文章快速检索     高级检索
  大地测量与地球动力学  2021, Vol. 41 Issue (11): 1106-1110  DOI: 10.14075/j.jgg.2021.11.002

引用本文  

邹时林, 吴星, 王奉伟. 病态加权总体最小二乘模型的正则化抗差解法[J]. 大地测量与地球动力学, 2021, 41(11): 1106-1110.
ZOU Shilin, WU Xing, WANG Fengwei. Regularized Robust Solution for Ill-Posed Weighted Total Least Squares Model[J]. Journal of Geodesy and Geodynamics, 2021, 41(11): 1106-1110.

第一作者简介

邹时林,副教授,主要从事测量数据处理与地理信息应用研究,E-mail:slzou@ecut.edu.cn

About the first author

ZOU Shilin, associate professor, majors in survey data processing and geographic information application, E-mail: slzou@ecut.edu.cn.

文章历史

收稿日期:2021-01-21
病态加权总体最小二乘模型的正则化抗差解法
邹时林1,2     吴星2     王奉伟3     
1. 东华理工大学测绘工程学院,南昌市广兰大道418号,330013;
2. 东华理工大学勘察设计研究院,江西省抚州市学府路56号,344000;
3. 同济大学测绘与地理信息学院,上海市四平路1239号,200092
摘要:针对EIV模型系数阵病态且系数阵和观测值精度不同的情形, 基于拉格朗日乘数法导出病态加权总体最小二乘模型的正则化解法,并证明已有的等权病态总体最小二乘模型的正则化解法是其特例。在此基础上,进一步提出基于中位数法的病态加权总体最小二乘模型的正则化抗差解法,并用第一类Fredholm积分方程和病态测边网两个算例验证算法的有效性。结果表明,受系数阵病态性以及粗差的影响,最小二乘解和总体最小二乘解精度较差,严重偏离真值;正则化解法在顾及系数阵和观测值误差的同时可有效削弱模型的病态性,其精度较最小二乘解和总体最小二乘解有所提升;而正则化抗差解法在正则化解的基础上,利用等价权函数重构权阵,能有效抵御粗差的影响,其精度最高。
关键词病态模型总体最小二乘法正则化法稳健估计

大地测量领域中部分解算模型如GPS快速定位[1-2]、大地测量反演[3-4]以及重力场向下延拓[5-6]等均存在病态问题。当模型病态时,常规的最小二乘解受系数阵的小奇异值影响而精度较低。为获得稳定、可靠的参数估值,部分学者提出一系列有偏估计,如Tikhonov正则化法[7]和TSVD(truncated singular value decomposition)正则化法[8]。当处理病态问题需同时顾及系数矩阵误差时,即病态总体最小二乘模型的解算,是当前测量数据处理研究的热点之一。Fierro等[9]基于广义奇异值分解(generalized singular value decomposition, GSVD)导出病态总体最小二乘问题的截断奇异值法; 葛旭明等[10]基于狭义正则化原理,推导出病态总体最小二乘问题的广义正则化解法; 孙同贺等[11]将Tikhonov正则化和TV正则化有效结合, 提出一种混合正则化解法; 文献[12-13]利用平差参数之间的相互独立性作为先验约束条件,导出病态总体最小二乘问题的虚拟观测值解法。然而,目前已有的病态总体最小二乘问题解法几乎全是在等权条件下推导得到的,对于观测值和系数阵精度不同的情形,缺少实用的解法。王乐洋等[14]将变量误差模型(errors-in-variables, EIV)线性化并用岭估计法解算病态加权总体最小二乘问题,由于线性化过程中舍去二阶项,估值的精度受到影响。在实际测量过程中,观测值除含有偶然误差外,往往还受到粗差的影响。当观测数据中含有粗差时,会极大影响参数估值,因此有必要研究病态总体最小二乘问题的抗差解法。目前有关抗差估计的研究多集中于最小二乘估计(least squares, LS)或总体最小二乘估计(total least squares, TLS), 鲜有关于病态加权总体最小二乘问题的抗差估计研究。本文首先建立病态加权总体最小二乘模型的正则化准则, 构建拉格朗日极值函数,利用Euler-Lagrange必要条件导出病态加权总体最小二乘模型的正则化解;在此基础上,针对观测值中的粗差,提出一种基于中位数法的病态加权总体最小二乘模型的正则化抗差解法。

1 等权病态总体最小二乘模型的正则化解

常用的变量误差模型(errors-in-variables, EIV)可表示为[15-16]

${\boldsymbol{y}} - {{\boldsymbol{e}}_y} = ({\boldsymbol{A}} - {{\boldsymbol{E}}_A}){\boldsymbol{x}}$ (1)

式中,yRmARm×n分别为观测向量和系数矩阵;eyRmEARm×n分别为观测向量和系数矩阵的误差;mn分别表示观测值个数和未知参数个数。其随机模型为:

$ \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{e}}_y}}\\ {{{\boldsymbol{e}}_A}} \end{array}} \right]\sim \left( {\begin{array}{*{20}{c}} {\left[ {\begin{array}{*{20}{c}} 0\\ 0 \end{array}} \right]}&{\sigma _{\rm{0}}^{\rm{2}}\left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{Q}}_y}}&{}\\ {}&{{{\boldsymbol{Q}}_A}} \end{array}} \right]} \end{array}} \right) $ (2)

式中,eA=vec(EA), vec(·)为矩阵拉直算子;QyQA分别为观测向量和系数矩阵元素的协因数阵,等权情形下均取单位阵;σ02为单位权方差。当系数阵病态时,观测向量和系数矩阵中元素值的微小误差会导致参数估值的巨大波动,为获得稳定的参数估值,需对参数施加正则化约束。根据Tikhonov正则化原理,建立等权病态总体最小二乘模型的正则化准则:

$ {\boldsymbol{e}}_y^{\rm{T}}{{\boldsymbol{e}}_y} + {\boldsymbol{e}}_A^{\rm{T}}{{\boldsymbol{e}}_A} + \alpha {{\boldsymbol{x}}^{\rm{T}}}{\boldsymbol{x}} = \min $ (3)

式中,α为正则化参数。根据式(3)可导出参数估值的迭代计算式:

${\boldsymbol{\hat x}} = {({{\boldsymbol{A}}^{\rm{T}}}{\boldsymbol{A}} + b{{\boldsymbol{I}}_n})^{ - 1}}{{\boldsymbol{A}}^{\rm{T}}}{\boldsymbol{y}}$ (4)

式中,$ b = \alpha (1 + {{\boldsymbol{\hat x}}^{\rm{T}}}{\boldsymbol{\hat x}}) - {({\boldsymbol{y}} - {\boldsymbol{A\hat x}})^{\rm{T}}}({\boldsymbol{y}} - {\boldsymbol{A\hat x}})/(1 + {{\boldsymbol{\hat x}}^{\rm{T}}}\hat x)$Inn阶单位阵。

2 病态加权总体最小二乘模型的正则化抗差解 2.1 正则化解

为不失一般性且顾及观测值和系数阵的协因数阵可记为:

${{\boldsymbol{Q}}_y}{\boldsymbol{ = P}}_y^{ - 1}{\boldsymbol{, }}{{\boldsymbol{Q}}_A} = {{\boldsymbol{Q}}_0} \otimes {{\boldsymbol{Q}}_{\boldsymbol{x}}}$ (5)

式中,Q0=P0-1, Qx=Px-1,则式(3)可改写为:

$ {\boldsymbol{e}}_y^{\rm{T}}{{\boldsymbol{P}}_y}{{\boldsymbol{e}}_y} + {\boldsymbol{e}}_A^{\rm{T}}({{\boldsymbol{P}}_0} \otimes {{\boldsymbol{P}}_{\boldsymbol{x}}}){{\boldsymbol{e}}_A} + \alpha {{\boldsymbol{x}}^{\rm{T}}}{\boldsymbol{x}} = \min $ (6)

式(6)即为病态加权总体最小二乘模型的正则化准则,由此可建立拉格朗日极值函数:

$ \begin{array}{l} \varPhi ({{\boldsymbol{e}}_y}, {{\boldsymbol{e}}_A}, {\boldsymbol{\lambda }}, {\boldsymbol{x}}) = {\boldsymbol{e}}_y^{\rm{T}}{{\boldsymbol{P}}_y}{{\boldsymbol{e}}_y} + {\boldsymbol{e}}_A^{\rm{T}}({{\boldsymbol{P}}_0} \otimes {{\boldsymbol{P}}_{\boldsymbol{x}}}){{\boldsymbol{e}}_A} +\\ \alpha {{\boldsymbol{x}}^{\rm{T}}}{\boldsymbol{x}} + 2{{\boldsymbol{\lambda }}^{\rm{T}}}({\boldsymbol{y}} - {\boldsymbol{Ax}} - {{\boldsymbol{e}}_y} + ({{\boldsymbol{x}}^{\rm{T}}} \otimes {{\boldsymbol{I}}_n}) \cdot {{\boldsymbol{e}}_A}) \end{array} $ (7)

式中,λ为联系数向量。将式(7)分别对各变量进行求导并令其为0,则:

$ \frac{1}{2}\frac{{\partial \varPhi }}{{\partial {{\boldsymbol{e}}_y}}} = {\boldsymbol{Q}}_y^{ - 1}{{\boldsymbol{\tilde e}}_y} - {\boldsymbol{\hat \lambda }} = {\rm{0}} $ (8a)
$ \frac{1}{2}\frac{{\partial \varPhi }}{{\partial {{\boldsymbol{e}}_A}}} = ({\boldsymbol{Q}}_0^{ - 1} \otimes {\boldsymbol{Q}}_{\boldsymbol{x}}^{ - 1}){{\boldsymbol{\tilde e}}_A} + ({\boldsymbol{\hat x}} \otimes {{\boldsymbol{I}}_n}){\boldsymbol{\hat \lambda }} = {\rm{0}} $ (8b)
$ \frac{1}{2}\frac{{\partial \varPhi }}{{\partial {\boldsymbol{\hat \lambda }}}} = {\boldsymbol{y}} - {\boldsymbol{A\hat x}} - {{\boldsymbol{\tilde e}}_y} + ({{\boldsymbol{\hat x}}^{\rm{T}}} \otimes {{\boldsymbol{I}}_n}){{\boldsymbol{\tilde e}}_A} = {\rm{0}} $ (8c)
$ \frac{1}{2}\frac{{\partial \varPhi }}{{\partial {\boldsymbol{\hat x}}}} = \alpha {\boldsymbol{\hat x}} - {{\boldsymbol{A}}^{\rm{T}}}{\boldsymbol{\hat \lambda }} + {\boldsymbol{\tilde E}}_A^{\rm{T}}{\boldsymbol{\hat \lambda }} = {\rm{0}} $ (8d)

由式(8a)和(8b)可得:

${{\boldsymbol{\tilde e}}_y} = {{\boldsymbol{Q}}_y}{\boldsymbol{\hat \lambda }}$ (9a)
${{\boldsymbol{\tilde e}}_A} = - ({{\boldsymbol{Q}}_0}{\boldsymbol{\hat x}} \otimes {{\boldsymbol{Q}}_{\boldsymbol{x}}}){\boldsymbol{\hat \lambda }}$ (9b)
${{\boldsymbol{\tilde E}}_A} = - {{\boldsymbol{Q}}_x}{\boldsymbol{\hat \lambda }}{{\boldsymbol{\hat x}}^{\rm{T}}}{{\boldsymbol{Q}}_0}$ (9c)

将式(9)代入式(8c)可得:

${\boldsymbol{\hat \lambda }} = {\left( {{{\boldsymbol{Q}}_y} + ({{{\boldsymbol{\hat x}}}^{\rm{T}}}{{\boldsymbol{Q}}_0}{\boldsymbol{\hat x}}){{\boldsymbol{Q}}_{\boldsymbol{x}}}} \right)^{ - 1}}({\boldsymbol{y}} - {\boldsymbol{A\hat x}})$ (10)

将式(10)代入式(8d)可得:

$\begin{array}{l} - {{\boldsymbol{A}}^{\rm{T}}}{\boldsymbol{\hat \lambda }} = {{\boldsymbol{A}}^{\rm{T}}}{\left( {{{\boldsymbol{Q}}_y} + ({{{\boldsymbol{\hat x}}}^{\rm{T}}}{{\boldsymbol{Q}}_0}{\boldsymbol{\hat x}}){{\boldsymbol{Q}}_{\boldsymbol{x}}}} \right)^{ - 1}}({\boldsymbol{A\hat x}} - {\boldsymbol{y}})=\\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} - {\boldsymbol{\tilde E}}_A^{\rm{T}}{\boldsymbol{\hat \lambda }} - \alpha {\boldsymbol{\hat x}} \end{array}$ (11)

式中,${\boldsymbol{\tilde E}}_A^{\rm{T}}{\boldsymbol{\hat \lambda }} = - {{\boldsymbol{Q}}_0}{\boldsymbol{\hat x}}{{\boldsymbol{\hat \lambda }}^{\rm{T}}}{{\boldsymbol{Q}}_{\boldsymbol{x}}}{\boldsymbol{\hat \lambda }} = - {{\boldsymbol{Q}}_0}{\boldsymbol{\hat x}}\hat v, \hat v = {{\boldsymbol{\hat \lambda }}^{\rm{T}}}{{\boldsymbol{Q}}_{\boldsymbol{x}}}{\boldsymbol{\hat \lambda }}$。则式(11)可改写为:

$ {{\boldsymbol{A}}^{\rm{T}}}{\left( {{{\boldsymbol{Q}}_y} + ({{{\boldsymbol{\hat x}}}^{\rm{T}}}{{\boldsymbol{Q}}_0}{\boldsymbol{\hat x}}){{\boldsymbol{Q}}_{\boldsymbol{x}}}} \right)^{ - 1}}({\boldsymbol{A\hat x}} - {\boldsymbol{y}}) = {{\boldsymbol{Q}}_0}{\boldsymbol{\hat x}}\hat v - \alpha {\boldsymbol{\hat x}} $ (12)

通过推导可知,病态加权总体最小二乘模型的正则化解为:

${\boldsymbol{\hat x}} = {({{\boldsymbol{A}}^{\rm{T}}}{{\boldsymbol{Q}}_{\boldsymbol{l}}}{\boldsymbol{A}} - \hat v{{\boldsymbol{Q}}_0} + \alpha {{\boldsymbol{I}}_n})^{ - 1}}{{\boldsymbol{A}}^{\rm{T}}}{{\boldsymbol{Q}}_{\boldsymbol{l}}}{\boldsymbol{y}}$ (13)

式中,${{\boldsymbol{Q}}_{\boldsymbol{l}}} = {\left( {{{\boldsymbol{Q}}_y} + ({{{\boldsymbol{\hat x}}}^{\rm{T}}}{{\boldsymbol{Q}}_0}{\boldsymbol{\hat x}}){{\boldsymbol{Q}}_{\boldsymbol{x}}}} \right)^{ - 1}}$,其单位权中误差的估值为:

$\hat \sigma = \frac{{{\boldsymbol{\tilde e}}_y^{\rm{T}}{{\boldsymbol{Q}}_y}{{{\boldsymbol{\tilde e}}}_y} + {\boldsymbol{\tilde e}}_A^{\rm{T}}{{\boldsymbol{Q}}_A}{{{\boldsymbol{\tilde e}}}_A}}}{{m - n}}$ (14)

现考虑等权情形,即取Qy=Im, Q0=In, Qx=Im,则:

$\begin{array}{c} {{\boldsymbol{Q}}_{\boldsymbol{l}}} = {(1 + {{{\boldsymbol{\hat x}}}^{\rm{T}}}{\boldsymbol{x}})^{ - 1}}{{\boldsymbol{I}}_m}\\ {\boldsymbol{\hat \lambda }} = {(1 + {{{\boldsymbol{\hat x}}}^{\rm{T}}}{\boldsymbol{x}})^{ - 1}}({\boldsymbol{y}} - {\boldsymbol{A\hat x}})\\ \hat v = {(1 + {{{\boldsymbol{\hat x}}}^{\rm{T}}}{\boldsymbol{x}})^{ - 2}}{({\boldsymbol{y}} - {\boldsymbol{A\hat x}})^{\rm{T}}}({\boldsymbol{y}} - {\boldsymbol{A\hat x}}) \end{array}$ (15)

将式(15)代入式(13)可得:

${\boldsymbol{\hat x}} = {\left( {{{\boldsymbol{A}}^{\rm{T}}}{\boldsymbol{A}} + (\alpha - \hat v)(1 + {{{\boldsymbol{\hat x}}}^{\rm{T}}}{\boldsymbol{\hat x}}){{\boldsymbol{I}}_n}} \right)^{ - 1}}{{\boldsymbol{A}}^{\rm{T}}}{\boldsymbol{y}}$ (16)

式中,$(\alpha - \hat v)(1 + {{\boldsymbol{\hat x}}^{\rm{T}}}{\boldsymbol{\hat x}}) = \alpha (1 + {{\boldsymbol{\hat x}}^{\rm{T}}}{\boldsymbol{\hat x}}) - {({\boldsymbol{y}} - {\boldsymbol{A\hat x}})^{\rm{T}}}({\boldsymbol{y}} - {\boldsymbol{A\hat x}})/(1 + {{\boldsymbol{\hat x}}^{\rm{T}}}{\boldsymbol{\hat x}}) = b$。显然,式(16)就是式(4),即式(4)为式(13)的特例。

2.2 基于中位数法的正则化抗差解

当观测数据受到粗差污染时,参数估值必定会受粗差影响,严重时甚至会偏离真值。选取迭代法是应用较为广泛的抗差估计方法之一,其基本思想是根据参数估值的残差,利用等价权函数重构观测值的权重,并利用新的权值对参数估值进行迭代求解。对于病态加权总体最小二乘模型,利用式(13)求得正则化解后,由式(9a)和(9b)获得观测向量和系数矩阵元素的改正值,利用等价权函数对其重新定权,以IGG权函数为例:

$ {{\bar P}_i} = \left\{ \begin{array}{l} {P_i}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left| {{{\hat e}_i} \le a} \right|\\ {P_i}a{\rm{/}}\left| {{{\hat v}_i}} \right|\;\;\;\;\;\;\;\;\;a < \left| {{{\hat e}_i}} \right| \le b\\ 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} b < \left| {{{\hat e}_i}} \right| \end{array} \right. $ (17)

式中,Pi为观测值的权重;Pi为等价权;${\hat e_i}$为改正值;域值a=1.5σ, b=2.5σ, σ为单位权中误差。利用更新后的权值即可迭代求解参数,直至收敛。考虑到病态加权总体最小二乘模型中观测向量和系数矩阵中元素的精度不相同,若统一使用单位权中误差确定域值并不合理;此外,由于受非线性模型的影响以及正则化法会破坏函数模型的等式结构,由式(14)获得的单位权中误差估值具有有偏性,从而会影响域值的确定。

本文提出一种基于中位数法的病态加权总体最小二乘模型的正则化抗差解法。对于模型(1), 共有m个观测值和n(n < m)个未知参数,故共可确定Cmn组参数估值:

${\boldsymbol{\hat X}} = \left[ {\begin{array}{*{20}{c}} {{{{\boldsymbol{\hat X}}}_1}}& \cdots &{{{{\boldsymbol{\hat X}}}_{C_m^n}}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {\hat x_1^1}& \cdots &{\hat x_{C_m^n}^1}\\ \vdots &{}& \vdots \\ {\hat x_1^n}& \cdots &{\hat x_{C_m^n}^n} \end{array}} \right]$ (18)

式中,${{\boldsymbol{\hat X}}_i}(i = 1, \cdots , C_m^n)$为第i组参数估值;$\hat x_i^j(i = 1, \cdots , C_m^n;j = 1, \cdots , t)$${{\boldsymbol{\hat X}}_i}$的第j个元素。对参数估值向量的各个元素来说,共有Cmn组数值,求其中位数${\rm{med}}({\hat x^j}) $,得到参数估值的中位数向量:

${{\boldsymbol{\hat X}}_{\rm{med}}} = {\left[ {\begin{array}{*{20}{c}} {{\rm{med}}({{\hat x}^1})}& \cdots &{{\rm{med}}({{\hat x}^n})} \end{array}} \right]^{\rm{T}}}$ (19)

将式(19)代入式(9a)和(9b)可得观测向量和系数矩阵的误差向量分别为${{\boldsymbol{\hat e}}_y} = {\left[ {\begin{array}{*{20}{c}} {\hat e_y^1}& \cdots &{\hat e_y^n} \end{array}} \right]^{\rm{T}}}, {{\boldsymbol{\hat e}}_A} = {\left[ {\begin{array}{*{20}{c}} {\hat e_A^1}& \cdots &{\hat e_A^n} \end{array}} \right]^{\rm{T}}}$,定义其中位数为:

$\begin{array}{l} {\rm{med}}({{{\boldsymbol{\hat e}}}_y}) = \sqrt {{\rm{med}}(\left[ {(\begin{array}{*{20}{c}} {\hat e_y^1{)^2}}& \cdots &{{{(\hat e_y^n)}^2}} \end{array}} \right])} \\ {\rm{med}}({{{\boldsymbol{\hat e}}}_A}) = \sqrt {{\rm{med}}(\left[ {(\begin{array}{*{20}{c}} {\hat e_A^1{)^2}}& \cdots &{{{(\hat e_A^n)}^2}} \end{array}} \right])} \end{array}$ (20)

由绝对误差中位数与中误差的关系可知, 观测向量和系数矩阵元素的中误差分别为${\hat \sigma _y} = 1.483 \cdot {\rm{med}}({{\boldsymbol{\hat e}}_y}), {\hat \sigma _A} = 1.483 \cdot {\rm{med}}({{\boldsymbol{\hat e}}_A})$,应用等价权函数式(17)即可更新观测值和系数阵的权阵。通过新的权阵可计算得到Cmn组参数估值${\boldsymbol{\hat X}}$, 求其中位数${{\boldsymbol{\hat X}}_{{\rm{med}}}}$, 计算每组参数估值${{\boldsymbol{\hat X}}_i}$$ {{\boldsymbol{\hat X}}_{{\rm{med}}}}$差值的范数${d_i} = \left\| {{{{\boldsymbol{\hat X}}}_i} - {{{\boldsymbol{\hat X}}}_{{\rm{med}}}}} \right\|$, 取di最小时的参数估值作为最终的参数估值。

3 算例分析 3.1 数值算例

第一类Fredholm积分方程为典型的病态问题,其基本形式为:

$z(y) = \int_a^b {K(x, y)f(x){\rm{d}}x} $ (21)

式中,K(x, y)为核函数,f(x)为真值函数,分别取为:

$\begin{array}{l} K(x, y) = \frac{{1.0}}{{1.0 + 100{{(y - x)}^2}}}\\ f(x) = \frac{{\exp ({\beta _1}) + \exp ({\beta _2})}}{{10.9550408}} - 0.052130913 \end{array}$ (22)

式中,${\beta _{\rm{1}}} = - \frac{{{{(x - 0.3)}^2}}}{{0.03}}, {\beta _2} = - \frac{{{{(x - 0.7)}^2}}}{{0.03}}, x \in [0, 1], y \in [ - 2, 2]$。分别取采样间隔Δxy=0.02,则式(21)可离散化为:

$ \begin{array}{l} z({y_i}) = \frac{1}{2}\Delta x\sum\limits_{j = 1}^{50} {[K({x_j},{y_i})f({x_j}) + } \\ \;\;\;\;\;\;\;\;\;K({x_{j + 1}},{y_i})f({x_{j + 1}})] \end{array} $ (23)

其可改写成一般的线性模型。对系数阵模拟随机误差eA~N(0, σ02I), σ0取0.001,I为单位阵;对观测值模拟随机误差ey~N(0, σ02Qy),Qy为观测值的协因数阵,假设其是对角元素为0.5、非对角元素为0.2的对称方阵。以均值为0、单位权中误差为6σ0的正态分布模拟得到一组数据序列,剔除其中小于3σ0的数据,将剩余数据作为粗差随机添加到原始观测值中。分别采用最小二乘法(LS)、总体最小二乘法(TLS)、正则化加权总体最小二乘法(regularized weighted total least squares, RWTLS,以下简称正则化解)及其抗差解法(robust regularized weighted total least squares, RRWTLS,以下简称正则化抗差解)估计参数及其均方根误差(RMSE):

$RMSE = \sqrt {\frac{{{{({\boldsymbol{\hat X}} - {\boldsymbol{\bar X}})}^{\rm{T}}}({\boldsymbol{\hat X}} - {\boldsymbol{\bar X}})}}{n}} $ (24)

式中,${{\boldsymbol{\hat X}}}$X分别为参数估值与真值。考虑到L曲线法严重依赖数据拟合度,因此采用U曲线法确定正则化参数。图 1图 2分别为不同算法解算的参数估值及其与真值对比,从图中可以看出,最小二乘解和总体最小二乘解的精度较低,其RMSE分别为0.126 1和0.118 0;正则化解的精度高于最小二乘解和总体最小二乘解,其RMSE为0.005 1;正则化抗差解的精度最高,其RMSE为0.002 5。

图 1 最小二乘解和总体最小二乘解 Fig. 1 Least squares solution and total least squares solution

图 2 正则化解、正则化抗差解与真值对比 Fig. 2 Comparison between regularized solution, regularized robust solution and true values

模拟500次实验,每次实验均采用相同策略模拟随机误差和粗差,分别采用4种算法估计参数及其RMSE,结果见图 3。由图可知,受病态性以及粗差影响,最小二乘解和总体最小二乘解的精度最差,其平均RMSE分别为0.137 3和0.407 7;正则化解可顾及系数阵的病态性及误差,其精度较最小二乘解和总体最小二乘解有较大提升,平均RMSE为0.006 0;正则化抗差解可顾及粗差的影响,通过等价权函数重构权阵,能有效抵御粗差的影响,其精度最高,平均RMSE为0.002 3。

图 3 不同算法500次实验获得估值的RMSE Fig. 3 The root mean square error of parameter estimation of four algorithms for 500 experiments
3.2 病态测边网算例

模拟一个病态测边网算例,该算例中共有9个坐标已知点和2个坐标未知点。其中,已知点与未知点的距离观测值已经给定(表 1),图 4为点位二维平面分布图。2个未知点位之间的观测距离为13.107 8 m,其真实三维坐标分别为(0, 0, 0)和(7, 10, -5), 要求通过已知的距离观测值组建误差方程来求解未知点坐标。

表 1 控制点坐标及距离观测值 Tab. 1 The coordinates and distance observations of control points

图 4 空间测边网平面点位分布 Fig. 4 The point position distribution of the space net in XY plane

在该算例中,法矩阵的条件数为4.585 1×103,存在病态性。将1号点x坐标和2号点y坐标混入4~5 dm粗差,其余点坐标混入1~2 cm随机误差。与数值算例相同,分别采用4种算法估计参数,表 2为不同算法获得的参数估值及其RMSE。由表可知,最小二乘解和总体最小二乘解受模型病态性和粗差影响,其精度较低,RMSE分别为4.573 8和10.876 3。从结果来看,总体最小二乘解受病态性和粗差的影响更加严重;正则化解可同时顾及系数阵和观测值的误差,并且可通过正则化参数削弱模型的病态性,其精度相比最小二乘解和总体最小二乘解有较大提升,RMSE为0.745 7;正则化抗差解在正则化解的基础上,利用等价权函数有效削弱粗差的影响,因此精度最高,RMSE为0.250 2。

表 2 不同算法获得的参数估值及其RMSE Tab. 2 The parameter estimation and RMSE of different algorithms
4 结语

当变量误差模型的系数阵存在病态时,常规的最小二乘解和总体最小二乘解均不再适用。本文基于Tikhonov正则化原理,通过构建拉格朗日函数导出病态加权总体最小二乘模型的正则化解。当观测值和系数阵的权阵均取单位阵时,本文公式退化为等权病态总体最小二乘模型的正则化解。在此基础上,进一步提出基于中位数法的病态加权总体最小二乘模型的正则化抗差解法,该方法能够自适应地对观测值和系数矩阵元素进行分类定权,可提高等价权函数的有效性。算例分析结果表明,本文提出的正则化解法能够较好地处理病态加权总体最小二乘问题,并且当模型混入粗差时,正则化抗差解法能够自适应地重构权阵以抵御粗差的影响,得到较为稳定且可靠的参数估值。

参考文献
[1]
Li B F, Shen Y Z, Feng Y M. Fast GNSS Ambiguity Resolution as an Ill-Posed Problem[J]. Journal of Geodesy, 2010, 84(11): 683-698 DOI:10.1007/s00190-010-0403-5 (0)
[2]
Pan S G, Gao W, Wang S L, et al. Analysis of Ill Posedness in Double Differential Ambiguity Resolution of BDS[J]. Survey review, 2014, 46(339): 411-416 DOI:10.1179/1752270614Y.0000000121 (0)
[3]
顾勇为, 归庆明, 张璇, 等. 大地测量与地球物理中病态性问题的正则化迭代解法[J]. 测绘学报, 2014, 43(4): 331-336 (Gu Yongwei, Gui Qingming, Zhang Xuan, et al. Iterative Solution of Regularization to Ill-Conditioned Problems in Geodesy and Geophysics[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(4): 331-336) (0)
[4]
Fu H Q, Wang C C, Zhu J J, et al. Estimation of Pine Forest Height and Underlying DEM Using Multi-Baseline P-Band PolInSAR Data[J]. Remote Sensing, 2016, 8(10): 820 DOI:10.3390/rs8100820 (0)
[5]
Save H, Bettadpur S, Tapley B D. Reducing Errors in the GRACE Gravity Solutions Using Regularization[J]. Journal of Geodesy, 2012, 86(9): 695-711 DOI:10.1007/s00190-012-0548-5 (0)
[6]
Freeden W, Schreiner M. Spaceborne Gravitational Field Determination by Means of Locally Supported Wavelets[J]. Journal of Geodesy, 2005, 79(8): 431-446 DOI:10.1007/s00190-005-0482-x (0)
[7]
Tikhonov A N, Goncharsky A V, Stepanov V V, et al. Numerical Methods for the Solution of Ill-Posed Problems[M]. Dordrecht: Springer Netherlands, 1995 (0)
[8]
Xu P L. Truncated SVD Methods for Discrete Linear Ill-Posed Problems[J]. Geophysical Journal International, 1998, 135(2): 505-514 DOI:10.1046/j.1365-246X.1998.00652.x (0)
[9]
Fierro R D, Golub G H, Hansen P C, et al. Regularization by Truncated Total Least Squares[J]. SIAM Journal on Scientific Computing, 1997, 18(4): 1223-1241 DOI:10.1137/S1064827594263837 (0)
[10]
葛旭明, 伍吉仓. 病态总体最小二乘问题的广义正则化[J]. 测绘学报, 2012, 41(3): 372-377 (Ge Xuming, Wu Jicang. Generalized Regularization to Ill-Posed Total Least Squares Problem[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(3): 372-377) (0)
[11]
孙同贺, 闫国庆. 病态总体最小二乘的混合正则化算法[J]. 大地测量与地球动力学, 2017, 37(4): 390-393 (Sun Tonghe, Yan Guoqing. A Hybrid Regularization Algorithm to Ill-Posed Total Least Squares[J]. Journal of Geodesy and Geodynamics, 2017, 37(4): 390-393) (0)
[12]
王乐洋, 于冬冬. 病态总体最小二乘问题的虚拟观测解法[J]. 测绘学报, 2014, 43(6): 575-581 (Wang Leyang, Yu Dongdong. Virtual Observation Method to Ill-Posed Total Least Squares Problem[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(6): 575-581) (0)
[13]
Wang L Y, Wen G S, Zhao Y W. Virtual Observation Method and Precision Estimation for Ill-Posed Partial EIV Model[J]. Journal of Surveying Engineering, 2019, 145(4) (0)
[14]
王乐洋, 许才军, 鲁铁定. 病态加权总体最小二乘平差的岭估计解法[J]. 武汉大学学报: 信息科学版, 2010, 35(11): 1346-1350 (Wang Leyang, Xu Caijun, Lu Tieding. Ridge Estimation Method in Ill-Posed Weighted Total Least Squares Adjustment[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11): 1346-1350) (0)
[15]
王彬, 李建成, 高井祥, 等. 抗差加权整体最小二乘模型的牛顿-高斯算法[J]. 测绘学报, 2015, 44(6): 602-608 (Wang Bin, Li Jiancheng, Gao Jingxiang, et al. Newton-Gauss Algorithm of Robust Weighted Total Least Squares Model[J]. Acta Geodaetica et Cartographica Sinica, 2015, 44(6): 602-608) (0)
[16]
Xu P L, Liu J N, Shi C. Total Least Squares Adjustment in Partial Errors-in-Variables Models: Algorithm and Statistical Analysis[J]. Journal of Geodesy, 2012, 86(8): 661-675 DOI:10.1007/s00190-012-0552-9 (0)
Regularized Robust Solution for Ill-Posed Weighted Total Least Squares Model
ZOU Shilin1,2     WU Xing2     WANG Fengwei3     
1. Faculty of Geomatics, East China University of Technology, 418 Guanglan Road, Nanchang 330013, China;
2. Institute of Survey and Design, East China University of Technology, 56 Xuefu Road, Fuzhou 344000, China;
3. College of Surveying and Geo-Informatics, Tongji University, 1239 Siping Road, Shanghai 200092, China
Abstract: The coefficient matrix of the error-in-variables (EIV) model is ill-posed, and the precision of the coefficient matrix and the observation are not equal, so we derive the regularized solution of the ill-posed weighted total least squares model using the Lagrangian multiplier method. We prove the existing regularized solution of the ill-posed total least squares model to be a special case of the new model. On this basis, we propose the regularized robust solution based on the median method for ill-posed weighted total least squares model, and the effectiveness of the new algorithm is verified by two examples of the first kind Fredholm integral equation and ill-posed trilateration network. The results show that the least squares solution and the total least squares solution have poor accuracies and seriously deviate from the true value due to the influence of ill-posedness and the outliers of the model, while the accuracy of the regularized solution has been improved for weakening the ill-posedness of the model taking into account the errors of coefficient matrix and the observations. On the basis of regularized solution, the regularized robust solution reconstructs the weight matrix using the equivalent weight function, which can effectively resist the influence of gross error and has the highest accuracy.
Key words: ill-posed model; total least squares; regularized method; robust estimation