymbol{\overline P}} $nm(cosθ)数值差别不至于太大。ALFs的递推关系式[13-15]为:

$ \begin{gathered} (n-m) \boldsymbol{P}_{n}^{m}(\cos \theta)=(2 n-1) \cos \theta \boldsymbol{P}_{n-1}^{m}(\cos \theta)- \\ (n+m-1) \boldsymbol{P}_{n-2}^{m}(\cos \theta) \end{gathered} $ (7)

式(7)被称为标准按列(次)递推公式。利用式(6)将式(7)规格化,直接得到式(1)中的第1种情况。关于$\mathit{\boldsymbol{\overline P}} $nn-1(cosθ),目前所有文献都没有给出证明,通常的做法是:当m=n-1时,式(7)等号右端出现$\mathit{\boldsymbol{\overline P}} $n-2n-1(cosθ)项,将其设置为0。虽然该结果是正确的,但是在理论上不严谨。

根据式(5)可得:

$ \left\{\begin{array}{l} \boldsymbol{P}_{n}^{n-1}(\cos \theta)=\sin ^{n-1} \theta \frac{(2 n) !}{2^{n} n !} \cos \theta \\ \boldsymbol{P}_{n}^{n}(\cos \theta)=\sin ^{n} \theta \frac{(2 n) !}{2^{n} n !} \end{array}\right. $ (8)

根据式(8)可直接得到:

$ \left\{\begin{array}{l} \boldsymbol{P}_{n}^{n-1}(\cos \theta)=(2 n-1) \cos \theta \boldsymbol{P}_{n-1}^{n-1}(\cos \theta) \\ \boldsymbol{P}_{n}^{n}(\cos \theta)=(2 n-1) \sin \theta \boldsymbol{P}_{n-1}^{n-1}(\cos \theta) \end{array}\right. $ (9)

将式(9)规格化,就可得到式(1)中第2种和第3种情况。

3 关于式(2)的证明

定义ALFs的3个定积分公式:

$ \left\{\begin{array}{l} \boldsymbol{I}_{n}^{m}\left(\theta_{1}, \theta_{2}\right)=\int_{\theta_{1}}^{\theta_{2}} \boldsymbol{P}_{n}^{m}(\cos \theta) \sin \theta \mathrm{d} \theta \\ \boldsymbol{J}_{n}^{m}\left(\theta_{1}, \theta_{2}\right)=\int_{\theta_{1}}^{\theta_{2}} \cos \theta \boldsymbol{P}_{n}^{m}(\cos \theta) \sin \theta \mathrm{d} \theta \\ \boldsymbol{K}_{n}^{m}\left(\theta_{1}, \theta_{2}\right)=\int_{\theta_{1}}^{\theta_{2}} \sin \theta \boldsymbol{P}_{n}^{m}(\cos \theta) \sin \theta \mathrm{d} \theta \end{array}\right. $ (10)
$ \boldsymbol{Z}_{n}^{m}\left(\theta_{1}, \theta_{2}\right)=\left.\sin ^{2} \theta \boldsymbol{P}_{n}^{m}(\cos \theta)\right|_{\theta_{1}} ^{\theta_{2}} $ (11)

将式(10)和式(11)中的Pnm(cosθ)变换为$\mathit{\boldsymbol{\overline P}} $nm(cosθ),就有对应的$\mathit{\boldsymbol{\overline I}} $nm(θ1, θ2)、$\mathit{\boldsymbol{\overline J}} $nm(θ1, θ2)、$\mathit{\boldsymbol{\overline K}} $nm(θ1, θ2)及$\mathit{\boldsymbol{\overline Z}} $nm(θ1, θ2)。下面给出式(10)的递推公式。

ALFs的一个导数公式[15]为:

$ \begin{gathered} (2 n+1) \sin ^{2} \theta \frac{\mathrm{d} \boldsymbol{P}_{n}^{m}(\cos \theta)}{\mathrm{d}(\cos \theta)}=(n+1)(n+m) \times \\ \boldsymbol{P}_{n-1}^{m}(\cos \theta)-n(n-m+1) \boldsymbol{P}_{n+1}^{m}(\cos \theta) \end{gathered} $ (12)

另一个导数公式[15]为:

$ \begin{gathered} \sin ^{2} \theta \frac{\mathrm{d} \boldsymbol{P}_{n}^{m}(\cos \theta)}{\mathrm{d}(\cos \theta)}= \\ \sin \theta \boldsymbol{P}_{n}^{m+1}(\cos \theta)-m \cos \theta \boldsymbol{P}_{n}^{m}(\cos \theta) \end{gathered} $ (13)

式(13)可根据式(5)直接得到。设有:

$ \boldsymbol{H}_{n}^{m}\left(\theta_{1}, \theta_{2}\right)=\int_{\theta_{1}}^{\theta_{2}} \sin ^{2} \theta \frac{\mathrm{d} \boldsymbol{P}_{n}^{m}(\cos \theta)}{\mathrm{d}(\cos \theta)} \sin \theta \mathrm{d} \theta $ (14)

对式(14)采用分部积分法,并考虑式(10)和式(11)可得:

$ \boldsymbol{H}_{n}^{m}\left(\theta_{1}, \theta_{2}\right)=-\boldsymbol{Z}_{n}^{m}\left(\theta_{1}, \theta_{2}\right)+2 \boldsymbol{J}_{n}^{m}\left(\theta_{1}, \theta_{2}\right) $ (15)

同理,根据式(12)和式(13)可得:

$ \begin{gathered} \boldsymbol{H}_{n}^{m}\left(\theta_{1}, \theta_{2}\right)=\frac{(n+1)(n+m)}{(2 n+1)} \boldsymbol{I}_{n-1}^{m}\left(\theta_{1}, \theta_{2}\right)- \\ \frac{n(n-m+1)}{(2 n+1)} \boldsymbol{I}_{n+1}^{m}\left(\theta_{1}, \theta_{2}\right) \end{gathered} $ (16)
$ \boldsymbol{H}_{n}^{m}\left(\theta_{1}, \theta_{2}\right)=\boldsymbol{K}_{n}^{m+1}\left(\theta_{1}, \theta_{2}\right)-m \boldsymbol{J}_{n}^{m}\left(\theta_{1}, \theta_{2}\right) $ (17)

根据式(7)可得:

$ \begin{gathered} (2 n+1) \boldsymbol{J}_{n}^{m}\left(\theta_{1}, \theta_{2}\right)=(n-m+1) \boldsymbol{I}_{n+1}^{m}\left(\theta_{1}, \theta_{2}\right)+ \\ (n+m) \boldsymbol{I}_{n-1}^{m}\left(\theta_{1}, \theta_{2}\right) \end{gathered} $ (18)

根据式(15)~式(18)可得:

$ \begin{array}{c} \boldsymbol{I}_{n}^{m}\left(\theta_{1}, \theta_{2}\right)=\frac{(n-2)(n+m-1)}{(n+1)(n-m)} \boldsymbol{I}_{n-2}^{m}\left(\theta_{1}, \theta_{2}\right)+ \\ \frac{(2 n-1)}{(n+1)(n-m)} \boldsymbol{Z}_{n-1}^{m}\left(\theta_{1}, \theta_{2}\right) \end{array} $ (19)

式(19)只适用于0≤m≤(n-2)的情况。

下面推导m=n-1时n的情况。根据式(8)中Pnn-1(cosθ)的表达式可得:

$ \begin{gathered} \boldsymbol{I}_{n}^{n-1}\left(\theta_{1}, \theta_{2}\right)=\frac{(2 n) !}{2^{n} n !} \int_{\theta_{1}}^{\theta_{2}} \sin ^{n} \theta \mathrm{d}(\sin \theta)= \\ \left.\frac{(2 n) !}{2^{n}(n+1) !} \sin ^{n+1} \theta\right|_{\theta_{1}} ^{\theta_{2}}=\frac{(2 n-1)}{(n+1)} \boldsymbol{Z}_{n-1}^{n-1}\left(\theta_{1}, \theta_{2}\right) \end{gathered} $ (20)

在式(19)中,令m=n-1且不考虑等号右端第1项,就等价于式(20)。将式(19)和式(20)规格化,就可得到式(2)中第1种和第2种情况。

根据式(8)中Pnn(cosθ)的表达式,经过理论推导可得:

$ \begin{gathered} \boldsymbol{I}_{n}^{n}\left(\theta_{1}, \theta_{2}\right)=\frac{(2 n) !}{2^{n} n !} \int_{\theta_{1}}^{\theta_{2}} \sin ^{n+1} \theta \mathrm{d} \theta=\frac{(2 n) !}{2^{n} n !} \times \\ \left\{-\left.\frac{\sin ^{n} \theta \cos \theta}{(n+1)}\right|_{\theta_{1}} ^{\theta_{2}}+\frac{n}{(n+1)} \int_{\theta_{1}}^{\theta_{2}} \sin ^{n-1} \theta \mathrm{d} \theta\right\}= \\ \frac{n(2 n-3)(2 n-1)}{(n+1)} \boldsymbol{I}_{n-2}^{n-2}\left(\theta_{1}, \theta_{2}\right)- \\ \frac{(2 n-1)}{(n+1)} \boldsymbol{Z}_{n-1}^{n-2}\left(\theta_{1}, \theta_{2}\right) \end{gathered} $ (21)

在两极附近y=sinθ值很小,依据式(21)的递推会产生较大误差。根据

$ \begin{gathered} \frac{1}{\sqrt{1-y^{2}}}=1+\frac{1}{2} y^{2}+\frac{1 \cdot 3}{2 \cdot 4} y^{4}+ \\ \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} y^{6}+\cdots=\sum\limits_{j=0}^{\infty} \frac{(2 j) !}{\left(2^{j} j !\right)^{2}} y^{2 j} \end{gathered} $

可得:

$ \begin{gathered} \boldsymbol{I}_{n}^{n}\left(\theta_{1}, \theta_{2}\right)=\frac{(2 n) !}{2^{n} n !} \int_{\theta_{1}}^{\theta_{2}} \sin ^{n+1} \theta \mathrm{d} \theta= \\ \frac{(2 n) !}{2^{n} n !} \int_{y_{1}}^{y_{2}} \frac{y^{n+1}}{\sqrt{1-y^{2}}} \mathrm{~d} y= \\ \frac{(2 n) !}{2^{n} n !} \sum\limits_{j=0}^{\infty} \int_{y_{1}}^{y_{2}} \frac{(2 j) !}{\left(2^{j} j !\right)^{2}} y^{n+2 j+1} \mathrm{~d} y= \\ \left.\frac{(2 n) !}{2^{n} n !} y^{n+2} \sum\limits_{j=0}^{\infty} \frac{(2 j) ! y^{2 j}}{\left(2^{j} j !\right)^{2}(n+2 j+2)}\right|_{y_{1}} ^{y_{2}} \end{gathered} $ (22)

将式(21)和式(22)规格化,可得式(2)中第3种情况和式(3)。关于式(2)中第3种情况,文献[1]给出的系数为:

$ \left\{\begin{array}{l} B_{4}=\frac{n}{2(n+1)} \sqrt{\frac{(2 n-1)(2 n+1)}{(n-1) n}} \\ B_{5}=\frac{1}{2(n+1)} \sqrt{\frac{(2 n+1)}{(n-1) n}} \end{array}\right. $ (23)

这显然与本文结果不一致。由此可见,文献[1]中的公式只能从第3阶开始递推,而不能从第2阶开始递推。

4 数值计算与分析

n阶fnALFs数值计算结果的精度检验公式[1]为:

$ \boldsymbol{T}(n)=\frac{1}{(2 n+1)}\left|(2 n+1)-\sum\limits_{m=0}^{n}\left[\overline{\boldsymbol{P}}_{n}^{m}(\cos \theta)\right]^{2}\right| $ (24)

关于fnALFs数值积分最简单的精度检验公式[1]为:

$ \boldsymbol{H}_{n}^{m}=\left|\frac{\left[\overline{\boldsymbol{I}}{}_{n}^{m}\left(\theta_{1}, \theta_{m}\right)+\overline{\boldsymbol{I}}{}_{n}^{m}\left(\theta_{m}, \theta_{2}\right)\right]-\overline{\boldsymbol{I}}{}_{n}^{m}\left(\theta_{1}, \theta_{2}\right)}{\left[\overline{\boldsymbol{I}}{}_{n}^{m}\left(\theta_{1}, \theta_{m}\right)+\overline{\boldsymbol{I}}{}_{n}^{m}\left(\theta_{m}, \theta_{2}\right)\right]}\right| $ (25)

式中,θ1θmθ2。理论上T(n)和Hnm应该等于0,但由于计算机的存储和计算误差,使得其计算结果不为0。只有当其小于某个实数(如10-12)时,表明其在第n阶上是适用的,否则不适用。图 1给出了递推公式(1)的适用性。

图 1 公式(1)的适用性(T(n)<10-12) Fig. 1 Applicabilty to equation (1)

图 1表明,在±23°纬度范围内,式(1)可将fnALFs递推至9 000阶;在±44°、±62°和±86°纬度范围内,可分别将fnALFs递推至3 000阶、2 000阶和1 000阶。在两极区域(纬度绝对值大于86°范围内),递推公式效果较差。

利用式(2)和式(3)计算fnALFs积分数值,当θ1=45°、θ2=46°时,$\mathit{\boldsymbol{\overline P}} $(cosθ)的积分数值$\mathit{\boldsymbol{\overline I}} $(θ1, θ2)见图 2(a),此时n=2 000阶,共得到2 003 001个$\mathit{\boldsymbol{\overline I}} $(θ1, θ2)数值,利用式(25)计算得到的相对误差见图 2(b)。当θ1=5°、θ2=6°且n=1 000阶时,有关数值结果见图 3,此时共得到501 501个有关数值。从图 23中可看出,$\mathit{\boldsymbol{\overline I}} $(θ1, θ2)并不随阶数的增加而收敛,且数值不对称,即正值个数远大于负值个数。另外,其相对误差虽然都满足精度要求,但仍存在个别较大的相对误差,且与阶数高低无关。

图 2 θ1=45°、θ2=46°且n=2 000阶时积分数值结果 Fig. 2 Integral numerical results when θ1=45°, θ2=46°, n=2 000

图 3 θ1=5°、θ2=6°且n=1 000阶时积分数值结果 Fig. 3 Integral numerical results when θ1=5°, θ2=6°, n=1 000
5 结语

实际上,ALFs的带谐项(次为零)、扇谐项(次等于阶)、准带谐项(次等于1)及准扇谐项(次为阶减1)很特殊,统称为边界项,在其他形式递推公式的推导过程中表现尤为明显,甚至要扩展边界项范围,边界项的递推必须单独讨论。

ALFs导数公式的应用广泛,由其推导ALFs定积分公式的过程显得很简单。递推公式应明确指出最低可从第几阶开始,不然在应用中难免会出错。根据式(15)~式(18)还可得到如下2个形式的积分公式:

$ \begin{gathered} \boldsymbol{J}_{n}^{m}\left(\theta_{1}, \theta_{2}\right)=\frac{(n+m)}{(n+2)} \boldsymbol{I}_{n-1}^{m}\left(\theta_{1}, \theta_{2}\right)+ \\ \frac{1}{(n+2)} \boldsymbol{Z}_{n}^{m}\left(\theta_{1}, \theta_{2}\right) \end{gathered} $ (26)
$ \begin{aligned} \boldsymbol{K}_{n}^{m}\left(\theta_{1}, \theta_{2}\right)=& \frac{(n+m-1)(m+1)}{(n+2)} \boldsymbol{I}_{n-1}^{m-1}\left(\theta_{1}, \theta_{2}\right)-\\ & \frac{(n-m+1)}{(n+2)} \boldsymbol{Z}_{n}^{m-1}\left(\theta_{1}, \theta_{2}\right) \end{aligned} $ (27)

式(26)和式(27)只是一个计算式,当然也可得到其递推公式。

本文完善了ALFs扇谐项和准扇谐项的递推公式,利用ALFs的2个导数公式给出了定积分的标准向前按列递推公式,使推导过程更简明,可为ALFs的理论研究提供一定的参考。

参考文献
[1]
Paul M K. Recurrence Relations for Integrals of Associated Legendre Functions[J]. Bulletin Géodésique, 1978, 52(3): 177-190 (0)
[2]
Gleason D M. Partial Sums of Legendre Series via Clenshaw Summation[J]. Manuscripta Geodaetica, 1985, 10: 115-130 (0)
[3]
Belikov M V. Spherical Harmonic Analysis and Synthesis with the Use of Column-Wise Recurrence Relations[J]. Manuscripta Geodaetica, 1991, 16(6): 384-410 (0)
[4]
Swarztrauber P N. The Vector Harmonic Transform Method for Solving Partial Differential Equations in Spherical Geometry[J]. Monthly Weather Review, 1993, 121(12): 3415-3437 DOI:10.1175/1520-0493(1993)121<3415:TVHTMF>2.0.CO;2 (0)
[5]
Földváry L. Sine Series Expansion of Associated Legendre Functions[J]. Acta Geodaetica et Geophysica, 2015, 50(2): 243-259 DOI:10.1007/s40328-014-0092-2 (0)
[6]
Gruber C, Abrykosov O. On Computation and Use of Fourier Coefficients for Associated Legendre Functions[J]. Journal of Geodesy, 2016, 90(6): 525-535 DOI:10.1007/s00190-016-0891-z (0)
[7]
Fukushima T. Fast Computation of Sine/Cosine Series Coefficients of Associated Legendre Function of Arbitrary High Degree and Order[J]. Journal of Geodetic Science, 2018, 8(1): 162-173 DOI:10.1515/jogs-2018-0017 (0)
[8]
Seif M R, Sharifi M A, Eshagh M. Polynomial Approximation for Fast Generation of Associated Legendre Functions[J]. Acta Geodaetica et Geophysica, 2018, 53(2): 275-293 DOI:10.1007/s40328-018-0216-1 (0)
[9]
Fukushima T. Numerical Computation of Spherical Harmonics of Arbitrary Degree and Order by Extending Exponent of Floating Point Numbers[J]. Journal of Geodesy, 2012, 86(4): 271-285 DOI:10.1007/s00190-011-0519-2 (0)
[10]
Fukushima T. Numerical Computation of Spherical Harmonics of Arbitrary Degree and Order by Extending Exponent of Floating Point Numbers: Ⅱ First-, Second-, and Third-Order Derivatives[J]. Journal of Geodesy, 2012, 86(11): 1019-1028 DOI:10.1007/s00190-012-0561-8 (0)
[11]
Fukushima T. Numerical Computation of Spherical Harmonics of Arbitrary Degree and Order by Extending Exponent of Floating Point Numbers: Ⅲ Integral[J]. Computers and Geosciences, 2014, 63: 17-21 DOI:10.1016/j.cageo.2013.10.010 (0)
[12]
Xing Z B, Li S S, Tian M, et al. Numerical Experiments on Column-Wise Recurrence Formula to Compute Fully Normalized Associated Legendre Functions of Ultra-High Degree and Order[J]. Journal of Geodesy, 2019, 94(1): 1-16 (0)
[13]
Hobson E W. The Theory of Spherical and Ellipsoidal Harmonics[M]. UK: Cambridge University Press, 1955 (0)
[14]
Heiskanen W A, Moritz H. Physical Geodesy[M]. San Francisco: W H Freeman and Co, 1967 (0)
[15]
陆仲连. 球谐函数[M]. 北京: 解放军出版社, 1988 (Lu Zhonglian. Spherical Harmonic Functions[M]. Beijing: PLA Publishing House, 1988) (0)
The Standard Forward Column Recurrence Formula of ALFs
ZHANG Hanwei1     ZHANG Hua1     LI Pengjie1     
1. School of Surveying and Land Information Engineering, Henan Polytechnic University, 2001 Shiji Road, Jiaozuo 454000, China
Abstract: There are some inaccuracies in the derivation of the sectorial harmonic term (order is equal to degree) and the quasi-sectorial harmonic term (order is equal to degree minus 1) in the related literature, and we give a strict derivation method. Based on the two derivative formulas of fnALFs, we give the standard forward column recurrence formula of its definite integration; the results are completely consistent with those given by predecessors, but the derivation process is more concise, which can be recursed from the second degree. In addition, we derive two other useful definite integration formulas of fnALFs.
Key words: associated Legendre functions; fully normalized associated Legendre functions; the definite integral for fnALFs; standard forward column recurrence formula