﻿ 基于GRACE RL06数据探测三江源地区陆地水储量变化
 文章快速检索 高级检索
 大地测量与地球动力学  2020, Vol. 40 Issue (10): 1092-1096  DOI: 10.14075/j.jgg.2020.10.019

### 引用本文

LIU Chen, XU Caijun, LIU Yang, et al. Terrestrial Water Storage Changes in Three-River Source Region as Detected Based on GRACE RL06 Data[J]. Journal of Geodesy and Geodynamics, 2020, 40(10): 1092-1096.

### Foundation support

National Natural Science Foundation of China, No. 41874011, 41774011, 41431069.

### Corresponding author

LIU Yang, PhD, associate professor, majors in geodetic data processing and interpretation, E-mail:Yang.Liu@sgg.whu.edu.cn.

### 第一作者简介

LIU Chen, postgraduate, majors in GRACE data processing and water reserve inversion, E-mail: chenliusgg@whu.edu.cn.

### 文章历史

1. 武汉大学测绘学院，武汉市珞喻路129号，430079

1 数据与方法 1.1 由GRACE反演陆地水

 $\begin{array}{l} \Delta h(\theta , \varphi ) = \frac{{\alpha {\rho _{{\rm{ave }}}}}}{{3{\rho _{{\rm{wat }}}}}}\sum\limits_{l = 0}^\infty {\frac{{2l + 1}}{{1 + {k_l}}}} {W_l}\sum\limits_{m = 0}^l {{W_m}} {{\bar P}_{lm}}(\cos \theta ) \cdot \\ \left( {\Delta {C_{lm}}\cos (m\varphi ) + \Delta {S_{lm}}\sin (m\varphi )} \right) \end{array}$ (1)

1.2 由GLDAS获取地表水

1.3 基于尺度因子的信号恢复

 $\min = \sum\limits_{i = 1}^n {{{\left( {{\sigma _{{\rm{original }}}} - k{\sigma _{{\rm{filtered }}}}} \right)}^2}}$ (2)

1.4 由地表冻融数据获得地表冻融状态

2 结果与分析 2.1 空间分布及分析

 图 1 三江源地区陆地水、地表水及降水的年变化趋势空间分布 Fig. 1 Spatial distribution of annual variation trend of terrestrial water, surface water and precipitation in TRS region

2.2 时间序列变化及分析

 图 2 三江源区域陆地水及地表水的储量变化时间序列及月降水量 Fig. 2 Time series of terrestrial water and surface waterstorage changes in TRS and monthly precipitation

2.3 三江源地区冻土与水储量之间的联系

 图 3 2006~2015年间各月份地表冻融状态 Fig. 3 Land surface freezing-thawing state chartfor each month from 2006 to 2015

 图 4 2006~2015年GRACE及GLDAS月均水储量及月均地表融化面积百分比 Fig. 4 Monthly average water storage and surface melting area percentageof GRACE and GLDAS from 2006 to 2015
3 结语

 [1] 罗志才, 李琼, 钟波. 利用GRACE时变重力场反演黑河流域水储量变化[J]. 测绘学报, 2012, 41(5): 676-681 (Luo Zhicai, Li Qiong, Zhong Bo. Water Storage Variations in Heihe River Basin Recovered from GRACE Temporal Gravity Field[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(5): 676-681) (0) [2] Xie X W, Xu C J, Wen Y M, et al. Monitoring Groundwater Storage Changes in the Loess Plateau Using GRACE Satellite Gravity Data, Hydrological Models and Coal Mining Data[J]. Remote Sensing, 2018, 10(4) (0) [3] 许顺芳, 王林松, 陈超, 等. 利用GRACE及气象数据评估GLDAS水文模型在青藏高原的适用性[J]. 大地测量与地球动力学, 2018, 38(1): 8-13 (Xu Shunfang, Wang Linsong, Chen Chao, et al. Using GRACE and In-situ Measurements to Assess the Applicability of GLDAS Hydrological Model in Tibet Plateau[J]. Journal of Geodesy and Geodynamics, 2018, 38(1): 8-13) (0) [4] Ran Y H, Li X, Cheng G D, et al. Distribution of Permafrost in China: An Overview of Existing Permafrost Maps[J]. Permafrost and Periglacial Processes, 2012, 23(4): 322-333 DOI:10.1002/ppp.1756 (0) [5] Wahr J, Molenaar M, Bryan F O, et al. Time Variability of the Earth's Gravity Field: Hydrological and Oceanic Effects and Their Possible Detection Using GRACE[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30 205-30 229 DOI:10.1029/98JB02844 (0) [6] Zhang Z Z, Chao B F, Lu Y, et al. An Effective Filtering for GRACE Time-Variable Gravity: Fan Filter[J]. Geophysical Research Letters, 2009, 36(17) (0) [7] Swenson S, Wahr J. Post-Processing Removal of Correlated Errors in GRACE Data[J]. Geophysical Research Letters, 2006, 33(8) (0) [8] 盛传贞.中国大陆非构造负荷地壳形变的区域性特征与改正模型[D].北京: 中国地震局地质研究所, 2013 (Sheng Chuanzhen. Characteristics of Non-Tectonic Crustal Deformation from Surface Loads Around Chinese Mainland and Correction Model[D]. Beijing: Institute of Geology, CEA, 2013) (0) [9] 晋锐, 李新, 车涛. SSM/I监测地表冻融状态的决策树算法[J]. 遥感学报, 2009, 13(1): 152-161 (Jin Rui, Li Xin, Che Tao. A Decision Tree Algorithm for Surface Freeze/Thaw Classification Using SSM/I[J]. Journal of Remote Sensing, 2009, 13(1): 152-161) (0) [10] Li R, Zhao L, Ding Y J, et al. Temporal and Spatial Variations of the Active Layer along the Qinghai-Tibet Highway in a Permafrost Region[J]. Science Bulletin, 2012, 57(35): 4 609-4 616 DOI:10.1007/s11434-012-5323-8 (0) [11] 程国栋, 金会军. 青藏高原多年冻土区地下水及其变化[J]. 水文地质工程地质, 2013, 40(1): 1-11 (Cheng Guodong, Jin Huijun. Groundwater in the Permafrost Regions on the Qinghai-Tibe Plateau and It Changes[J]. Hydrogeology and Engineering Geology, 2013, 40(1): 1-11) (0) [12] Walvoord M A, Kurylyk B L. Hydrologic Impacts of Thawing Permafrost——A Review[J]. Vadose Zone Journal, 2016, 15(6) (0) [13] Hinkel K M, Frohn R C, Nelson F E, et al. Morphometric and Spatial Analysis of Thaw Lakes and Drained Thaw Lake Basins in the Western Arctic Coastal Plain, Alaska[J]. Permafrost and Periglacial Processes, 2005, 16(4): 327-341 DOI:10.1002/ppp.532 (0)
Terrestrial Water Storage Changes in Three-River Source Region as Detected Based on GRACE RL06 Data
LIU Chen1     XU Caijun1     LIU Yang1     XIE Xiaowei1
1. School of Geodesy and Geomatics, Wuhan University, 129 Luoyu Road, Wuhan 430079, China
Abstract: In this paper, we inverse the spatial and temporal terrestrial water storage changes(TWSC) in the Three-River Source(TRS) region from 2006 to 2015 using the latest CSR data of GRACE RL06. The TWSC results obtained by RL06 are compared and analyzed with GLDAS hydrological model and TRMM precipitation data. The results show that the variation trends of terrestrial water and surface water in Three-River Source region between 2006 and 2015 are 5.2±1.2 mm/a and -3.8±0.9 mm/a respectively. Precipitation is closely related to the change of terrestrial water and is the main reason for the seasonal terrestrial water storage changes; permafrost, as a special aquifer, affects the hydraulic relationship between surface water and underground water. Combined with the surface freeze-thaw data, it is speculated that the permafrost activity causes the difference in the water storage of GRACE and GLDAS.
Key words: GRACE; terrestrial water storage change; permafrost; monthly precipitation; Three-River-Source(TRS)