文章快速检索     高级检索
  大地测量与地球动力学  2021, Vol. 41 Issue (9): 920-923  DOI: 10.14075/j.jgg.2021.09.007

引用本文  

王旭科, 闫世伟, 赵红, 等. 不同对流层天顶延迟模型在中国西北地区适应性研究[J]. 大地测量与地球动力学, 2021, 41(9): 920-923.
WANG Xuke, YAN Shiwei, ZHAO Hong, et al. Research on the Adaptability of Different Tropospheric Zenith Delay Models in Northwest China[J]. Journal of Geodesy and Geodynamics, 2021, 41(9): 920-923.

项目来源

国家自然科学基金(41904040);甘肃省高等学校创新基金(2021B-426)。

Foundation support

National Natural Science Foundation of China, No. 41904040;Foundation for Innovation in Colleges and Universities of Gansu Province, No.2021B-426.

第一作者简介

王旭科,工程师,主要研究方向为大地测量理论与方法、GNSS气象学应用、三维激光扫描新技术,E-mail:xukewang00@sina.com

About the first author

WANG Xuke, engineer, majors in geodetic theory and method, application of GNSS meteorology, new technology of 3D laser scanning, E-mail: xukewang00@sina.com.

文章历史

收稿日期:2021-01-23
不同对流层天顶延迟模型在中国西北地区适应性研究
王旭科1     闫世伟1     赵红2     杨晓磊3     
1. 兰州资源环境职业技术学院测绘与地理信息学院, 兰州市窦家山36号,730021;
2. 国家自然资源部大地测量数据处理中心,西安市友谊东路334号,710054;
3. 陕西省煤田物探测绘有限公司,西安市尚勤路66号,710005
摘要:基于Fortran语言对GAMIT10.7软件进行二次开发,实现了Hopfield模型、Saastamoinen模型、Black模型、UNB3模型、EGNOS模型、GPT2w_1+Saastamoinen模型和GPT2w_5+Saastamoinen模型在中国西北地区的对流层延迟解算服务,并分析不同对流层延迟模型在西北地区的适应性问题。实验表明,在实测气象数据模型中,Saastamoinen模型在中国西北地区获取的天顶对流层延迟精度最高,各个测站平均bias值和RMS值分别是-1.67 cm、3.83 cm;Hopfield模型和Black模型精度相当。在非实测气象数据模型中,GPT2w_1+Saastamoinen模型精度最高,GPT2w_5+Saastamoinen模型次之,EGNOS模型最低。不同对流层延迟模型的精度均受季节变化影响,夏季bias的绝对值和RMS值最大,冬季最小,春季和秋季结果相当。
关键词对流层天顶对流层延迟CMONOCSaastamoinen模型季节效应

目前削弱对流层延迟的方法主要包括外部修正法、参数估计法、模型改正法。外部修正法具有较高的精度,但成本高、难度大,难以广泛使用[1];参数估计法精度可以达到mm级,但是在实际使用过程中往往需要对流层延迟的先验值,解算过程繁琐[2];模型改正法具有成本低廉、需要数据量少、计算简便的特点,是目前被广泛应用于削弱对流层延迟的方法[3]。根据计算时使用的参数类型,模型改正法可分为实测数据气象模型(Saastamoinen模型、Hopfield模型、Black模型)和非实测数据气象模型(UNB模型、EGNOS模型、GPT模型、GPT2模型等)[4]

不同对流层延迟模型的适用性和精度在不同地区表现各异[5-9]。本文借助中国大陆构造环境监测网络(crustal movement observation network of China, CMONOC)观测数据,对不同对流层延迟模型在中国西北地区的精度进行评估,旨在利用GNSS气象学理论与方法为西北地区农林业生产提供理论参考依据。

1 数据来源及解算策略

本次实验选取CMONOC中中国西北地区数据连续性好、质量优的观测站(QHGE站、XJRQ站、XJBC站、XJBE站和XJYN站)产品数据。

基于Fortran语言对GAMIT10.7软件进行二次开发,编写并加入研究的对流层延迟模型对中国西北地区CMONOC中GPS观测数据进行处理。解算过程中引入IGS观测站(BJFS站、CHAN站、SHAO站和WUHN站)进行联合解算,其目的是削弱对流层相关性;对流层参数每2 h估计一次,每天共计13组。

2 模型简介及方案设计 2.1 模型简介

本实验涉及的实测数据气象模型主要包括Hopfield模型、Saastamoinen模型和Black模型。Hopfield模型是基于全球分布的气象站探测数据提出的适用于全球范围的对流层延迟模型,静力学延迟计算如下:

$ \left\{\begin{array}{l} \Delta L_{\mathrm{d}}=1.552 \times 10^{-5} \times \frac{\left(h_{\mathrm{d}}-h_{\mathrm{s}}\right) P_{\mathrm{d}}}{T_{s}} \\ h_{\mathrm{d}}=40\ 136+148.72 \times\left(T_{s}-273.16\right) \end{array}\right. $ (1)

式中,ΔLd为静力学延迟量,hs为测站的高程,Pd为测站表面的气压,Ts为测站表面的绝对温度。

Saastamoinen模型和Black模型是在Hopfield模型基础上改进得到的对流层延迟模型。Saastamoinen模型在计算大气温度时,将对流层划分为2个区间,并假设该区间内大气温度为常数;Black模型是将Hopfield模型在信号传播路径弯曲产生的误差加以修正得到的对流层延迟模型[10]

非实测数据气象模型主要包括UNB3模型、EGNOS模型和GPT2系列模型。UNB3模型是一种无需实测气象参数的对流层延迟模型,其基于多年的标准大气资料推导出各类气象参数的年平均值及年变化值,按纬度每15°给出一组气象参数值,根据得到的各气象参数,进而求得对流层延迟[11]。EGNOS模型是利用欧洲中短期数值预报中心资料建立的,在北美、欧洲地区精度较高,其他地区精度较低,不适用于小区域对流层延迟误差分析[12]。GPT2模型是利用欧洲中短期数值预报中心提供的2001~2010年全球范围内的气温、气压等气象资料进行分析而建立的,GPT2w模型在GPT2模型的基础上增加了大气加权温度Tm以及水汽衰减因子,提升了水汽压的计算结果精度,并提供了空间分辨率分别为1°×1°和5°×5°格网点处的系数(分别记作GPT2w_1和GPT2w_5)。利用GPT2及GPT2w模型获取到测站位置的气象数据后,将其代入实测气象数据模型中精度最高的Saastamoinen模型,即可得到测站位置的对流层延迟数据[13-14]

2.2 方案设计

基于Fortran语言对GAMIT10.7软件进行二次开发,引入不同对流层延迟模型分别对观测数据进行处理,并对结果进行精度评估。具体分为以下7种方案:Hopfield模型、Saastamoinen模型、Black模型、UNB3模型、EGNOS模型、GPT2w_1+Saastamoinen模型(记作GPT2w _1+Saas模型)、GPT2w_5+Saastamoinen模型(记作GPT2w_5+Saas模型)。

3 案例分析

解算2018年4个IGS站数据,选取CODE服务中心提供的对流层产品文件(时间分辨率为2 h,每天13组)作为参考值进行对比(缺失数据不参与分析),结果如表 1所示。

表 1 IGS站解算ZTD与CODE产品ZTD间的bias值和RMS值 Tab. 1 Bias and RMS values between ZTD calculated by IGS stations and ZTD of CODE product

表 1可知,借助GAMIT10.7软件解算的IGS站天顶对流层延迟ZTD与CODE中心发布的对流层产品文件的偏差在mm级,其中最大bias值和RMS值分别为2.24 mm、5.68 mm,bias绝对值的均值为1.79 mm,RMS均值为1.93 mm;BJFS站和CHAN站解算ZTD与CODE产品ZTD间的bias值为负值,而SHAO站和WUHN站bias值为正值,可能是由于各站间地理位置、气候和大汽可降水量不同造成的。上述结果进一步证实了借助GAMIT10.7软件解算天顶对流层延迟ZTD的精度是有保证的。

为了研究不同对流层天顶延迟模型在中国西北地区的精度和适应性问题,分别按照7种方案对2018年CMONOC观测数据进行解算,获取天顶对流层延迟结果,并将中国地震局GNSS数据产品服务平台提供的对流层产品文件作为参考值(精度优于1 cm)进行对比分析,分别计算解算结果和参考值间的bias值、RMS值(缺失数据不参与计算),结果如表 2所示。

表 2 7种方案bias值和RMS值统计 Tab. 2 Statistical table ofbias and RMS values of7schemes

表 2可知,在实测气象数据模型中,Saastamoinen模型在中国西北地区获取的天顶对流层延迟精度最高,各个测站平均bias值和RMS值分别是-1.67 cm、3.83 cm;Hopfield模型和Black模型在中国西北地区获取的天顶对流层延迟精度相当,平均bias值和RMS值分别是-3.00 cm和4.89 cm、-2.97 cm和4.63 cm,各个测站bias值和RMS值相差在mm级。在非实测气象数据模型中,UNB3模型、EGNOS模型、GPT2w_1+Saas模型和GPT2w_5+Saas模型平均bias值和RMS值分别是-4.02 cm和6.20 cm、-6.17 cm和7.96 cm、-1.50 cm和3.18 cm、-2.58 cm和4.01 cm。GPT2w_1+Saas模型在中国西北地区获取天顶对流层延迟精度最高,GPT2w_5+Saas模型精度次之,而EGNOS模型精度最低,其原因可能是EGNOS模型是使用北美、欧洲地区气象数据建立的,导致在中国西北地区气象参数精度不足。

为了进一步分析季节变化对对流层延迟模型精度的影响,绘制7种对流层延迟模型bias之和的时间序列,结果如图 1所示。同时对解算结果的bias值和RMS值按照春(3~5月)、夏(6~8月)、秋(9~11月)、冬(12~2月)季节划分进行统计分析,在此仅给出XJBE站统计结果,如图 2所示。

图 1 不同对流层延迟模型bias之和的时间序列 Fig. 1 Time series of the sum of bias of different tropospheric delay models

图 2 不同对流层延迟模型不同季节bias值和RMS值 Fig. 2 Bias and RMS values of different tropospheric delay models in different seasons

图 2中柱状图形的面积表示该模型对流层延迟的偏差,即面积越小,精度越高。由图 2可知,6~8月对流层延迟模型bias之和明显高于其他几个月份。在实测气象数据模型中,Saastamoinen模型bias的面积最小;在非实测气象数据模型中,GPT2w_1+Saas模型bias的面积最小。

图 2看出,无论哪种对流层延迟模型,在夏季的bias绝对值和RMS值都最大,明显高于其他3个季节,春季和秋季结果相当,冬季的bias的绝对值和RMS值最小,可能是由于夏季雨水充沛,而冬季降水量少造成的,进一步证实不同对流层延迟模型的精度受季节变化的影响;GPT2w_1+Saas模型在中国西北地区获取的天顶对流层延迟精度最高,GPT2w_5+Saas模型精度次之,而EGNOS模型精度最低,与单天对流层延迟模型精度评估结果表现一致。

4 结语

本文借助2018年CMONOC和IGS观测数据,对7种对流层天顶延迟模型在中国西北地区的适应性问题进行分析。结果表明,解算的IGS站天顶对流层延迟ZTD与CODE中心发布的对流层产品文件的偏差在mm级,其中最大bias值和RMS值分别为2.24 mm、5.68 mm,bias绝对值的均值为1.79 mm,RMS均值为1.93 mm。在实测气象数据模型中,Saastamoinen模型获取的天顶对流层延迟精度最高,Hopfield模型和Black模型获取的天顶对流层延迟精度相当,各个测站bias值和RMS值相差在mm级。在非实测气象数据模型中,GPT2w_1+Saas模型获取的天顶对流层延迟精度最高,GPT2w_5+Saas模型精度次之,而EGNOS模型精度最低。对流层延迟模型精度受季节变化影响明显,夏季bias的绝对值和RMS值最大,春季和秋季结果相当,冬季最小,不同季节对流层延迟模型与单天对流层延迟模型精度评估结果表现一致。

参考文献
[1]
陈俊平, 王解先, 陆彩萍. GPS监测水汽与水汽辐射计数据的对比研究[J]. 大地测量与地球动力学, 2005, 25(3): 125-128 (Chen Junping, Wang Jiexian, Lu Caiping. Study on Comparison between Water Vapor Value Calculated by GPS and Observed by WVR[J]. Journal of Geodesy and Geodynamics, 2005, 25(3): 125-128) (0)
[2]
薛骐, 熊永良, 刘惠涛. GPS动态水汽反演对对流层天顶延迟解算精度分析[J]. 测绘科学, 2017, 42(1): 38-42 (Xue Qi, Xiong Yongliang, Liu Huitao. The Precision Analysis of Kinematic Atmospheric Delay Solution in Kinematic GPS Water Vapor Inversion[J]. Science of Surveying and Mapping, 2017, 42(1): 38-42) (0)
[3]
Li L, Xu Y, Yan L Z, et al. A Regional NWP Tropospheric Delay Inversion Method Based on a General Regression Neural Network Model[J]. Sensors, 2020, 20(11) (0)
[4]
张翔. 天顶对流层延迟模型的精度分析及其改进研究[D]. 西安: 长安大学, 2019 (Zhang Xiang. Accuracy Analysis and Improvement of Zenith Tropospheric Delay Model[D]. Xi'an: Chang'an University, 2019) (0)
[5]
毛健, 朱长青, 郭继发. 一种新的全球对流层天顶延迟模型[J]. 武汉大学学报: 信息科学版, 2013, 38(6): 684-688 (Mao Jian, Zhu Changqing, Guo Jifa. A New Global Zenith Tropospheric Delay Model[J]. Geomatics and Information Science of Wuhan University, 2013, 38(6): 684-688) (0)
[6]
姚宜斌, 何畅勇, 张豹, 等. 一种新的全球对流层天顶延迟模型GZTD[J]. 地球物理学报, 2013, 56(7): 2 218-2 227 (Yao Yibin, He Changyong, Zhang Bao, et al. A New Global Zenith Tropospheric Delay Model GZTD[J]. Chinese Journal of Geophysics, 2013, 56(7): 2 218-2 227) (0)
[7]
杨惠, 胡伍生, 余龙飞, 等. 一种新的区域对流层天顶延迟模型——GHop[J]. 武汉大学学报: 信息科学版, 2020, 45(2): 226-232 (Yang Hui, Hu Wusheng, Yu Longfei, et al. GHop: A New Regional Tropospheric Zenith Delay Model[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2): 226-232) (0)
[8]
张卿川, 李斐, 张胜凯, 等. 不同对流层天顶延迟模型在南极半岛地区适用性分析[C]. 第9届中国卫星导航学术年会, 哈尔滨, 2018 (Zhang Qingchuan, Li Fei, Zhang Shengkai, et al. Applicability Analysis of Different Tropospheric Zenith Delay Models in Antarctic Peninsula[C]. The 9th China Satellite Navigation Conference, Harbin, 2018) (0)
[9]
尹恒毅, 郭春喜, 姚顽强, 等. 不同对流层天顶延迟模型在陕西地区的精度及适用性分析[J]. 大地测量与地球动力学, 2020, 40(4): 391-394 (Yin Hengyi, Guo Chunxi, Yao Wanqiang, et al. Accuracy and Applicability of Different Tropospheric Zenith Delay Models in Shaanxi Province[J]. Journal of Geodesy and Geodynamics, 2020, 40(4): 391-394) (0)
[10]
He X X, Montillet J P, Fernandes R, et al. Review of Current GPS Methodologies for Producing Accurate Time Series and Their Error Sources[J]. Journal of Geodynamics, 2017, 106: 12-29 DOI:10.1016/j.jog.2017.01.004 (0)
[11]
Leandro R F, Langley R B, Santos M C. UNB3m_pack: A Neutral Atmosphere Delay Package for Radiometric Space Techniques[J]. GPS Solutions, 2008, 12(1): 65-70 DOI:10.1007/s10291-007-0077-5 (0)
[12]
Penna N, Dodson A, Chen W. Assessment of EGNOS Tropospheric Correction Model[J]. Journal of Navigation, 2001, 54(1): 37-55 DOI:10.1017/S0373463300001107 (0)
[13]
Wang R J, Xiang W Q, Xu Y, et al. Enhanced Glutamine Utilization Mediated by SLC1A5 and GPT2 is an Essential Metabolic Feature of Colorectal Signet Ring Cell Carcinoma with Therapeutic Potential[J]. Annals of Translational Medicine, 2020, 8(6): 302 DOI:10.21037/atm.2020.03.31 (0)
[14]
姚翔, 陈明剑, 王建光, 等. 高纬度地区GPT2w模型的适应性分析[J]. 空间科学学报, 2020, 40(2): 242-249 (Yao Xiang, Chen Mingjian, Wang Jianguang, et al. Adaptability Analysis of GPT2w Model in High Latitudes[J]. Chinese Journal of Space Science, 2020, 40(2): 242-249) (0)
Research on the Adaptability of Different Tropospheric Zenith Delay Models in Northwest China
WANG Xuke1     YAN Shiwei1     ZHAO Hong2     YANG Xiaolei3     
1. College of Surveying and Geographic Information, Lanzhou Resources and Environment Voc-Tech College, 36 Doujiashan, Lanzhou 730021, China;
2. Geodetic Data Processing Center, MNR, 334 East-Youxi Road, Xi'an 710054, China;
3. Shaanxi Coal Field Exploration and Mapping Co Ltd, 66 Shangqin Road, Xi'an 710005, China
Abstract: The GAMIT10.7 software is redeveloped based on the Fortran language. We use the Hopfield, Saastamoinen, Black, UNB3, EGNOS, GPT2w_1+Saastamoinen, GPT2w_5+Saastamoinen tropospheric zenith delay models to calculate the tropospheric delay in northwest China, and analyze the adaptability of different tropospheric delay models in the region. The experimental results show that in the measured meteorological data model: the Saastamoinen model the zenith tropospheric delay has the highest accuracy in northwest China. The average bias value and RMS value of each station are -1.67 cm and 3.83 cm, respectively. The Hopfield and Black models have the same accuracy. In the non-measured meteorological data models, the GPT2w_1+Saastamoinen model has the highest accuracy in obtaining the zenith tropospheric delay in northwest China, followed by the GPT2w_5+Saastamoinen model; the EGNOS model has the lowest accuracy. We find that the accuracy of different tropospheric delay models is affected by seasonality. For the seven tropospheric delay models, the absolute and RMS values of bias in summer are the greatest. The results are comparable in spring and autumn, and the absolute value of bias in winter and the RMS value is the smallest.
Key words: troposphere; zenith tropospheric delay; CMONOC; Saastamoinen model; seasonal effect