﻿ 天津地区VP宽频带倾斜仪与宽频带地震仪数据融合分析
 文章快速检索 高级检索
 大地测量与地球动力学  2021, Vol. 41 Issue (7): 759-764  DOI: 10.14075/j.jgg.2021.07.017

### 引用本文

ZHU Bingqing, WANG Jianguo, GUO Wei, et al. Data Fusion Analysis of Vertical Pendulum Broadband Tiltmeter and Broadband Seismometer in Tianjin[J]. Journal of Geodesy and Geodynamics, 2021, 41(7): 759-764.

### Foundation support

The Spark Program of Earthquake Technology of CEA, No. XH20002; Combination Project with Monitoring, Prediction and Scientific Research of Earthquake Technology, CEA, No. 202001005, 202001006.

### Corresponding author

WANG Jianguo, senior engineer, majors in observation and operation management of seismic geophysical network, E-mail: tjjgw@163.com.

### 第一作者简介

ZHU Bingqing, engineer, majors in deformation observation and seismology, E-mail: 77684423@qq.com.

### 文章历史

1. 天津市地震局，天津市友谊路19号，300201;
2. 中国地震局地球物理研究所，北京市民族大学南路5号，100081

VP宽频带倾斜仪是在VS型垂直摆倾斜仪基础上研发的新型地震前兆观测设备，能够记录到更加丰富的高频地动信息[1]。VP宽频带倾斜仪可记录到特殊的同震波形，其震时形变波主要记录倾斜、应变或应力的瞬时波动，可反映地震震源与地震波传播介质的复杂信息。

1 台站概况与研究数据

 图 1 基于地震前兆台网观测数据跟踪分析平台统计的地震位置 Fig. 1 Earthquake location statistics based on precursory network observation data tracking and analysis platform
2 时频分析和震相识别结果

 ${A_j}\left[ {f\left( t \right)} \right] = \sum\limits_k H \left( {2t - k} \right){A_{j - 1}}\left[ {f\left( t \right)} \right]$ (1)
 ${D_j}\left[ {f\left( t \right)} \right] = \sum\limits_k G \left( {2t - k} \right){A_{j - 1}}\left[ {f\left( t \right)} \right]$ (2)

 $s\left( {\omega , \tau } \right) = \int_R f \left( t \right)\overline {g\left( {t - \tau } \right)} {{\rm{e}}^{ - {\rm{i}}\omega t}}{\rm{d}}t$ (3)

 图 2 VP宽频带倾斜仪NS向记录到日本本州东岸近海6.2级地震 Fig. 2 Japan MS6.2 earthquake recorded by NS direction of VP broadband tiltmeter

 图 3 VP宽频带倾斜仪EW向记录到日本本州东岸近海6.2级地震 Fig. 3 Japan MS6.2 earthquake recorded by EW direction of VP broadband tiltmeter

 图 4 VP宽频带倾斜仪NS向记录到菲律宾棉兰老岛6.8级地震 Fig. 4 Philippines Mindanao MS6.8 earthquake recorded by NS direction of VP broadband tiltmeter

 图 5 VP宽频带倾斜仪NS向记录到古巴南部海域7.7级地震 Fig. 5 Cuba M7.7 earthquake recorded by NS direction of VP broadband tiltmeter

 图 6 VP宽频带倾斜仪和地震仪记录到河北唐山4.5级地震 Fig. 6 Tangshan M4.5 earthquake recorded by VP broadband tiltmeter and seismometer

 图 7 VP宽频带倾斜仪和地震仪记录到菲律宾棉兰老岛6.8级地震 Fig. 7 Philippines Mindanao MS6.8 earthquake recorded by VP broadband tiltmeter and seismometer
3 VP宽频带倾斜仪与地震仪振幅关系

3.1 宽频带数字地震资料测定面波震级

 ${M_S}({\rm{BB}}) = {\rm{lg}}\frac{{{V_{{\rm{max}}}}}}{{2{\rm{ \mathsf{ π} }}}} + 1.66{\rm{lg}}\Delta + 3.3$ (4)

3.2 VP宽频带倾斜仪同震波形振幅-震级关系

VP宽频带倾斜仪的固有周期可简化为$T = 2{\rm{ \mathsf{ π} }}\sqrt {\frac{L}{g}}$，式中L为VP宽频带倾斜仪的折合摆长，g为重力加速度[15]。仪器的观测基线较短，阻尼系数较低，可记录到比较丰富的波谱信息。同震形变波的振幅与震级呈正相关，且震中距、震源深度、地震波传播路径信息、仪器响应信息等因素同样决定着形变波的特点。为简化研究对象，选择某区域内地震，尽量减小震源参数和传播路径的差异，讨论VP宽频带倾斜仪振幅与震级的关系。

 图 8 地震振幅与震级关系 Fig. 8 Relationship between amplitude and magnitude
3.3 两套仪器振幅关系

 ${M_S}({\rm{BB}}) = {\rm{lg}}\left( {\frac{{{V_{{\rm{max}}}}}}{{2{\rm{ \mathsf{ π} }}}} + 1.66{\rm{lg}}\Delta + 3.3} \right)$ (5)
 $A = 4.461 \times {10^{ - 4}}{{\rm{e}}^{1.749M}}$ (6)

 $A = 7.8 \times {10^{ - 4}}\left( {\frac{{{V_{{\rm{max}}}}}}{{2{\rm{ \mathsf{ π} }}}} + 1.66{\rm{lg}}\Delta + 3.3} \right)$ (7)

 ${M_S}({\rm{BB}}) = {\rm{lg}}\left( {\frac{{{V_{{\rm{max}}}}}}{{2{\rm{ \mathsf{ π} }}}} + 1.66{\rm{lg}}\Delta + 3.3} \right)$ (8)
 $A = 5.881 \times {10^{ - 5}}{{\rm{e}}^{2.156M}}$ (9)

 $A = 1.3 \times {10^{ - 4}}\left( {\frac{{{V_{{\rm{max}}}}}}{{2{\rm{ \mathsf{ π} }}}} + 1.66{\rm{lg}}\Delta + 3.3} \right)$ (10)

4 结语

1) VP宽频带倾斜仪能够清晰记录P波、S波和面波震相，曲线形态与宽频带地震仪的波形具有高度一致性。VP宽频带倾斜仪记录到的地方震形变同震波形仍以突跳和阶跃形式为主，同震波形能量主要集中在0.03 Hz，对应30 s周期面波，并且能够观测到面波频散现象。相比于宽频带地震仪，VP宽频带倾斜仪更侧重于低频端测量。

2) VP宽频带倾斜仪同震波形的最大振幅与震级存在对数函数关系。统计蓟县地震台VP宽频带倾斜仪记录的中国台湾-东南亚地区及日本岛弧地区浅源地震的振幅和震级，获得区域数学拟合公式，并根据宽频带数字地震资料测定面波震级公式，初步建立蓟县地震台2套仪器最大振幅的数学关系。

3) 多源数据融合有助于完整记录地面运动，实现不同学科的优势互补。VP宽频带倾斜仪的同震波形具有可靠性，未来可探索高频形变数据参与地震定位或震源机制解反演，并提供有效约束。VP宽频带倾斜仪具有记录远场中强震的优势，可尝试融合地震仪与倾斜仪面波资料联合反演地下速度结构，甚至利用VP宽频带倾斜仪的背景噪声约束台站下方结构，通过VP宽频带倾斜仪观测的波形数据测定地震震级也是新的研究方向。

 [1] 张燕, 吕品姬, 吴云. 宽频仪器观测的特定频段震颤波产生的原因分析[J]. 大地测量与地球动力学, 2014, 34(1): 47-50 (Zhang Yan, Lü Pinji, Wu Yun. On the Reasons Generating High Frequency Tremor Observed by Broadband Instruments[J]. Journal of Geodesy and Geodynamics, 2014, 34(1): 47-50) (0) [2] 章鑫, 叶青. 闽粤地区同震形变波记录序列分析及小波能谱特征[J]. 大地测量与地球动力学, 2017, 37(12): 1 302-1 307 (Zhang Xin, Ye Qing. Sequence Analyses and Wavelet Spectrum Characters of Co-Seismic Deformation Wave Record in Fujian-Guangdong Area[J]. Journal of Geodesy and Geodynamics, 2017, 37(12): 1 302-1 307) (0) [3] 张小艳, 熊峰, 王旭东, 等. 内蒙古中部地区形变主要干扰的时频响应特征分析[J]. 中国地震, 2019, 35(4): 718-725 (Zhang Xiaoyan, Xiong Feng, Wang Xudong, et al. Analysis of Time-Frequency Response Characteristics for Main Deformation Disturbances in Central Inner Mongolia[J]. Earthquake Research in China, 2019, 35(4): 718-725 DOI:10.3969/j.issn.1001-4683.2019.04.012) (0) [4] 龚丽文, 陈丽娟, 刘琦, 等. 基于形变仪器同震形变波衰减规律的研究[J]. 震灾防御技术, 2018, 13(2): 399-409 (Gong Liwen, Chen Lijuan, Liu Qi, et al. Study on Attenuation Law of Co-Seismic Deformation Waves Based on Instruments[J]. Technology for Earthquake Disaster Prevention, 2018, 13(2): 399-409) (0) [5] 胡宝慧, 张浩, 常金龙, 等. 鹤岗地震台垂直摆倾斜仪记录同震响应[J]. 地震地磁观测与研究, 2017, 38(4): 137-141 (Hu Baohui, Zhang Hao, Chang Jinlong, et al. The Co-Seismic Response of Vertical Pendulum Tiltmeter at Hegang Seismic Station[J]. Seismological and Geomagnetic Observation and Research, 2017, 38(4): 137-141 DOI:10.3969/j.issn.1003-3246.2017.04.023) (0) [6] 钟天任, 严兴, 刘吉平, 等. 广东形变观测台网垂直摆倾斜仪同震响应特征[J]. 地震地磁观测与研究, 2016, 37(3): 96-101 (Zhong Tianren, Yan Xing, Liu Jiping, et al. Co-Seismic Response Characteristics of Vertical Pendulum Tiltmeters in Guangdong Province[J]. Seismological and Geomagnetic Observation and Research, 2016, 37(3): 96-101) (0) [7] 吴利军, 冯琼松, 张波. 体应变地震波最大振幅与地震震级和震中距的统计关系探讨[J]. 震灾防御技术, 2016, 11(3): 592-599 (Wu Lijun, Feng Qiongsong, Zhang Bo. The Statistical Relationship between the Maximum Amplitude of the Body Strain Record and the Surface-Wave Magnitude, Epicenter Distance[J]. Technology for Earthquake Disaster Prevention, 2016, 11(3): 592-599) (0) [8] 李宏男, 孙立晔. 地震面波产生的地震动转动分量研究[J]. 地震工程与工程振动, 2001, 21(1): 15-23 (Li Hongnan, Sun Liye. Rotational Components of Earthquake Ground Motions Derived from Surface Waves[J]. Earthquake Engineering and Engineering Vibration, 2001, 21(1): 15-23 DOI:10.3969/j.issn.1000-1301.2001.01.003) (0) [9] 周聪, 曾祥芝, 王庆良, 等. 基于地倾斜数据的九寨沟MS7.0地震旋转运动场构建[J]. 中国科学: 地球科学, , 2019, 49(5): 811-821 (Zhou Cong, Zeng Xiangzhi, Wang Qingliang, et al. Rotational Motions of the MS7.0 Jiuzhaigou Earthquake with Ground Tilt Data[J]. Science China: Earth Sciences, 2019, 49(5): 811-821) (0) [10] 吕品姬, 赵斌, 陈志遥, 等. 小波分解-STFT方法在地形变观测数据中的应用[J]. 大地测量与地球动力学, 2011, 31(5): 136-140 (Lü Pinji, Zhao Bin, Chen Zhiyao, et al. Application of Wavelet-Decomposition and STFT Method in Continuous Deformation Observation Analysis[J]. Journal of Geodesy and Geodynamics, 2011, 31(5): 136-140) (0) [11] 周江林, 沈萍, 田鑫. 北京地震台gPhone重力仪同震响应特征分析[J]. 中国地震, 2015, 31(3): 553-561 (Zhou Jianglin, Shen Ping, Tian Xin. Analysis of the Characteristics of Co-Seismic Response of gPhone Gravimeter at Beijing Seismic Station[J]. Earthquake Research in China, 2015, 31(3): 553-561 DOI:10.3969/j.issn.1001-4683.2015.03.010) (0) [12] 叶青, 倪友忠, 方韬. 佘山地震台DZW重力仪同震响应特征分析[J]. 工程地球物理学报, 2020, 17(2): 190-197 (Ye Qing, Ni Youzhong, Fang Tao. Analysis of Coseismic Response Characteristics of DZW Gravimeter at Sheshan Seismic Station[J]. Chinese Journal of Engineering Geophysics, 2020, 17(2): 190-197 DOI:10.3969/j.issn.1672-7940.2020.02.008) (0) [13] 刘瑞丰, 陈运泰, Peter Bormann, 等. 中国地震台网与美国地震台网测定震级的对比(Ⅱ)——面波震级[J]. 地震学报, 2006, 28(1): 1-7 (Liu Ruifeng, Chen Yuntai, Bormann P, et al. Comparison between Earthquake Magnitudes Determined by China Seismograph Network and U.S. Seismograph Network(Ⅱ): Surface Wave Magnitude[J]. Acta Seismologica Sinica, 2006, 28(1): 1-7 DOI:10.3321/j.issn:0253-3782.2006.01.001) (0) [14] 刘瑞丰, 任克新, 张立文, 等. 利用宽频带数字地震资料测定地震震级的方法研究[J]. 地震地磁观测与研究, 2011, 32(3): 1-8 (Liu Ruifeng, Ren Kexin, Zhang Liwen, et al. The Method of the Measurement of Seismic Magnitude Based on Broadband Digital Waveform[J]. Seismological and Geomagnetic Observation and Research, 2011, 32(3): 1-8 DOI:10.3969/j.issn.1003-3246.2011.03.001) (0) [15] 吕品姬, 李正媛, 耿丽霞, 等. VP型垂直摆倾斜仪观测频带的分析及改进[J]. 大地测量与地球动力学, 2020, 40(5): 540-545 (Lü Pinji, Li Zhengyuan, Geng Lixia, et al. Research and Improvement of the Observation Band of the Vertical Pendulum Tilt Meter[J]. Journal of Geodesy and Geodynamics, 2020, 40(5): 540-545) (0) [16] 牛安福, 张晶, 吉平. 强地震引起的同震形变响应[J]. 内陆地震, 2005, 19(1): 1-7 (Niu Anfu, Zhang Jing, Ji Ping. Coseismic Deformation Response of Strong Earthquake[J]. Inland Earthquake, 2005, 19(1): 1-7 DOI:10.3969/j.issn.1001-8956.2005.01.001) (0)
Data Fusion Analysis of Vertical Pendulum Broadband Tiltmeter and Broadband Seismometer in Tianjin
ZHU Bingqing1,2     WANG Jianguo1     GUO Wei1     ZHAO Liming1     WANG Weitao2
1. Tianjin Earthquake Agency, 19 Youyi Road, Tianjin 300201, China;
2. Institute of Geophysics, CEA, 5 South-Minzudaxue Road, Beijing 100081, China
Abstract: In this paper, the typical coseismic waveforms collected by vertical pendulum broadband tiltmeter at Jixian seismic station in Tianjin and the data from the seismometer at the same site are studied. We obtain and identify the spectrum characteristics, frequency response and phase composition of coseismic waveforms of vertical pendulum broadband tiltmeter in Tianjin. Based on the precursory network observation data tracking and analysis platform, we count the amplitude and magnitude of vertical pendulum broadband tiltmeter in different regions, and fit the relationship between amplitude and magnitude by empirical formula, and realize the maximum amplitude conversion of surface wave of vertical pendulum broadband tiltmeter and broadband seismometer at Jixian seismic station.The results show that the vertical pendulum broadband tiltmeter has rich recording frequency band and high consistency with broadband seismometer in waveform.
Key words: vertical pendulum broadband tiltmeter; broadband seismometer; time-frequency analysis; phase identification; relationship between amplitude and magnitude