文章快速检索     高级检索
  大地测量与地球动力学  2020, Vol. 40 Issue (12): 1313-1316  DOI: 10.14075/j.jgg.2020.12.021

引用本文  

王杰龙, 陈义. 扩展的Helmert型方差分量估计的通用公式[J]. 大地测量与地球动力学, 2020, 40(12): 1313-1316.
WANG Jielong, CHEN Yi. General Formulae of Extended Helmert Type for Estimating Variance Components[J]. Journal of Geodesy and Geodynamics, 2020, 40(12): 1313-1316.

第一作者简介

王杰龙,硕士生,主要研究方向为现代大地测量与GNSS数据处理,E-mail:wangjielong@tongji.edu.cn

About the first author

WANG Jielong, postgraduate, majors in modern geodetic and GNSS data processing, E-mail:wangjielong@tongji.edu.cn.

文章历史

收稿日期:2020-03-03
扩展的Helmert型方差分量估计的通用公式
王杰龙1     陈义1     
1. 同济大学测绘与地理信息学院,上海市四平路1239号,200092
摘要:基于概括函数模型,从Helmert型方差分量估计原理导出处理同类观测值包含多个方差分量的估计公式,即扩展的Helmert型方差分量通用公式,并给出其简化通用公式及特殊情况。
关键词方差-协方差分量估计概括函数模型通用公式Helmert方差分量估计

尽管目前方差-协方差分量估计的方法众多[1-12],但大多数方法都假定每类观测值仅含1个方差分量或仅估计单个方差分量。刘长建等[4]提出扩展的Helmert型方差分量估计,但其公式推导是基于间接平差的。本文基于概括函数模型,从每类观测值仅含1个方差分量扩展到每类观测值含有多个方差分量出发,推导出扩展的Helmert型方差分量估计的通用公式,并给出其特殊情况和简化公式。

1 概括函数模型

概括平差函数模型是间接平差、附有限制条件的间接平差、条件平差和附有参数的条件平差的统一,其一般的函数模型为[3]

$ \left\{ {\begin{array}{*{20}{l}} {\mathop F\limits_{c \times 1} (\mathit{\boldsymbol{\hat L}},\mathit{\boldsymbol{\hat X}}) = 0}\\ {\mathop \varPhi \limits_{s \times 1} (\mathit{\boldsymbol{\hat X}}) = 0} \end{array}} \right. $ (1)

式中,L为观测值向量,X为参数向量,c为一般条件方程个数,s为限制条件方程个数。如果式(1)是非线性的,按泰勒公式展开为线性形式,则概括函数模型的线性形式为:

$ \underset{c\times n}{\mathit{\boldsymbol{A}}}\,\underset{n\times 1}{\mathit{\boldsymbol{V}}}\,+\underset{c\times u}{\mathit{\boldsymbol{B}}}\,\underset{u\times 1}{\mathit{\boldsymbol{x}}}\,+\underset{c\times 1}{\mathit{\boldsymbol{W}}}\,=\underset{c\times 1}{\mathop{\mathbf{0}}}\, $ (2)
$ \underset{s\times u}{\mathit{\boldsymbol{C}}}\,\underset{u\times 1}{\mathit{\boldsymbol{\hat{x}}}}\,+\underset{s\times 1}{\mathop{{{\mathit{\boldsymbol{W}}}_{x}}}}\,=\underset{s\times 1}{\mathop{\mathbf{0}}}\, $ (3)

式中,n为观测值个数,u为参数个数,且满足r+u=s+cr为多余观测数,系数矩阵的秩分别为R(A)=cR(B)=uR(C)=s。设随机模型为:

$ \underset{n\times n}{\mathop{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}}}\,=\sigma _{0}^{2}\mathit{\boldsymbol{Q}}=\sigma _{0}^{2}{{\mathit{\boldsymbol{P}}}^{-1}} $ (4)

式中,σ02为单位权方差,QP分别为观测值的协因数阵和权阵。根据最小二乘原理,在VTPV=min的条件下构造条件极值方程为:

$ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{ \boldsymbol{\varPhi} }} = {\mathit{\boldsymbol{V}}^{\rm{T}}}\mathit{\boldsymbol{PV}} - 2{\mathit{\boldsymbol{K}}^{\rm{T}}}(\mathit{\boldsymbol{AV}} + \mathit{\boldsymbol{B\hat x}} + \mathit{\boldsymbol{W}}) - }\\ {2\mathit{\boldsymbol{K}}_s^{\rm{T}}(\mathit{\boldsymbol{C\hat x}} + {\mathit{\boldsymbol{W}}_x})} \end{array} $ (5)

式中,KKs分别对应于式(2)和式(3)的联系数。将式(5)分别对V$\mathit{\boldsymbol{\hat x}}$取偏导并令其为0,再和式(2)及式(3)联立可得:

$ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{\hat x}} = - (\mathit{\boldsymbol{N}}_{BB}^{ - 1} - \mathit{\boldsymbol{N}}_{BB}^{ - 1}{\mathit{\boldsymbol{C}}^{\rm{T}}}\mathit{\boldsymbol{N}}_{CC}^{ - 1}\mathit{\boldsymbol{CN}}_{BB}^{ - 1}){\mathit{\boldsymbol{W}}_e} - }\\ {\mathit{\boldsymbol{N}}_{BB}^{ - 1}{\mathit{\boldsymbol{C}}^{\rm{T}}}\mathit{\boldsymbol{N}}_{CC}^{ - 1}{\mathit{\boldsymbol{W}}_x}} \end{array} $ (6)
$ \mathit{\boldsymbol{V}} = - \mathit{\boldsymbol{Q}}{\mathit{\boldsymbol{A}}^{\rm{T}}}\mathit{\boldsymbol{N}}_{AA}^{ - 1}(\mathit{\boldsymbol{W}} + \mathit{\boldsymbol{B\hat x}}) $ (7)

式中,

$ \begin{array}{*{20}{l}} {{\mathit{\boldsymbol{N}}_{AA}} = \mathit{\boldsymbol{AQ}}{\mathit{\boldsymbol{A}}^{\rm{T}}},{\mathit{\boldsymbol{N}}_{BB}} = {\mathit{\boldsymbol{B}}^{\rm{T}}}\mathit{\boldsymbol{N}}_{AA}^{ - 1}\mathit{\boldsymbol{B}},{\mathit{\boldsymbol{W}}_e} = }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\mathit{\boldsymbol{B}}^{\rm{T}}}\mathit{\boldsymbol{N}}_{AA}^{ - 1}\mathit{\boldsymbol{W}},{\mathit{\boldsymbol{N}}_{CC}} = \mathit{\boldsymbol{CN}}_{BB}^{ - 1}{\mathit{\boldsymbol{C}}^{\rm{T}}}} \end{array} $ (8)

联系数K的求解详见文献[13],参数向量$\mathit{\boldsymbol{\hat x}}$和常数项W的协因数阵为:

$ {{\mathit{\boldsymbol{Q}}_K} = \mathit{\boldsymbol{N}}_{AA}^{ - 1} - \mathit{\boldsymbol{N}}_{AA}^{ - 1}\mathit{\boldsymbol{B}}{\mathit{\boldsymbol{Q}}_{\hat x\hat x}}{\mathit{\boldsymbol{B}}^{\rm{T}}}\mathit{\boldsymbol{N}}_{AA}^{ - 1}} $ (9)
$ {{\mathit{\boldsymbol{Q}}_{\hat x\hat x}} = \mathit{\boldsymbol{N}}_{BB}^{ - 1} - \mathit{\boldsymbol{N}}_{BB}^{ - 1}{\mathit{\boldsymbol{C}}^{\rm{T}}}\mathit{\boldsymbol{N}}_{CC}^{ - 1}\mathit{\boldsymbol{CN}}_{BB}^{ - 1}} $ (10)
$ {\mathit{\boldsymbol{Q}}_W} = \mathit{\boldsymbol{AQ}}{\mathit{\boldsymbol{A}}^{\rm{T}}} = {\mathit{\boldsymbol{N}}_{AA}} $ (11)

应用协方差传播定律,由式(7)可得V的方差阵为:

$ {\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_V} = \mathit{\boldsymbol{Q}}{\mathit{\boldsymbol{A}}^{\rm{T}}}{\mathit{\boldsymbol{Q}}_K}{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_w}{\mathit{\boldsymbol{Q}}_K}\mathit{\boldsymbol{AQ}} $ (12)

式中,ΣW为常数项W的方差阵,且由式(11)可知:

$ {\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_W} = \sigma _0^2{\mathit{\boldsymbol{Q}}_W} = \sigma _0^2\mathit{\boldsymbol{AQ}}{\mathit{\boldsymbol{A}}^{\rm{T}}} = \mathit{\boldsymbol{A}}\sigma _0^2\mathit{\boldsymbol{Q}}{\mathit{\boldsymbol{A}}^{\rm{T}}} = \mathit{\boldsymbol{A \boldsymbol{\varSigma} }}{\mathit{\boldsymbol{A}}^{\rm{T}}} $ (13)

根据文献[1]中二次型的期望公式E(xTAx)=tr(AΣxx)+μxTx,顾及E(V)=0可得:

$ \begin{array}{*{20}{l}} {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} E({\mathit{\boldsymbol{V}}^{\rm{T}}}\mathit{\boldsymbol{PV}}) = {\rm{tr }}(\mathit{\boldsymbol{P}}{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_V}) = }\\ {{\rm{ tr}} ({\mathit{\boldsymbol{Q}}_K}{\mathit{\boldsymbol{N}}_{AA}}{\mathit{\boldsymbol{Q}}_K}{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_W}) = {\rm{tr}} ({\mathit{\boldsymbol{Q}}_K}{\mathit{\boldsymbol{N}}_{AA}}{\mathit{\boldsymbol{Q}}_K}{\mathit{\boldsymbol{N}}_{AA}})\sigma _0^2} \end{array} $ (14)
2 扩展的Helmert型方差分量通用公式

假设推导的函数模型和式(2)、(3)一致,但不同于式(4)的随机模型,将式(4)的随机模型根据文献[13]扩展到一般的随机模型:

$ \mathit{\boldsymbol{ \boldsymbol{\varSigma} }} = \left[ {\begin{array}{*{20}{l}} {{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_1}}&{}&{}&{}\\ {}&{{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_2}}&{}&{}\\ {}&{}& \ddots &{}\\ {}&{}&{}&{{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_k}} \end{array}} \right] $ (15)

假设观测值向量L含有k类独立的观测值L1, L2,…,Lk,即

$ \mathit{\boldsymbol{L}} = \left[ {\begin{array}{*{20}{c}} {\mathop {{\mathit{\boldsymbol{L}}_1}}\limits_{{n_1} \times 1} }\\ {\mathop {{\mathit{\boldsymbol{L}}_2}}\limits_{{n_2} \times 1} }\\ \vdots \\ {\mathop {{\mathit{\boldsymbol{L}}_k}}\limits_{{n_k} \times 1} } \end{array}} \right],\mathit{\boldsymbol{V}} = \left[ {\begin{array}{*{20}{c}} {\mathop {{\mathit{\boldsymbol{V}}_1}}\limits_{{n_1} \times 1} }\\ {\mathop {{\mathit{\boldsymbol{V}}_2}}\limits_{{n_2} \times 1} }\\ \vdots \\ {\mathop {{\mathit{\boldsymbol{V}}_k}}\limits_{{n_k} \times 1} } \end{array}} \right],\mathit{\boldsymbol{A}} = \left[ {\mathop {{\mathit{\boldsymbol{A}}_1}}\limits_{c \times {n_1}} ,\mathop {{\mathit{\boldsymbol{A}}_2}}\limits_{c \times {n_2}} , \cdots ,\mathop {{\mathit{\boldsymbol{A}}_k}}\limits_{c \times {n_k}} } \right] $ (16)

Σ1, Σ2, …Σk为各类观测值的方差阵,且假设每类观测值含有多个方差分量,即

$ \left\{ {\begin{array}{*{20}{l}} {{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_1} = \sigma _{11}^2{\mathit{\boldsymbol{Q}}_{11}} + \sigma _{12}^2{\mathit{\boldsymbol{Q}}_{12}} + \cdots + \sigma _{1{n_1}}^2{\mathit{\boldsymbol{Q}}_{1{n_1}}}}\\ {{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_2} = \sigma _{21}^2{\mathit{\boldsymbol{Q}}_{21}} + \sigma _{22}^2{\mathit{\boldsymbol{Q}}_{22}} + \cdots + \sigma _{2{n_2}}^2{\mathit{\boldsymbol{Q}}_{2{n_2}}}}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \ldots }\\ {{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_k} = \sigma _{k1}^2{\mathit{\boldsymbol{Q}}_{k1}} + \sigma _{k2}^2{\mathit{\boldsymbol{Q}}_{k2}} + \cdots + \sigma _{k{n_k}}^2{\mathit{\boldsymbol{Q}}_{k{n_k}}}} \end{array}} \right. $ (17)

式中,σij2为待求的方差分量,Qij为已知的协因数阵,σij2Qiji为第i类观测值,j为第i类观测值中第j个方差分量,n1, n2, …nk为第k类观测值的方差分量的个数。则式(2)可写为:

$ {\mathit{\boldsymbol{A}}_1}{\mathit{\boldsymbol{V}}_1} + {\mathit{\boldsymbol{A}}_2}{\mathit{\boldsymbol{V}}_2} + \cdots + {\mathit{\boldsymbol{A}}_k}{\mathit{\boldsymbol{V}}_k} + \mathit{\boldsymbol{B\hat x}} + \mathit{\boldsymbol{W}} = 0 $ (18)

令待求的σij2初值为1,则式(15)可变为:

$ \begin{array}{l} {\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_0} = \left[ {\begin{array}{*{20}{l}} {{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_{10}}}&{}&{}&{}\\ {}&{{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_{20}}}&{}&{}\\ {}&{}& \ddots &{}\\ {}&{}&{}&{{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_{k0}}} \end{array}} \right] = \mathit{\boldsymbol{Q}} = \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left[ {\begin{array}{*{20}{l}} {{\mathit{\boldsymbol{Q}}_1}}&{}&{}&{}\\ {}&{{\mathit{\boldsymbol{Q}}_2}}&{}&{}\\ {}&{}& \ddots &{}\\ {}&{}&{}&{{\mathit{\boldsymbol{Q}}_k}} \end{array}} \right] \end{array} $ (19)

式中,

$ \left\{ {\begin{array}{*{20}{l}} {{\mathit{\boldsymbol{Q}}_1} = {\mathit{\boldsymbol{Q}}_{11}} + {\mathit{\boldsymbol{Q}}_{12}} + \cdots + {\mathit{\boldsymbol{Q}}_{1{n_1}}}}\\ {{\mathit{\boldsymbol{Q}}_2} = {\mathit{\boldsymbol{Q}}_{21}} + {\mathit{\boldsymbol{Q}}_{22}} + \cdots + {\mathit{\boldsymbol{Q}}_{2{n_2}}}}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cdots }\\ {{\mathit{\boldsymbol{Q}}_k} = {\mathit{\boldsymbol{Q}}_{k1}} + {\mathit{\boldsymbol{Q}}_{k2}} + \cdots + {\mathit{\boldsymbol{Q}}_{k{n_k}}}} \end{array}} \right. $ (20)

再令

$ \mathit{\boldsymbol{P}} = {\mathit{\boldsymbol{Q}}^{ - 1}} = \left[ {\begin{array}{*{20}{l}} {{\mathit{\boldsymbol{P}}_1}}&{}&{}&{}\\ {}&{{\mathit{\boldsymbol{P}}_2}}&{}&{}\\ {}&{}& \ddots &{}\\ {}&{}&{}&{{\mathit{\boldsymbol{P}}_k}} \end{array}} \right] $ (21)

式中,Pi=(Qi1+Qi2+…+Qini)-1, i=1, 2, …kP为已知的初始权阵。再令

$ \left\{ {\begin{array}{*{20}{l}} {{\mathit{\boldsymbol{P}}_{i1}} = {\mathit{\boldsymbol{P}}_i}{\mathit{\boldsymbol{Q}}_{i1}}{\mathit{\boldsymbol{P}}_i}}\\ {{\mathit{\boldsymbol{P}}_{i2}} = {\mathit{\boldsymbol{P}}_i}{\mathit{\boldsymbol{Q}}_{i2}}{\mathit{\boldsymbol{P}}_i}}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \ldots }\\ {{\mathit{\boldsymbol{P}}_{i{n_i}}} = {\mathit{\boldsymbol{P}}_i}{\mathit{\boldsymbol{Q}}_{i{n_i}}}{\mathit{\boldsymbol{P}}_i}} \end{array},i = 1,2, \cdots k} \right. $ (22)

则有:

$ \left\{ {\begin{array}{*{20}{l}} {{\mathit{\boldsymbol{P}}_1} = {\mathit{\boldsymbol{P}}_{11}} + {\mathit{\boldsymbol{P}}_{12}} + \cdots + {\mathit{\boldsymbol{P}}_{1{n_1}}}}\\ {{\mathit{\boldsymbol{P}}_2} = {\mathit{\boldsymbol{P}}_{21}} + {\mathit{\boldsymbol{P}}_{22}} + \cdots + {\mathit{\boldsymbol{P}}_{2{n_2}}}}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cdots }\\ {{\mathit{\boldsymbol{P}}_k} = {\mathit{\boldsymbol{P}}_{k1}} + {\mathit{\boldsymbol{P}}_{k2}} + \cdots + {\mathit{\boldsymbol{P}}_{k{n_k}}}} \end{array}} \right. $ (23)

将式(16)、(19)、(20)代入NAA=AQAT可得:

$ \begin{array}{*{20}{c}} {{\mathit{\boldsymbol{N}}_{AA}} = \sum\limits_{i = 1}^{{n_1}} {{\mathit{\boldsymbol{A}}_1}} {\mathit{\boldsymbol{Q}}_{1i}}\mathit{\boldsymbol{A}}_1^{\rm{T}} + \sum\limits_{j = 1}^{{n_2}} {{\mathit{\boldsymbol{A}}_2}} {\mathit{\boldsymbol{Q}}_{2j}}\mathit{\boldsymbol{A}}_2^{\rm{T}} + \cdots }\\ { + \sum\limits_{h = 1}^{{n_k}} {{\mathit{\boldsymbol{A}}_k}} {\mathit{\boldsymbol{Q}}_{kh}}\mathit{\boldsymbol{A}}_k^{\rm{T}}} \end{array} $ (24)

ΣW=AΣAT,顾及式(16)、(17)有:

$ \begin{array}{*{20}{l}} {{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_W} = \sum\limits_{i = 1}^{{n_1}} {{\mathit{\boldsymbol{A}}_1}} \sigma _{1i}^2{\mathit{\boldsymbol{Q}}_{1i}}\mathit{\boldsymbol{A}}_1^{\rm{T}} + \sum\limits_{j = 1}^{{n_2}} {{\mathit{\boldsymbol{A}}_2}} \sigma _{2j}^2{\mathit{\boldsymbol{Q}}_{2j}}\mathit{\boldsymbol{A}}_2^{\rm{T}} + \cdots }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + \sum\limits_{h = 1}^{{n_k}} {{\mathit{\boldsymbol{A}}_k}} \sigma _{kh}^2{\mathit{\boldsymbol{Q}}_{kh}}\mathit{\boldsymbol{A}}_k^{\rm{T}}} \end{array} $ (25)

$ \left\{ {\begin{array}{*{20}{l}} {{\mathit{\boldsymbol{A}}_1}{\mathit{\boldsymbol{Q}}_{1i}}\mathit{\boldsymbol{A}}_1^{\rm{T}} = {\mathit{\boldsymbol{N}}_{1i}},i = 1,2, \cdots ,{n_1}}\\ {{\mathit{\boldsymbol{A}}_2}{\mathit{\boldsymbol{Q}}_{2j}}\mathit{\boldsymbol{A}}_2^{\rm{T}} = {\mathit{\boldsymbol{N}}_{2j}},j = 1,2, \cdots ,{n_2}}\\ {{\kern 1pt} {\kern 1pt} \cdots }\\ {{\mathit{\boldsymbol{A}}_k}{\mathit{\boldsymbol{Q}}_{kh}}\mathit{\boldsymbol{A}}_k^{\rm{T}} = {\mathit{\boldsymbol{N}}_{kh}},h = 1,2, \cdots ,{n_k}} \end{array}} \right. $ (26)
$ \begin{array}{*{20}{c}} {\sum\limits_{i = 1}^{{n_1}} {{\mathit{\boldsymbol{A}}_1}} {\mathit{\boldsymbol{Q}}_{1i}}\mathit{\boldsymbol{A}}_1^{\rm{T}} = {\mathit{\boldsymbol{N}}_1},\sum\limits_{j = 1}^{{n_2}} {{\mathit{\boldsymbol{A}}_2}} {\mathit{\boldsymbol{Q}}_{2j}}\mathit{\boldsymbol{A}}_2^{\rm{T}} = }\\ {{\mathit{\boldsymbol{N}}_2}, \cdots ,\sum\limits_{h = 1}^{{n_k}} {{\mathit{\boldsymbol{A}}_k}} {\mathit{\boldsymbol{Q}}_{kh}}\mathit{\boldsymbol{A}}_k^{\rm{T}} = {\mathit{\boldsymbol{N}}_k}} \end{array} $ (27)

则式(24)、(25)可改写为:

$ {\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_W} = \sum\limits_{m = 1}^{{n_1}} {\sigma _{1m}^2} {\mathit{\boldsymbol{N}}_{1m}} + \sum\limits_{p = 1}^{{n_2}} {\sigma _{2p}^2} {\mathit{\boldsymbol{N}}_{2p}} + \cdots + \sum\limits_{q = 1}^{{n_k}} {\sigma _{kq}^2} {\mathit{\boldsymbol{N}}_{kq}} $ (28)
$ {\mathit{\boldsymbol{N}}_{AA}} = \sum\limits_{i = 1}^{{n_1}} {{\mathit{\boldsymbol{N}}_{1i}}} + \sum\limits_{j = 1}^{{n_2}} {{\mathit{\boldsymbol{N}}_{2j}}} + \cdots + \sum\limits_{h = 1}^{{n_k}} {{\mathit{\boldsymbol{N}}_{kh}}} $ (29)

式(16)、(21)、(22)代入式(14)左端VTPV可得:

$ \begin{array}{l} {\mathit{\boldsymbol{V}}^{\rm{T}}}\mathit{\boldsymbol{PV}} = \sum\limits_{l = 1}^k {\mathit{\boldsymbol{V}}_l^{\rm{T}}} {\mathit{\boldsymbol{P}}_l}{\mathit{\boldsymbol{V}}_l} = \sum\limits_{i = 1}^{{n_i}} {\mathit{\boldsymbol{V}}_1^{\rm{T}}} {\mathit{\boldsymbol{P}}_{1i}}{\mathit{\boldsymbol{V}}_1} + \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \sum\limits_{j = 1}^{{n_2}} {\mathit{\boldsymbol{V}}_2^{\rm{T}}} {\mathit{\boldsymbol{P}}_{2j}}{\mathit{\boldsymbol{V}}_2} + \cdots + \sum\limits_{h = 1}^{{n_k}} {\mathit{\boldsymbol{V}}_k^{\rm{T}}} {\mathit{\boldsymbol{P}}_{kh}}{\mathit{\boldsymbol{V}}_k} \end{array} $ (30)

式(28)、(29)代入式(14)右端tr(QKNAAQKΣW)可得:

$ \begin{array}{l} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\rm{tr}} ({\mathit{\boldsymbol{Q}}_K}{\mathit{\boldsymbol{N}}_{AA}}{\mathit{\boldsymbol{Q}}_K}{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_W}) = \\ {\rm{tr}} ({\mathit{\boldsymbol{Q}}_K}(\sum\limits_{i = 1}^{{n_1}} {{\mathit{\boldsymbol{N}}_{1i}}} + \cdots + \sum\limits_{h = 1}^{{n_k}} {{\mathit{\boldsymbol{N}}_{kh}}} ){\mathit{\boldsymbol{Q}}_K}(\sum\limits_{m = 1}^{{n_1}} {\sigma _{1m}^2} {\mathit{\boldsymbol{N}}_{1m}} + \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left. {\sum\limits_{p = 1}^{{n_2}} {\sigma _{2p}^2} {\mathit{\boldsymbol{N}}_{2p}} + \cdots + \sum\limits_{q = 1}^{{n_k}} {\sigma _{kq}^2} {\mathit{\boldsymbol{N}}_{kq}})} \right) \end{array} $ (31)

将式(14)展开,去掉数学期望并将σij2写成估值$\hat \sigma _{ij}^2$ (i=1, 2, …, k, j=1, 2, …, nj),并令

$ \begin{array}{*{20}{c}} {\mathop {\hat \theta }\limits_{({n_1} + {n_2} + \cdots + {n_k}) \times 1} = }\\ {{{[\hat \sigma _{11}^2,\hat \sigma _{12}^2, \cdots ,\hat \sigma _{1{n_1}}^2, \cdots \cdots ,\hat \sigma _{k1}^2,\hat \sigma _{k2}^2, \cdots ,\hat \sigma _{k{n_k}}^2]}^{\rm{T}}}} \end{array} $ (32)
$ \begin{array}{*{20}{c}} {\mathop f\limits_{({n_1} + {n_2} + \cdots + {n_k}) \times 1} = [\mathit{\boldsymbol{V}}_1^{\rm{T}}{\mathit{\boldsymbol{P}}_{11}}{\mathit{\boldsymbol{V}}_1},\mathit{\boldsymbol{V}}_1^{\rm{T}}{\mathit{\boldsymbol{P}}_{12}}{\mathit{\boldsymbol{V}}_1}, \cdots ,}\\ {\mathit{\boldsymbol{V}}_1^{\rm{T}}{\mathit{\boldsymbol{P}}_{1{n_1}}}{\mathit{\boldsymbol{V}}_1}, \cdots ,\mathit{\boldsymbol{V}}_k^{\rm{T}}{\mathit{\boldsymbol{P}}_{k1}}{\mathit{\boldsymbol{V}}_k},\mathit{\boldsymbol{V}}_k^{\rm{T}}{\mathit{\boldsymbol{P}}_{k2}}{\mathit{\boldsymbol{V}}_k}, \cdots ,\mathit{\boldsymbol{V}}_k^{\rm{T}}{\mathit{\boldsymbol{P}}_{k{n_k}}}{\mathit{\boldsymbol{V}}_k}{]^{\rm{T}}}} \end{array} $ (33)
$ \begin{array}{*{35}{l}} \underset{({{n}_{1}}+{{n}_{2}}+\cdots +{{n}_{k}})\times 1}{\mathop{{{\mathit{\boldsymbol{H}}}_{ij}}}}\,=\left[ \begin{matrix} \text{tr}\left( {{\mathit{\boldsymbol{Q}}}_{K}}{{\mathit{\boldsymbol{N}}}_{ij}}{{\mathit{\boldsymbol{Q}}}_{K}}{{\mathit{\boldsymbol{N}}}_{11}} \right) \\ \text{tr}\left( {{\mathit{\boldsymbol{Q}}}_{K}}{{\mathit{\boldsymbol{N}}}_{ij}}{{\mathit{\boldsymbol{Q}}}_{K}}{{\mathit{\boldsymbol{N}}}_{12}} \right) \\ \cdots \\ \text{tr}\left( {{\mathit{\boldsymbol{Q}}}_{K}}{{\mathit{\boldsymbol{N}}}_{ij}}{{\mathit{\boldsymbol{Q}}}_{K}}{{\mathit{\boldsymbol{N}}}_{1{{n}_{1}}}} \right) \\ \cdots \\ \text{tr}\left( {{\mathit{\boldsymbol{Q}}}_{K}}{{\mathit{\boldsymbol{N}}}_{ij}}{{\mathit{\boldsymbol{Q}}}_{K}}{{\mathit{\boldsymbol{N}}}_{k1}} \right) \\ \text{tr}\left( {{\mathit{\boldsymbol{Q}}}_{K}}{{\mathit{\boldsymbol{N}}}_{ij}}{{\mathit{\boldsymbol{Q}}}_{K}}{{\mathit{\boldsymbol{N}}}_{k2}} \right) \\ \ldots \\ \cdots \\ \text{tr}\left( {{\mathit{\boldsymbol{Q}}}_{K}}{{\mathit{\boldsymbol{N}}}_{ij}}{{\mathit{\boldsymbol{Q}}}_{K}}{{\mathit{\boldsymbol{N}}}_{k{{n}_{k}}}} \right) \\ \end{matrix} \right], \\ \underset{({{n}_{1}}+{{n}_{2}}+\cdots +{{n}_{k}})\times ({{n}_{1}}+{{n}_{2}}+\cdots +{{n}_{k}})}{\mathop{\mathit{\boldsymbol{H}}}}\,= \\ \mathit{\boldsymbol{H}}_{ij}^{\text{T}},i=1,2,\cdots ,k;j=1,2,\cdots ,{{n}_{j}} \\ \end{array} $ (34)

将式(32)~(34)代入式(14)可得:

$ \mathit{\boldsymbol{H\hat \theta }} = \mathit{\boldsymbol{f}} $ (35)

式(35)即为扩展的Helmert型方差分量估计的通用公式。显然H为对称阵,且当H可逆时,式(35)的解为$\mathit{\boldsymbol{\hat \theta = }}{\mathit{\boldsymbol{H}}^{ - 1}}\mathit{\boldsymbol{f}}$;当H不可逆时,式(35)存在唯一的伪逆解$\mathit{\boldsymbol{\hat \theta = }}{\mathit{\boldsymbol{H}}^ + }\mathit{\boldsymbol{f}}$。将式(35)的各行元素求和,顾及式(27)、(29)可得相应的简化公式为:

$ \begin{array}{l} \sigma _{ij}^2 = \frac{{\mathit{\boldsymbol{V}}_i^{\rm{T}}{\mathit{\boldsymbol{P}}_{ij}}{\mathit{\boldsymbol{V}}_i}}}{{ {\rm{tr}} ({\mathit{\boldsymbol{Q}}_K}{\mathit{\boldsymbol{N}}_{ij}}{\mathit{\boldsymbol{Q}}_K}{\mathit{\boldsymbol{N}}_{AA}})}},\\ i = 1,2, \cdots ,k;j = 1,2, \cdots ,{n_j} \end{array} $ (36)

若每类观测值仅含1个方差分量,则式(35)和(36)分别对应文献[5]中Helmert型方差分量估计通用公式的式(36)和(43)。

3 特殊情况

当式(2)、(3)中的系数阵B=C= 0时,即为条件平差的函数模型;当系数阵C= 0时,即为附有参数的条件平差的函数模型;当式(2)、(3)中的系数阵A=-IC= 0 (I为单位阵)时,即为间接平差的函数模型;当系数阵A=-I时,即为附有限制条件的间接平差的函数模型。对于不同的平差模型,式(35)、(36)的计算不同之处仅在于QK而已。这里以A=-IC= 0为例,推导间接平差扩展的Helmert型方差分量估计,其他平差方法扩展的Helmert型方差分量估计可类似得到,不再赘述。

A=-IC= 0时,式(2)、(3)可变为:

$ \left\{ {\begin{array}{*{20}{l}} {\mathop {{\mathit{\boldsymbol{V}}_1}}\limits_{{n_1} \times 1} = {\mathit{\boldsymbol{B}}_1}\mathit{\boldsymbol{\hat x}} - {\mathit{\boldsymbol{W}}_1}}\\ {\mathop {{\mathit{\boldsymbol{V}}_2}}\limits_{{n_2} \times 1} = {\mathit{\boldsymbol{B}}_2}\mathit{\boldsymbol{\hat x}} - {\mathit{\boldsymbol{W}}_2}}\\ \cdots \\ {\mathop {{\mathit{\boldsymbol{V}}_{k - 1}}}\limits_{{n_{k - 1}} \times 1} = {\mathit{\boldsymbol{B}}_{k - 1}}\mathit{\boldsymbol{\hat x}} - {\mathit{\boldsymbol{W}}_{k - 1}}}\\ {\mathop {{\mathit{\boldsymbol{V}}_k}}\limits_{{n_k} \times 1} = {\mathit{\boldsymbol{B}}_k}\mathit{\boldsymbol{\hat x}} - {\mathit{\boldsymbol{W}}_k}}\\ \end{array}} \right. $ (37)

$ {{\mathit{\boldsymbol{Q}}_{\hat x}} = {{({\mathit{\boldsymbol{B}}^{\rm{T}}}\mathit{\boldsymbol{PB}})}^{ - 1}} = \mathit{\boldsymbol{N}}_{BB}^{ - 1}} $ (38)
$ {{\mathit{\boldsymbol{Q}}_K} = \mathit{\boldsymbol{P}} - \mathit{\boldsymbol{PB}}{\mathit{\boldsymbol{Q}}_{\hat x}}{\mathit{\boldsymbol{B}}^{\rm{T}}}\mathit{\boldsymbol{P}}} $ (39)

顾及NAA=AQAT=Q,此时式(14)变为:

$ E({\mathit{\boldsymbol{V}}^{\rm{T}}}\mathit{\boldsymbol{PV}}) = {\rm{tr}} ({\mathit{\boldsymbol{Q}}_K}\mathit{\boldsymbol{Q}}{\mathit{\boldsymbol{Q}}_K}\mathit{\boldsymbol{Q}})\sigma _0^2 $ (40)

将式(38)、(39)代入式(40)得:

$ {\mathit{\boldsymbol{Q}}_K}\mathit{\boldsymbol{Q}}{\mathit{\boldsymbol{Q}}_K}\mathit{\boldsymbol{Q}} = \mathit{\boldsymbol{PQ}} - 2\mathit{\boldsymbol{PB}}{\mathit{\boldsymbol{Q}}_{\hat x}}{\mathit{\boldsymbol{B}}^{\rm{T}}} + \mathit{\boldsymbol{PB}}{\mathit{\boldsymbol{Q}}_{\hat x}}{\mathit{\boldsymbol{B}}^{\rm{T}}}\mathit{\boldsymbol{PB}}{\mathit{\boldsymbol{Q}}_{\hat x}}{\mathit{\boldsymbol{B}}^{\rm{T}}} $ (41)

顾及Nij=Qij, i=1, 2, …, k; j=1, 2, …, nj,并将式(20)、(22)代入式(41),考虑求迹运算的循环性质,再一起代入式(14),去掉期望便得到文献[4]中的式(15)和(16)。由此说明,文献[4]中基于间接平差推导扩展的Helmert型方差分量估计是本文中式(35)和(36)的特例。

4 结语

本文针对现行的方差分量估计方法大多假设每类观测值中仅含1个方差分量的情况,基于概括函数模型和Helmert型方差分量估计的原理,推导了估计每类观测值含有多个方差分量的通用公式、相应的简化公式及一些特殊情况。同时,随着观测手段的丰富与多样化,往往同类观测值受到多种因素影响,即同类观测值可含有多个方差分量,该公式必将得到越来越多的使用。通用公式的推导不仅可以提高数据处理的精度,也可以使扩展的Helmert型方差分量估计在其他平差方法中的使用得到统一,是对方差分量估计理论的又一补充。

参考文献
[1]
Karlrudolf K. Parameter Estimation and Hypothesis Testing in Linear Models[M]. Berlin: Springer-Verlag, 1988 (0)
[2]
於宗俦. Helmert型方差-协方差分量估计的通用公式[J]. 武汉测绘科技大学学报, 1991, 16(2): 8-17 (Yu Zongchou. The General Formulas of Helmert Type for Estimating Variance and Covariance Components[J]. Journal of Wuhan Technical University of Surveying and Mapping, 1991, 16(2): 8-17) (0)
[3]
王志忠, 朱建军. 方差分量的MINQUE通用公式[J]. 中南工业大学学报:自然科学版, 2001, 32(4): 433-436 (Wang Zhizhong, Zhu Jianjun. A Universal Formula of MINQUE of Variance Components[J]. Journal of Central South University of Technology, 2001, 32(4): 433-436) (0)
[4]
刘长建, 柴洪洲, 吴洪举, 等. 扩展的Helmert型方差分量估计公式[J]. 测绘学报, 2008, 37(1): 1-4 (Liu Changjian, Chai Hongzhou, Wu Hongju, et al. Extended Formulae of Helmert Type for Estimating Variance Components[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(1): 1-4) (0)
[5]
Teunissen P J G, Amiri-Simkooei A R. Least-Squares Variance Component Estimation[J]. Journal of Geodesy, 2008, 82(2): 65-82 DOI:10.1007/s00190-007-0157-x (0)
[6]
李博峰, 沈云中, 楼立志. 基于等效残差的方差-协方差分量估计[J]. 测绘学报, 2010, 39(4): 349-354 (Li Bofeng, Shen Yunzhong, Lou Lizhi. Variance-Covariance Component Estimation Based on the Equivalent Residuals[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(4): 349-354) (0)
[7]
刘志平, 张书毕. 方差-协方差分量估计的概括平差因子法[J]. 武汉大学学报:信息科学版, 2013, 38(8): 925-929 (Liu Zhiping, Zhang Shubi. Variance-Covariance Component Estimation Method Based on Generalization Adjustment Factor[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 925-929) (0)
[8]
刘志平. 等价条件闭合差的方差-协方差分量估计解析法[J]. 测绘学报, 2013, 42(5): 648-653 (Liu Zhiping. Analytical Method for VCE Using Equivalent Condition Misclosure[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(5): 648-653) (0)
[9]
赵俊, 郭建锋. 方差分量估计的通用公式[J]. 武汉大学学报:信息科学版, 2013, 38(5): 580-583 (Zhao Jun, Guo Jianfeng. Auniversal Formula of Variance Component Estimation[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5): 580-583) (0)
[10]
王乐洋, 温贵森. Partial EIV模型的非负最小二乘方差分量估计[J]. 测绘学报, 2017, 46(7): 857-865 (Wang Leyang, Wen Guisen. Non-Negative Least Squares Variance Component Estimation of Partial EIV Model[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(7): 857-865) (0)
[11]
王乐洋, 温贵森. 相关观测PEIV模型的最小二乘方差分量估计[J]. 测绘地理信息, 2018, 43(1): 8-14 (Wang Leyang, Wen Guisen. Least Squares Variance Components Estimation of PEIV Model with Correlated Observations[J]. Journal of Geomatics, 2018, 43(1): 8-14) (0)
[12]
Wang L Y, Xu G Y. Variance Component Estimation for Partial Errors-in-Variables Models[J]. Studia Geophysica et Geodaetica, 2016, 60(1): 35-55 DOI:10.1007/s11200-014-0975-2 (0)
[13]
Crocetto N, Gatti M, Russo P. Simplified Formulae for the BIQUE Estimation of Variance Components in Disjunctive Observation Groups[J]. Journal of Geodesy, 2000, 74(6): 447-457 DOI:10.1007/s001900000109 (0)
General Formulae of Extended Helmert Type for Estimating Variance Components
WANG Jielong1     CHEN Yi1     
1. College of Surveying and Geo-Informatics, Tongji University, 1239 Siping Road, Shanghai 200092, China
Abstract: General formulae, based on a general function model and the theory of estimating variance components of Helmert type, are derived in this paper in order to estimate different variance components from same kind of observation. The simplified formulae from general formulae and some special cases are also given.
Key words: variance and co-variance components estimation; general function model; general formulae; Helmert variance components estimation