﻿ 利用InSAR和GPS形变数据反演断层深部滑动的敏感性分析
 文章快速检索 高级检索
 大地测量与地球动力学  2022, Vol. 42 Issue (1): 59-64  DOI: 10.14075/j.jgg.2022.01.012

### 引用本文

YONG Qi, GAO Ertao, YU Hangming, et al. Research on the Sensitivity of Deep Slip Inversion for Earthquake Fault Slip Constrained by InSAR and GPS Geodetic Deformation Data[J]. Journal of Geodesy and Geodynamics, 2022, 42(1): 59-64.

### Foundation support

National Natural Science Foundation of China, No. 41801071, 21976043; Guangxi Natural Science Foundation, No. 2017GXNSFDA198016, 2018GXNSFBA050005, AD19110057; Project of Guangxi Key Laboratory of Spatial Information and Geomatics, No. 19-050-11-17.

### Corresponding author

GAO Ertao, lecturer, majors in photogrammetry and remote sensing, E-mail: gaoertao@glut.edu.cn.

### 第一作者简介

YONG Qi, engineer, majors in SAR data processing and applications, E-mail: yongqiswjtu@126.com.

### 文章历史

1. 山西省工业设备安装集团有限公司，太原市新化路8号，030032;
2. 桂林理工大学测绘地理信息学院，桂林市雁山街319号，541006

1 断层深部滑动敏感性分析 1.1 实验准备

1.2 走滑断层深部滑动敏感性分析

 图 1 走滑断层在不同深度的滑动分布及残差大小 Fig. 1 Slip distribution and residual error of strike-slip faults at different depths

 图 2 走滑断层在不同深度的滑动探测性和形变解释度 Fig. 2 Deformation explaination and deep slip detectability by inversion of slip distribution of strike-slip faults in different depths

1.3 正断层深部滑动敏感性分析

 图 3 正断层在不同深度的滑动分布及残差大小 Fig. 3 Slip distribution and residual error of normal faults at different depths

 图 4 正断层在不同深度的滑动探测性和形变解释度 Fig. 4 Deformation explaination and deep slip detectability by inversion of slip distributionof normal faults in different depths

1.4 逆冲断层深部滑动敏感性分析

 图 5 逆冲断层在不同深度的滑动分布及残差大小 Fig. 5 Slip distribution and residual error of reversethrust faults at different depths

 图 6 逆冲断层不同深度的滑动探测性和形变解释度 Fig. 6 Deformation explaination and deep slip detectability by inversion of slip distribution of reverse thrust faults in different depths
2 对比分析

3 结语

 [1] 舒良树. 普通地质学[M]. 北京: 地质出版社, 2010 (Shu Liangshu. Physical Geology[M]. Beijing: Geological Publishing House, 2010) (0) [2] 李海兵, 王焕, 李春锐, 等. 地震研究进展与趋势——全球地震科学钻探研究综述[J]. 地球学报, 2019, 40(1): 117-134 (Li Haibing, Wang Huan, Li Chunrui, et al. The Progress in Earthquake Research: A Review of the Global Earthquake Scientific Drilling[J]. Acta Geoscientica Sinica, 2019, 40(1): 117-134) (0) [3] 董培育, 柳畅, 石耀霖. 2008年汶川MS8.0地震与2017年九寨沟MS7.0地震成因关系探讨[J]. 大地测量与地球动力学, 2019, 39(8): 777-782 (Dong Peiyu, Liu Chang, Shi Yaolin. Relationship between the 2008 MS8.0 Wenchuan Earthquake and the 2017 MS7.0 Jiuzhaigou Earthquake[J]. Journal of Geodesy and Geodynamics, 2019, 39(8): 777-782) (0) [4] Yang Y H, Chen Q, Xu Q, et al. Source Model and Coulomb Stress Change of the 2015 MW7.8 Gorkha Earthquake Determined from Improved Inversion of Geodetic Surface Deformation Observations[J]. Journal of Geodesy, 2019, 93(3): 333-351 DOI:10.1007/s00190-018-1164-9 (0) [5] 许才军, 王乐洋. 大地测量和地震数据联合反演地震震源破裂过程研究进展[J]. 武汉大学学报: 信息科学版, 2010, 35(4): 457-462 (Xu Caijun, Wang Leyang. Progress of Joint Inversion of Geodetic and Seismological Data for Seismic Source Rupture Process[J]. Geomatics and Information Science of Wuhan University, 2010, 35(4): 457-462) (0) [6] Wen Y M, Xu C J, Liu Y, et al. Deformation and Source Parameters of the 2015 MW6.5 Earthquake in Pishan, Western China, from Sentinel-1A and ALOS-2 Data[J]. Remote Sensing, 2016, 8(2): 134 DOI:10.3390/rs8020134 (0) [7] Chen Q, Yang Y H, Luo R, et al. Deep Coseismic Slip of the 2008 Wenchuan Earthquake Inferred from Joint Inversion of Fault Stress Changes and GPS Surface Displacements[J]. Journal of Geodynamics, 2015, 87: 1-12 DOI:10.1016/j.jog.2015.03.001 (0) [8] 周云, 李予青, 王卫民, 等. 2020年阿拉斯加MW7.8地震震源特征及邻区地震危险性分析[J]. 地球物理学报, 2021, 64(2): 498-506 (Zhou Yun, Li Yuqing, Wang Weimin, et al. Source Characteristics of the 2020 Alaska MW7.8 Earthquake and Seismic Risk Analysis of Adjacent Areas[J]. Chinese Journal of Geophysics, 2021, 64(2): 498-506) (0) [9] 施贺青, 张占彪, 陈云锅, 等. 利用InSAR数据约束反演2017年MW6.3精河地震同震破裂模型[J]. 大地测量与地球动力学, 2019, 39(11): 1106-1111 (Shi Heqing, Zhang Zhanbiao, Chen Yunguo, et al. Constraints on Coseismic Rupture Model of the 2017 MW6.3 Jinghe Earthquake from InSAR Data[J]. Journal of Geodesy and Geodynamics, 2019, 39(11): 1106-1111) (0) [10] 雍琦. InSAR和GPS大地测量形变数据反演地震断层滑动的影响特征研究[D]. 成都: 西南交通大学, 2017 (Yong Qi. Research on Characteristics of Inversion for Earthquake Fault Slip Constrained by InSAR and GPS Geodetic Deformation Data[D]. Chengdu: Southwest Jiaotong University, 2017) (0) [11] 杨莹辉. 基于InSAR观测同震地表形变场反演汶川地震断层滑移[D]. 成都: 西南交通大学, 2015 (Yang Yinghui. Fault Slip Inversion of Wenchuan Earthquake Using InSAR Coseismic Surface Deformation Observations[D]. Chengdu: Southwest Jiaotong University, 2015) (0) [12] 刘洋. 顾及模型误差的震源参数InSAR反演[D]. 武汉: 武汉大学, 2012 (Liu Yang. InSAR Inversion Considering Model Error for Hypocenter Parameter[D]. Wuhan: Wuhan University, 2012) (0) [13] Yue H, Lay T, Rivera L, et al. Localized Fault Slip to the Trench in the 2010 Maule, Chile MW=8.8 Earthquake from Joint Inversion of High-Rate GPS, Teleseismic Body Waves, InSAR, Campaign GPS, and Tsunami Observations[J]. Journal of Geophysical Research: Solid Earth, 2014, 119(10): 7786-7804 DOI:10.1002/2014JB011340 (0)
Research on the Sensitivity of Deep Slip Inversion for Earthquake Fault Slip Constrained by InSAR and GPS Geodetic Deformation Data
YONG Qi1     GAO Ertao2     YU Hangming2     LAN Yanping2
1. Shanxi Industrial Equipment Installation Group Co Ltd, 8 Xinhua Road, Taiyuan 030032, China;
2. College of Geomatics and Geoinformation, Guilin University of Technology, 319 Yanshan Street, Guilin 541006, China
Abstract: To explore the influence of geodetic data with different dimensions and precisions on the inversion of fault slip distribution, we take three typical faults as subjects to discuss and analyze. We also experiment with slip distribution inversion where the deep slip varies along depth direction of the three categories faults from the different accuracy InSAR and GPS geodetic deformation. Comparing the results of three categories of faults, we find that the conclusions are highly consistent. The results show that at the same depth, the residual error by InSAR and GPS geodetic deformation with high accuracy is small, and the residual error of InSAR geodetic deformation with normal accuracy is larger. As center depth increases, the detection capability of deep slip inversion decreases gradually. The detection capability of deep slip inversion based on deformation (InSAR or GPS) with high accuracy is higher than that based on InSAR deformation with normal accuracy. When the accuracy of InSAR and GPS deformation is the same, the dimensionality has a certain influence on the detectability of the deep slip of the fault.
Key words: InSAR; GPS; inversion for fault slip; sensitivity of deep slip