尽管目前方差-协方差分量估计的方法众多[1-12],但大多数方法都假定每类观测值仅含1个方差分量或仅估计单个方差分量。刘长建等[4]提出扩展的Helmert型方差分量估计,但其公式推导是基于间接平差的。本文基于概括函数模型,从每类观测值仅含1个方差分量扩展到每类观测值含有多个方差分量出发,推导出扩展的Helmert型方差分量估计的通用公式,并给出其特殊情况和简化公式。
1 概括函数模型概括平差函数模型是间接平差、附有限制条件的间接平差、条件平差和附有参数的条件平差的统一,其一般的函数模型为[3]:
$ \left\{ {\begin{array}{*{20}{l}} {\mathop F\limits_{c \times 1} (\mathit{\boldsymbol{\hat L}},\mathit{\boldsymbol{\hat X}}) = 0}\\ {\mathop \varPhi \limits_{s \times 1} (\mathit{\boldsymbol{\hat X}}) = 0} \end{array}} \right. $ | (1) |
式中,L为观测值向量,X为参数向量,c为一般条件方程个数,s为限制条件方程个数。如果式(1)是非线性的,按泰勒公式展开为线性形式,则概括函数模型的线性形式为:
$ \underset{c\times n}{\mathit{\boldsymbol{A}}}\,\underset{n\times 1}{\mathit{\boldsymbol{V}}}\,+\underset{c\times u}{\mathit{\boldsymbol{B}}}\,\underset{u\times 1}{\mathit{\boldsymbol{x}}}\,+\underset{c\times 1}{\mathit{\boldsymbol{W}}}\,=\underset{c\times 1}{\mathop{\mathbf{0}}}\, $ | (2) |
$ \underset{s\times u}{\mathit{\boldsymbol{C}}}\,\underset{u\times 1}{\mathit{\boldsymbol{\hat{x}}}}\,+\underset{s\times 1}{\mathop{{{\mathit{\boldsymbol{W}}}_{x}}}}\,=\underset{s\times 1}{\mathop{\mathbf{0}}}\, $ | (3) |
式中,n为观测值个数,u为参数个数,且满足r+u=s+c,r为多余观测数,系数矩阵的秩分别为R(A)=c,R(B)=u,R(C)=s。设随机模型为:
$ \underset{n\times n}{\mathop{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}}}\,=\sigma _{0}^{2}\mathit{\boldsymbol{Q}}=\sigma _{0}^{2}{{\mathit{\boldsymbol{P}}}^{-1}} $ | (4) |
式中,σ02为单位权方差,Q和P分别为观测值的协因数阵和权阵。根据最小二乘原理,在VTPV=min的条件下构造条件极值方程为:
$ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{ \boldsymbol{\varPhi} }} = {\mathit{\boldsymbol{V}}^{\rm{T}}}\mathit{\boldsymbol{PV}} - 2{\mathit{\boldsymbol{K}}^{\rm{T}}}(\mathit{\boldsymbol{AV}} + \mathit{\boldsymbol{B\hat x}} + \mathit{\boldsymbol{W}}) - }\\ {2\mathit{\boldsymbol{K}}_s^{\rm{T}}(\mathit{\boldsymbol{C\hat x}} + {\mathit{\boldsymbol{W}}_x})} \end{array} $ | (5) |
式中,K和Ks分别对应于式(2)和式(3)的联系数。将式(5)分别对V和
$ \begin{array}{*{20}{c}} {\mathit{\boldsymbol{\hat x}} = - (\mathit{\boldsymbol{N}}_{BB}^{ - 1} - \mathit{\boldsymbol{N}}_{BB}^{ - 1}{\mathit{\boldsymbol{C}}^{\rm{T}}}\mathit{\boldsymbol{N}}_{CC}^{ - 1}\mathit{\boldsymbol{CN}}_{BB}^{ - 1}){\mathit{\boldsymbol{W}}_e} - }\\ {\mathit{\boldsymbol{N}}_{BB}^{ - 1}{\mathit{\boldsymbol{C}}^{\rm{T}}}\mathit{\boldsymbol{N}}_{CC}^{ - 1}{\mathit{\boldsymbol{W}}_x}} \end{array} $ | (6) |
$ \mathit{\boldsymbol{V}} = - \mathit{\boldsymbol{Q}}{\mathit{\boldsymbol{A}}^{\rm{T}}}\mathit{\boldsymbol{N}}_{AA}^{ - 1}(\mathit{\boldsymbol{W}} + \mathit{\boldsymbol{B\hat x}}) $ | (7) |
式中,
$ \begin{array}{*{20}{l}} {{\mathit{\boldsymbol{N}}_{AA}} = \mathit{\boldsymbol{AQ}}{\mathit{\boldsymbol{A}}^{\rm{T}}},{\mathit{\boldsymbol{N}}_{BB}} = {\mathit{\boldsymbol{B}}^{\rm{T}}}\mathit{\boldsymbol{N}}_{AA}^{ - 1}\mathit{\boldsymbol{B}},{\mathit{\boldsymbol{W}}_e} = }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\mathit{\boldsymbol{B}}^{\rm{T}}}\mathit{\boldsymbol{N}}_{AA}^{ - 1}\mathit{\boldsymbol{W}},{\mathit{\boldsymbol{N}}_{CC}} = \mathit{\boldsymbol{CN}}_{BB}^{ - 1}{\mathit{\boldsymbol{C}}^{\rm{T}}}} \end{array} $ | (8) |
联系数K的求解详见文献[13],参数向量
$ {{\mathit{\boldsymbol{Q}}_K} = \mathit{\boldsymbol{N}}_{AA}^{ - 1} - \mathit{\boldsymbol{N}}_{AA}^{ - 1}\mathit{\boldsymbol{B}}{\mathit{\boldsymbol{Q}}_{\hat x\hat x}}{\mathit{\boldsymbol{B}}^{\rm{T}}}\mathit{\boldsymbol{N}}_{AA}^{ - 1}} $ | (9) |
$ {{\mathit{\boldsymbol{Q}}_{\hat x\hat x}} = \mathit{\boldsymbol{N}}_{BB}^{ - 1} - \mathit{\boldsymbol{N}}_{BB}^{ - 1}{\mathit{\boldsymbol{C}}^{\rm{T}}}\mathit{\boldsymbol{N}}_{CC}^{ - 1}\mathit{\boldsymbol{CN}}_{BB}^{ - 1}} $ | (10) |
$ {\mathit{\boldsymbol{Q}}_W} = \mathit{\boldsymbol{AQ}}{\mathit{\boldsymbol{A}}^{\rm{T}}} = {\mathit{\boldsymbol{N}}_{AA}} $ | (11) |
应用协方差传播定律,由式(7)可得V的方差阵为:
$ {\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_V} = \mathit{\boldsymbol{Q}}{\mathit{\boldsymbol{A}}^{\rm{T}}}{\mathit{\boldsymbol{Q}}_K}{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_w}{\mathit{\boldsymbol{Q}}_K}\mathit{\boldsymbol{AQ}} $ | (12) |
式中,ΣW为常数项W的方差阵,且由式(11)可知:
$ {\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_W} = \sigma _0^2{\mathit{\boldsymbol{Q}}_W} = \sigma _0^2\mathit{\boldsymbol{AQ}}{\mathit{\boldsymbol{A}}^{\rm{T}}} = \mathit{\boldsymbol{A}}\sigma _0^2\mathit{\boldsymbol{Q}}{\mathit{\boldsymbol{A}}^{\rm{T}}} = \mathit{\boldsymbol{A \boldsymbol{\varSigma} }}{\mathit{\boldsymbol{A}}^{\rm{T}}} $ | (13) |
根据文献[1]中二次型的期望公式E(xTAx)=tr(AΣxx)+μxTAμx,顾及E(V)=0可得:
$ \begin{array}{*{20}{l}} {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} E({\mathit{\boldsymbol{V}}^{\rm{T}}}\mathit{\boldsymbol{PV}}) = {\rm{tr }}(\mathit{\boldsymbol{P}}{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_V}) = }\\ {{\rm{ tr}} ({\mathit{\boldsymbol{Q}}_K}{\mathit{\boldsymbol{N}}_{AA}}{\mathit{\boldsymbol{Q}}_K}{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_W}) = {\rm{tr}} ({\mathit{\boldsymbol{Q}}_K}{\mathit{\boldsymbol{N}}_{AA}}{\mathit{\boldsymbol{Q}}_K}{\mathit{\boldsymbol{N}}_{AA}})\sigma _0^2} \end{array} $ | (14) |
假设推导的函数模型和式(2)、(3)一致,但不同于式(4)的随机模型,将式(4)的随机模型根据文献[13]扩展到一般的随机模型:
$ \mathit{\boldsymbol{ \boldsymbol{\varSigma} }} = \left[ {\begin{array}{*{20}{l}} {{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_1}}&{}&{}&{}\\ {}&{{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_2}}&{}&{}\\ {}&{}& \ddots &{}\\ {}&{}&{}&{{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_k}} \end{array}} \right] $ | (15) |
假设观测值向量L含有k类独立的观测值L1, L2,…,Lk,即
$ \mathit{\boldsymbol{L}} = \left[ {\begin{array}{*{20}{c}} {\mathop {{\mathit{\boldsymbol{L}}_1}}\limits_{{n_1} \times 1} }\\ {\mathop {{\mathit{\boldsymbol{L}}_2}}\limits_{{n_2} \times 1} }\\ \vdots \\ {\mathop {{\mathit{\boldsymbol{L}}_k}}\limits_{{n_k} \times 1} } \end{array}} \right],\mathit{\boldsymbol{V}} = \left[ {\begin{array}{*{20}{c}} {\mathop {{\mathit{\boldsymbol{V}}_1}}\limits_{{n_1} \times 1} }\\ {\mathop {{\mathit{\boldsymbol{V}}_2}}\limits_{{n_2} \times 1} }\\ \vdots \\ {\mathop {{\mathit{\boldsymbol{V}}_k}}\limits_{{n_k} \times 1} } \end{array}} \right],\mathit{\boldsymbol{A}} = \left[ {\mathop {{\mathit{\boldsymbol{A}}_1}}\limits_{c \times {n_1}} ,\mathop {{\mathit{\boldsymbol{A}}_2}}\limits_{c \times {n_2}} , \cdots ,\mathop {{\mathit{\boldsymbol{A}}_k}}\limits_{c \times {n_k}} } \right] $ | (16) |
Σ1, Σ2, …Σk为各类观测值的方差阵,且假设每类观测值含有多个方差分量,即
$ \left\{ {\begin{array}{*{20}{l}} {{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_1} = \sigma _{11}^2{\mathit{\boldsymbol{Q}}_{11}} + \sigma _{12}^2{\mathit{\boldsymbol{Q}}_{12}} + \cdots + \sigma _{1{n_1}}^2{\mathit{\boldsymbol{Q}}_{1{n_1}}}}\\ {{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_2} = \sigma _{21}^2{\mathit{\boldsymbol{Q}}_{21}} + \sigma _{22}^2{\mathit{\boldsymbol{Q}}_{22}} + \cdots + \sigma _{2{n_2}}^2{\mathit{\boldsymbol{Q}}_{2{n_2}}}}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \ldots }\\ {{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_k} = \sigma _{k1}^2{\mathit{\boldsymbol{Q}}_{k1}} + \sigma _{k2}^2{\mathit{\boldsymbol{Q}}_{k2}} + \cdots + \sigma _{k{n_k}}^2{\mathit{\boldsymbol{Q}}_{k{n_k}}}} \end{array}} \right. $ | (17) |
式中,σij2为待求的方差分量,Qij为已知的协因数阵,σij2和Qij中i为第i类观测值,j为第i类观测值中第j个方差分量,n1, n2, …nk为第k类观测值的方差分量的个数。则式(2)可写为:
$ {\mathit{\boldsymbol{A}}_1}{\mathit{\boldsymbol{V}}_1} + {\mathit{\boldsymbol{A}}_2}{\mathit{\boldsymbol{V}}_2} + \cdots + {\mathit{\boldsymbol{A}}_k}{\mathit{\boldsymbol{V}}_k} + \mathit{\boldsymbol{B\hat x}} + \mathit{\boldsymbol{W}} = 0 $ | (18) |
令待求的σij2初值为1,则式(15)可变为:
$ \begin{array}{l} {\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_0} = \left[ {\begin{array}{*{20}{l}} {{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_{10}}}&{}&{}&{}\\ {}&{{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_{20}}}&{}&{}\\ {}&{}& \ddots &{}\\ {}&{}&{}&{{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_{k0}}} \end{array}} \right] = \mathit{\boldsymbol{Q}} = \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left[ {\begin{array}{*{20}{l}} {{\mathit{\boldsymbol{Q}}_1}}&{}&{}&{}\\ {}&{{\mathit{\boldsymbol{Q}}_2}}&{}&{}\\ {}&{}& \ddots &{}\\ {}&{}&{}&{{\mathit{\boldsymbol{Q}}_k}} \end{array}} \right] \end{array} $ | (19) |
式中,
$ \left\{ {\begin{array}{*{20}{l}} {{\mathit{\boldsymbol{Q}}_1} = {\mathit{\boldsymbol{Q}}_{11}} + {\mathit{\boldsymbol{Q}}_{12}} + \cdots + {\mathit{\boldsymbol{Q}}_{1{n_1}}}}\\ {{\mathit{\boldsymbol{Q}}_2} = {\mathit{\boldsymbol{Q}}_{21}} + {\mathit{\boldsymbol{Q}}_{22}} + \cdots + {\mathit{\boldsymbol{Q}}_{2{n_2}}}}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cdots }\\ {{\mathit{\boldsymbol{Q}}_k} = {\mathit{\boldsymbol{Q}}_{k1}} + {\mathit{\boldsymbol{Q}}_{k2}} + \cdots + {\mathit{\boldsymbol{Q}}_{k{n_k}}}} \end{array}} \right. $ | (20) |
再令
$ \mathit{\boldsymbol{P}} = {\mathit{\boldsymbol{Q}}^{ - 1}} = \left[ {\begin{array}{*{20}{l}} {{\mathit{\boldsymbol{P}}_1}}&{}&{}&{}\\ {}&{{\mathit{\boldsymbol{P}}_2}}&{}&{}\\ {}&{}& \ddots &{}\\ {}&{}&{}&{{\mathit{\boldsymbol{P}}_k}} \end{array}} \right] $ | (21) |
式中,Pi=(Qi1+Qi2+…+Qini)-1, i=1, 2, …k,P为已知的初始权阵。再令
$ \left\{ {\begin{array}{*{20}{l}} {{\mathit{\boldsymbol{P}}_{i1}} = {\mathit{\boldsymbol{P}}_i}{\mathit{\boldsymbol{Q}}_{i1}}{\mathit{\boldsymbol{P}}_i}}\\ {{\mathit{\boldsymbol{P}}_{i2}} = {\mathit{\boldsymbol{P}}_i}{\mathit{\boldsymbol{Q}}_{i2}}{\mathit{\boldsymbol{P}}_i}}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \ldots }\\ {{\mathit{\boldsymbol{P}}_{i{n_i}}} = {\mathit{\boldsymbol{P}}_i}{\mathit{\boldsymbol{Q}}_{i{n_i}}}{\mathit{\boldsymbol{P}}_i}} \end{array},i = 1,2, \cdots k} \right. $ | (22) |
则有:
$ \left\{ {\begin{array}{*{20}{l}} {{\mathit{\boldsymbol{P}}_1} = {\mathit{\boldsymbol{P}}_{11}} + {\mathit{\boldsymbol{P}}_{12}} + \cdots + {\mathit{\boldsymbol{P}}_{1{n_1}}}}\\ {{\mathit{\boldsymbol{P}}_2} = {\mathit{\boldsymbol{P}}_{21}} + {\mathit{\boldsymbol{P}}_{22}} + \cdots + {\mathit{\boldsymbol{P}}_{2{n_2}}}}\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \cdots }\\ {{\mathit{\boldsymbol{P}}_k} = {\mathit{\boldsymbol{P}}_{k1}} + {\mathit{\boldsymbol{P}}_{k2}} + \cdots + {\mathit{\boldsymbol{P}}_{k{n_k}}}} \end{array}} \right. $ | (23) |
将式(16)、(19)、(20)代入NAA=AQAT可得:
$ \begin{array}{*{20}{c}} {{\mathit{\boldsymbol{N}}_{AA}} = \sum\limits_{i = 1}^{{n_1}} {{\mathit{\boldsymbol{A}}_1}} {\mathit{\boldsymbol{Q}}_{1i}}\mathit{\boldsymbol{A}}_1^{\rm{T}} + \sum\limits_{j = 1}^{{n_2}} {{\mathit{\boldsymbol{A}}_2}} {\mathit{\boldsymbol{Q}}_{2j}}\mathit{\boldsymbol{A}}_2^{\rm{T}} + \cdots }\\ { + \sum\limits_{h = 1}^{{n_k}} {{\mathit{\boldsymbol{A}}_k}} {\mathit{\boldsymbol{Q}}_{kh}}\mathit{\boldsymbol{A}}_k^{\rm{T}}} \end{array} $ | (24) |
而ΣW=AΣAT,顾及式(16)、(17)有:
$ \begin{array}{*{20}{l}} {{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_W} = \sum\limits_{i = 1}^{{n_1}} {{\mathit{\boldsymbol{A}}_1}} \sigma _{1i}^2{\mathit{\boldsymbol{Q}}_{1i}}\mathit{\boldsymbol{A}}_1^{\rm{T}} + \sum\limits_{j = 1}^{{n_2}} {{\mathit{\boldsymbol{A}}_2}} \sigma _{2j}^2{\mathit{\boldsymbol{Q}}_{2j}}\mathit{\boldsymbol{A}}_2^{\rm{T}} + \cdots }\\ {{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + \sum\limits_{h = 1}^{{n_k}} {{\mathit{\boldsymbol{A}}_k}} \sigma _{kh}^2{\mathit{\boldsymbol{Q}}_{kh}}\mathit{\boldsymbol{A}}_k^{\rm{T}}} \end{array} $ | (25) |
令
$ \left\{ {\begin{array}{*{20}{l}} {{\mathit{\boldsymbol{A}}_1}{\mathit{\boldsymbol{Q}}_{1i}}\mathit{\boldsymbol{A}}_1^{\rm{T}} = {\mathit{\boldsymbol{N}}_{1i}},i = 1,2, \cdots ,{n_1}}\\ {{\mathit{\boldsymbol{A}}_2}{\mathit{\boldsymbol{Q}}_{2j}}\mathit{\boldsymbol{A}}_2^{\rm{T}} = {\mathit{\boldsymbol{N}}_{2j}},j = 1,2, \cdots ,{n_2}}\\ {{\kern 1pt} {\kern 1pt} \cdots }\\ {{\mathit{\boldsymbol{A}}_k}{\mathit{\boldsymbol{Q}}_{kh}}\mathit{\boldsymbol{A}}_k^{\rm{T}} = {\mathit{\boldsymbol{N}}_{kh}},h = 1,2, \cdots ,{n_k}} \end{array}} \right. $ | (26) |
$ \begin{array}{*{20}{c}} {\sum\limits_{i = 1}^{{n_1}} {{\mathit{\boldsymbol{A}}_1}} {\mathit{\boldsymbol{Q}}_{1i}}\mathit{\boldsymbol{A}}_1^{\rm{T}} = {\mathit{\boldsymbol{N}}_1},\sum\limits_{j = 1}^{{n_2}} {{\mathit{\boldsymbol{A}}_2}} {\mathit{\boldsymbol{Q}}_{2j}}\mathit{\boldsymbol{A}}_2^{\rm{T}} = }\\ {{\mathit{\boldsymbol{N}}_2}, \cdots ,\sum\limits_{h = 1}^{{n_k}} {{\mathit{\boldsymbol{A}}_k}} {\mathit{\boldsymbol{Q}}_{kh}}\mathit{\boldsymbol{A}}_k^{\rm{T}} = {\mathit{\boldsymbol{N}}_k}} \end{array} $ | (27) |
则式(24)、(25)可改写为:
$ {\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_W} = \sum\limits_{m = 1}^{{n_1}} {\sigma _{1m}^2} {\mathit{\boldsymbol{N}}_{1m}} + \sum\limits_{p = 1}^{{n_2}} {\sigma _{2p}^2} {\mathit{\boldsymbol{N}}_{2p}} + \cdots + \sum\limits_{q = 1}^{{n_k}} {\sigma _{kq}^2} {\mathit{\boldsymbol{N}}_{kq}} $ | (28) |
$ {\mathit{\boldsymbol{N}}_{AA}} = \sum\limits_{i = 1}^{{n_1}} {{\mathit{\boldsymbol{N}}_{1i}}} + \sum\limits_{j = 1}^{{n_2}} {{\mathit{\boldsymbol{N}}_{2j}}} + \cdots + \sum\limits_{h = 1}^{{n_k}} {{\mathit{\boldsymbol{N}}_{kh}}} $ | (29) |
式(16)、(21)、(22)代入式(14)左端VTPV可得:
$ \begin{array}{l} {\mathit{\boldsymbol{V}}^{\rm{T}}}\mathit{\boldsymbol{PV}} = \sum\limits_{l = 1}^k {\mathit{\boldsymbol{V}}_l^{\rm{T}}} {\mathit{\boldsymbol{P}}_l}{\mathit{\boldsymbol{V}}_l} = \sum\limits_{i = 1}^{{n_i}} {\mathit{\boldsymbol{V}}_1^{\rm{T}}} {\mathit{\boldsymbol{P}}_{1i}}{\mathit{\boldsymbol{V}}_1} + \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \sum\limits_{j = 1}^{{n_2}} {\mathit{\boldsymbol{V}}_2^{\rm{T}}} {\mathit{\boldsymbol{P}}_{2j}}{\mathit{\boldsymbol{V}}_2} + \cdots + \sum\limits_{h = 1}^{{n_k}} {\mathit{\boldsymbol{V}}_k^{\rm{T}}} {\mathit{\boldsymbol{P}}_{kh}}{\mathit{\boldsymbol{V}}_k} \end{array} $ | (30) |
式(28)、(29)代入式(14)右端tr(QKNAAQKΣW)可得:
$ \begin{array}{l} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\rm{tr}} ({\mathit{\boldsymbol{Q}}_K}{\mathit{\boldsymbol{N}}_{AA}}{\mathit{\boldsymbol{Q}}_K}{\mathit{\boldsymbol{ \boldsymbol{\varSigma} }}_W}) = \\ {\rm{tr}} ({\mathit{\boldsymbol{Q}}_K}(\sum\limits_{i = 1}^{{n_1}} {{\mathit{\boldsymbol{N}}_{1i}}} + \cdots + \sum\limits_{h = 1}^{{n_k}} {{\mathit{\boldsymbol{N}}_{kh}}} ){\mathit{\boldsymbol{Q}}_K}(\sum\limits_{m = 1}^{{n_1}} {\sigma _{1m}^2} {\mathit{\boldsymbol{N}}_{1m}} + \\ {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} \left. {\sum\limits_{p = 1}^{{n_2}} {\sigma _{2p}^2} {\mathit{\boldsymbol{N}}_{2p}} + \cdots + \sum\limits_{q = 1}^{{n_k}} {\sigma _{kq}^2} {\mathit{\boldsymbol{N}}_{kq}})} \right) \end{array} $ | (31) |
将式(14)展开,去掉数学期望并将σij2写成估值
$ \begin{array}{*{20}{c}} {\mathop {\hat \theta }\limits_{({n_1} + {n_2} + \cdots + {n_k}) \times 1} = }\\ {{{[\hat \sigma _{11}^2,\hat \sigma _{12}^2, \cdots ,\hat \sigma _{1{n_1}}^2, \cdots \cdots ,\hat \sigma _{k1}^2,\hat \sigma _{k2}^2, \cdots ,\hat \sigma _{k{n_k}}^2]}^{\rm{T}}}} \end{array} $ | (32) |
$ \begin{array}{*{20}{c}} {\mathop f\limits_{({n_1} + {n_2} + \cdots + {n_k}) \times 1} = [\mathit{\boldsymbol{V}}_1^{\rm{T}}{\mathit{\boldsymbol{P}}_{11}}{\mathit{\boldsymbol{V}}_1},\mathit{\boldsymbol{V}}_1^{\rm{T}}{\mathit{\boldsymbol{P}}_{12}}{\mathit{\boldsymbol{V}}_1}, \cdots ,}\\ {\mathit{\boldsymbol{V}}_1^{\rm{T}}{\mathit{\boldsymbol{P}}_{1{n_1}}}{\mathit{\boldsymbol{V}}_1}, \cdots ,\mathit{\boldsymbol{V}}_k^{\rm{T}}{\mathit{\boldsymbol{P}}_{k1}}{\mathit{\boldsymbol{V}}_k},\mathit{\boldsymbol{V}}_k^{\rm{T}}{\mathit{\boldsymbol{P}}_{k2}}{\mathit{\boldsymbol{V}}_k}, \cdots ,\mathit{\boldsymbol{V}}_k^{\rm{T}}{\mathit{\boldsymbol{P}}_{k{n_k}}}{\mathit{\boldsymbol{V}}_k}{]^{\rm{T}}}} \end{array} $ | (33) |
$ \begin{array}{*{35}{l}} \underset{({{n}_{1}}+{{n}_{2}}+\cdots +{{n}_{k}})\times 1}{\mathop{{{\mathit{\boldsymbol{H}}}_{ij}}}}\,=\left[ \begin{matrix} \text{tr}\left( {{\mathit{\boldsymbol{Q}}}_{K}}{{\mathit{\boldsymbol{N}}}_{ij}}{{\mathit{\boldsymbol{Q}}}_{K}}{{\mathit{\boldsymbol{N}}}_{11}} \right) \\ \text{tr}\left( {{\mathit{\boldsymbol{Q}}}_{K}}{{\mathit{\boldsymbol{N}}}_{ij}}{{\mathit{\boldsymbol{Q}}}_{K}}{{\mathit{\boldsymbol{N}}}_{12}} \right) \\ \cdots \\ \text{tr}\left( {{\mathit{\boldsymbol{Q}}}_{K}}{{\mathit{\boldsymbol{N}}}_{ij}}{{\mathit{\boldsymbol{Q}}}_{K}}{{\mathit{\boldsymbol{N}}}_{1{{n}_{1}}}} \right) \\ \cdots \\ \text{tr}\left( {{\mathit{\boldsymbol{Q}}}_{K}}{{\mathit{\boldsymbol{N}}}_{ij}}{{\mathit{\boldsymbol{Q}}}_{K}}{{\mathit{\boldsymbol{N}}}_{k1}} \right) \\ \text{tr}\left( {{\mathit{\boldsymbol{Q}}}_{K}}{{\mathit{\boldsymbol{N}}}_{ij}}{{\mathit{\boldsymbol{Q}}}_{K}}{{\mathit{\boldsymbol{N}}}_{k2}} \right) \\ \ldots \\ \cdots \\ \text{tr}\left( {{\mathit{\boldsymbol{Q}}}_{K}}{{\mathit{\boldsymbol{N}}}_{ij}}{{\mathit{\boldsymbol{Q}}}_{K}}{{\mathit{\boldsymbol{N}}}_{k{{n}_{k}}}} \right) \\ \end{matrix} \right], \\ \underset{({{n}_{1}}+{{n}_{2}}+\cdots +{{n}_{k}})\times ({{n}_{1}}+{{n}_{2}}+\cdots +{{n}_{k}})}{\mathop{\mathit{\boldsymbol{H}}}}\,= \\ \mathit{\boldsymbol{H}}_{ij}^{\text{T}},i=1,2,\cdots ,k;j=1,2,\cdots ,{{n}_{j}} \\ \end{array} $ | (34) |
将式(32)~(34)代入式(14)可得:
$ \mathit{\boldsymbol{H\hat \theta }} = \mathit{\boldsymbol{f}} $ | (35) |
式(35)即为扩展的Helmert型方差分量估计的通用公式。显然H为对称阵,且当H可逆时,式(35)的解为
$ \begin{array}{l} \sigma _{ij}^2 = \frac{{\mathit{\boldsymbol{V}}_i^{\rm{T}}{\mathit{\boldsymbol{P}}_{ij}}{\mathit{\boldsymbol{V}}_i}}}{{ {\rm{tr}} ({\mathit{\boldsymbol{Q}}_K}{\mathit{\boldsymbol{N}}_{ij}}{\mathit{\boldsymbol{Q}}_K}{\mathit{\boldsymbol{N}}_{AA}})}},\\ i = 1,2, \cdots ,k;j = 1,2, \cdots ,{n_j} \end{array} $ | (36) |
若每类观测值仅含1个方差分量,则式(35)和(36)分别对应文献[5]中Helmert型方差分量估计通用公式的式(36)和(43)。
3 特殊情况当式(2)、(3)中的系数阵B=C= 0时,即为条件平差的函数模型;当系数阵C= 0时,即为附有参数的条件平差的函数模型;当式(2)、(3)中的系数阵A=-I,C= 0 (I为单位阵)时,即为间接平差的函数模型;当系数阵A=-I时,即为附有限制条件的间接平差的函数模型。对于不同的平差模型,式(35)、(36)的计算不同之处仅在于QK而已。这里以A=-I,C= 0为例,推导间接平差扩展的Helmert型方差分量估计,其他平差方法扩展的Helmert型方差分量估计可类似得到,不再赘述。
当A=-I,C= 0时,式(2)、(3)可变为:
$ \left\{ {\begin{array}{*{20}{l}} {\mathop {{\mathit{\boldsymbol{V}}_1}}\limits_{{n_1} \times 1} = {\mathit{\boldsymbol{B}}_1}\mathit{\boldsymbol{\hat x}} - {\mathit{\boldsymbol{W}}_1}}\\ {\mathop {{\mathit{\boldsymbol{V}}_2}}\limits_{{n_2} \times 1} = {\mathit{\boldsymbol{B}}_2}\mathit{\boldsymbol{\hat x}} - {\mathit{\boldsymbol{W}}_2}}\\ \cdots \\ {\mathop {{\mathit{\boldsymbol{V}}_{k - 1}}}\limits_{{n_{k - 1}} \times 1} = {\mathit{\boldsymbol{B}}_{k - 1}}\mathit{\boldsymbol{\hat x}} - {\mathit{\boldsymbol{W}}_{k - 1}}}\\ {\mathop {{\mathit{\boldsymbol{V}}_k}}\limits_{{n_k} \times 1} = {\mathit{\boldsymbol{B}}_k}\mathit{\boldsymbol{\hat x}} - {\mathit{\boldsymbol{W}}_k}}\\ \end{array}} \right. $ | (37) |
而
$ {{\mathit{\boldsymbol{Q}}_{\hat x}} = {{({\mathit{\boldsymbol{B}}^{\rm{T}}}\mathit{\boldsymbol{PB}})}^{ - 1}} = \mathit{\boldsymbol{N}}_{BB}^{ - 1}} $ | (38) |
$ {{\mathit{\boldsymbol{Q}}_K} = \mathit{\boldsymbol{P}} - \mathit{\boldsymbol{PB}}{\mathit{\boldsymbol{Q}}_{\hat x}}{\mathit{\boldsymbol{B}}^{\rm{T}}}\mathit{\boldsymbol{P}}} $ | (39) |
顾及NAA=AQAT=Q,此时式(14)变为:
$ E({\mathit{\boldsymbol{V}}^{\rm{T}}}\mathit{\boldsymbol{PV}}) = {\rm{tr}} ({\mathit{\boldsymbol{Q}}_K}\mathit{\boldsymbol{Q}}{\mathit{\boldsymbol{Q}}_K}\mathit{\boldsymbol{Q}})\sigma _0^2 $ | (40) |
将式(38)、(39)代入式(40)得:
$ {\mathit{\boldsymbol{Q}}_K}\mathit{\boldsymbol{Q}}{\mathit{\boldsymbol{Q}}_K}\mathit{\boldsymbol{Q}} = \mathit{\boldsymbol{PQ}} - 2\mathit{\boldsymbol{PB}}{\mathit{\boldsymbol{Q}}_{\hat x}}{\mathit{\boldsymbol{B}}^{\rm{T}}} + \mathit{\boldsymbol{PB}}{\mathit{\boldsymbol{Q}}_{\hat x}}{\mathit{\boldsymbol{B}}^{\rm{T}}}\mathit{\boldsymbol{PB}}{\mathit{\boldsymbol{Q}}_{\hat x}}{\mathit{\boldsymbol{B}}^{\rm{T}}} $ | (41) |
顾及Nij=Qij, i=1, 2, …, k; j=1, 2, …, nj,并将式(20)、(22)代入式(41),考虑求迹运算的循环性质,再一起代入式(14),去掉期望便得到文献[4]中的式(15)和(16)。由此说明,文献[4]中基于间接平差推导扩展的Helmert型方差分量估计是本文中式(35)和(36)的特例。
4 结语本文针对现行的方差分量估计方法大多假设每类观测值中仅含1个方差分量的情况,基于概括函数模型和Helmert型方差分量估计的原理,推导了估计每类观测值含有多个方差分量的通用公式、相应的简化公式及一些特殊情况。同时,随着观测手段的丰富与多样化,往往同类观测值受到多种因素影响,即同类观测值可含有多个方差分量,该公式必将得到越来越多的使用。通用公式的推导不仅可以提高数据处理的精度,也可以使扩展的Helmert型方差分量估计在其他平差方法中的使用得到统一,是对方差分量估计理论的又一补充。
[1] |
Karlrudolf K. Parameter Estimation and Hypothesis Testing in Linear Models[M]. Berlin: Springer-Verlag, 1988
(0) |
[2] |
於宗俦. Helmert型方差-协方差分量估计的通用公式[J]. 武汉测绘科技大学学报, 1991, 16(2): 8-17 (Yu Zongchou. The General Formulas of Helmert Type for Estimating Variance and Covariance Components[J]. Journal of Wuhan Technical University of Surveying and Mapping, 1991, 16(2): 8-17)
(0) |
[3] |
王志忠, 朱建军. 方差分量的MINQUE通用公式[J]. 中南工业大学学报:自然科学版, 2001, 32(4): 433-436 (Wang Zhizhong, Zhu Jianjun. A Universal Formula of MINQUE of Variance Components[J]. Journal of Central South University of Technology, 2001, 32(4): 433-436)
(0) |
[4] |
刘长建, 柴洪洲, 吴洪举, 等. 扩展的Helmert型方差分量估计公式[J]. 测绘学报, 2008, 37(1): 1-4 (Liu Changjian, Chai Hongzhou, Wu Hongju, et al. Extended Formulae of Helmert Type for Estimating Variance Components[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(1): 1-4)
(0) |
[5] |
Teunissen P J G, Amiri-Simkooei A R. Least-Squares Variance Component Estimation[J]. Journal of Geodesy, 2008, 82(2): 65-82 DOI:10.1007/s00190-007-0157-x
(0) |
[6] |
李博峰, 沈云中, 楼立志. 基于等效残差的方差-协方差分量估计[J]. 测绘学报, 2010, 39(4): 349-354 (Li Bofeng, Shen Yunzhong, Lou Lizhi. Variance-Covariance Component Estimation Based on the Equivalent Residuals[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(4): 349-354)
(0) |
[7] |
刘志平, 张书毕. 方差-协方差分量估计的概括平差因子法[J]. 武汉大学学报:信息科学版, 2013, 38(8): 925-929 (Liu Zhiping, Zhang Shubi. Variance-Covariance Component Estimation Method Based on Generalization Adjustment Factor[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 925-929)
(0) |
[8] |
刘志平. 等价条件闭合差的方差-协方差分量估计解析法[J]. 测绘学报, 2013, 42(5): 648-653 (Liu Zhiping. Analytical Method for VCE Using Equivalent Condition Misclosure[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(5): 648-653)
(0) |
[9] |
赵俊, 郭建锋. 方差分量估计的通用公式[J]. 武汉大学学报:信息科学版, 2013, 38(5): 580-583 (Zhao Jun, Guo Jianfeng. Auniversal Formula of Variance Component Estimation[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5): 580-583)
(0) |
[10] |
王乐洋, 温贵森. Partial EIV模型的非负最小二乘方差分量估计[J]. 测绘学报, 2017, 46(7): 857-865 (Wang Leyang, Wen Guisen. Non-Negative Least Squares Variance Component Estimation of Partial EIV Model[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(7): 857-865)
(0) |
[11] |
王乐洋, 温贵森. 相关观测PEIV模型的最小二乘方差分量估计[J]. 测绘地理信息, 2018, 43(1): 8-14 (Wang Leyang, Wen Guisen. Least Squares Variance Components Estimation of PEIV Model with Correlated Observations[J]. Journal of Geomatics, 2018, 43(1): 8-14)
(0) |
[12] |
Wang L Y, Xu G Y. Variance Component Estimation for Partial Errors-in-Variables Models[J]. Studia Geophysica et Geodaetica, 2016, 60(1): 35-55 DOI:10.1007/s11200-014-0975-2
(0) |
[13] |
Crocetto N, Gatti M, Russo P. Simplified Formulae for the BIQUE Estimation of Variance Components in Disjunctive Observation Groups[J]. Journal of Geodesy, 2000, 74(6): 447-457 DOI:10.1007/s001900000109
(0) |