﻿ 基于周期项参数模型的GPS流动观测改正方法研究
 文章快速检索 高级检索
 大地测量与地球动力学  2020, Vol. 40 Issue (10): 1012-1016  DOI: 10.14075/j.jgg.2020.10.004

引用本文

YANG Le, YIN Haitao, WEN Yanhao, et al. Study on Correction of the GPS Mobile Observation Based on Periodic Parameter Model[J]. Journal of Geodesy and Geodynamics, 2020, 40(10): 1012-1016.

Foundation support

National Natural Science Foundation of China, No.41974105; Key Research and Development Program of Shandong Province, No.2018GSF120007; General Project of Shandong Earthquake Agency, No.YB2009.

第一作者简介

YANG Le, engineer, majors in GPS data processing and crustal deformation data analysis, E-mail: yl_fog@163.com.

文章历史

1. 山东省地震局, 济南市文化东路20号, 250014;
2. 山东省煤田地质局物探测量队, 济南市经十东路33699号, 250104

1 流动观测可靠性分析

 图 1 本文所用山东地壳运动观测网GPS站点分布 Fig. 1 Distribution of GPS stations of CMONOSD used in this paper

 图 2 TAIN站点流动观测获取的速度信息 Fig. 2 Velocity of TAIN station obtained by mobile observation

2 基于周期项参数模型的GPS流动观测改正方法

GPS时间序列一般可利用包含年周期项和半年周期项的参数模型进行拟合，其表达式为：

 $\begin{array}{l} y\left( t \right) = a + bt + c\sin \left( {2\pi t} \right) + d\cos \left( {2\pi t} \right) + \\ \;\;\;\;\;\;\;e\sin \left( {4\pi t} \right) + f\cos \left( {4\pi t} \right) + \varepsilon \end{array}$ (1)

 图 3 TAIN站点200 km范围内站点的连续观测时间序列 Fig. 3 Time series of continuous observation of stations within 200 km of TAIN station
 $\begin{array}{l} Z\left( t \right) = \frac{1}{n}\mathop \sum \limits_{i = 1}^n \left( {{c_n}\sin \left( {2\pi t} \right) + {d_n}\cos \left( {2\pi t} \right) + } \right.\\ \;\;\;\;\;\;\;\;\;\;\;\;\;\left. {{e_n}\sin \left( {4\pi t} \right) + {f_n}\cos \left( {4\pi t} \right)} \right) \end{array}$ (2)

 ${\rm{ \mathsf{\tilde ε} }} = \frac{1}{{\mathop \sum \nolimits\limits_{i = 1}^n {D_n}}}\mathop \sum \limits_{i = 1}^n \left( {{D_n} \cdot {{\rm{ \mathsf{ ε} }}_n}} \right)$ (3)

 $\tilde y\left( t \right) = a + bt + Z\left( t \right) + \tilde \varepsilon$ (4)

3 流动观测改正方法有效性分析

 图 4 TAIN站点改正后流动观测速度信息 Fig. 4 Velocity of TAIN station by mobile observation after correction

4 流动观测改正方法实例分析

 图 5 流动观测站改正前后时间序列图 Fig. 5 Time series of mobile observation before and after correction

5 结语

 [1] 朱成林, 甘卫军, 贾媛, 等. GPS测定沂沭断裂带两侧块体的相对运动状态[J]. 大地测量与地球动力学, 2016, 36(1): 57-61 (Zhu Chenglin, Gan Weijun, Jia Yuan, et al. Measuring the Relative Motion State between the Two Sides' Blocks of Yishu Fault Zone by GPS[J]. Journal of Geodesy and Geodynamics, 2016, 36(1): 57-61) (0) [2] 王伟, 杨少敏, 赵斌, 等. 中国大陆现今地壳运动速度场[J]. 大地测量与地球动力学, 2012, 32(6): 29-32 (Wang Wei, Yang Shaomin, Zhao Bin, et al. Present-Day Crustal Movement Velocity Field in Chinese Mainland[J]. Journal of Geodesy and Geodynamics, 2012, 32(6): 29-32) (0) [3] 殷海涛, 肖根如, 张磊, 等. TRACK高频GPS定位中震时参考站的选取方法[J]. 大地测量与地球动力学, 2012, 32(4): 15-19 (Yin Haitao, Xiao Genru, Zhang Lei, et al. Study on Method for Selecting Reference Station in High Rate GPS Positioning Using Track during Earthquake[J]. Journal of Geodesy and Geodynamics, 2012, 32(4): 15-19) (0) [4] 王琪, 张培震, 马宗晋. 中国大陆现今构造变形GPS观测数据与速度场[J]. 地学前缘, 2002, 9(2): 415-429 (Wang Qi, Zhang Peizhen, Ma Zongjin. GPS Database and Velocity Field of Contemporary Tectonic Deformation in Continental China[J]. Earth Science Frontiers, 2002, 9(2): 415-429) (0) [5] 马下平, 赵立都. 陆态网络GNSS基准站地壳运动速度场分析[J]. 测绘科学, 2018, 43(8): 1-6 (Ma Xiaping, Zhao Lidu. Analysis of Crustal Movement Velocity Field Based on GNSS Base Stations in CMONOC[J]. Science of Surveying and Mapping, 2018, 43(8): 1-6) (0) [6] 王敏, 沈正康, 董大南. 非构造形变对GPS连续站位置时间序列的影响和修正[J]. 地球物理学报, 2005, 48(5): 1045-1052 (Wang Min, Shen Zhengkang, Dong Danan. Effects of Non-Tectonic Crustal Deformation on Continuous GPS Position Time Series and Correction to Them[J]. Chinese Journal of Geophysics, 2005, 48(5): 1045-1052) (0) [7] 黄立人. GPS基准站坐标分量时间序列的噪声特性分析[J]. 大地测量与地球动力学, 2006, 26(2): 31-33 (Huang Liren. Noise Properties in Time Series of Coordinate Component at GPS Fiducial Stations[J]. Journal of Geodesy and Geodynamics, 2006, 26(2): 31-33) (0) [8] Williams S D P, Bock Y, Fang P, et al. Error Analysis of Continuous GPS Position Time Series[J]. Journal of Geophysical Research Solid Earth, 2004, 109(B3) (0) [9] Altamimi Z, Métivier L, Collilieux X. ITRF2008 Plate Motion Model[J]. Journal of Geophysical Research Solid Earth, 2012, 117(B7) (0) [10] 胡良晨, 周义炎, 王伟. 陆态网络共模误差的提取研究[J]. 测绘科学, 2019, 44(5): 37-42 (Hu Liangchen, Zhou Yiyan, Wang Wei. Study on the Extraction of Common-mode Errors in CMONOC[J]. Science of Surveying and Mapping, 2019, 44(5): 37-42) (0) [11] 王健, 许安安, 周伯烨. 顾及共模误差的大区域GPS网坐标时间序列噪声分析[J]. 测绘通报, 2018(4): 6-9 (Wang Jian, Xu An'an, Zhou Boye. Noise Analysis of the Coordinate Time Series of the Large-Scale GPS Network with Consideration of Common Mode Error[J]. Bulletin of Surveying and Mapping, 2018(4): 6-9) (0) [12] 常金龙, 甘卫军, 梁诗明, 等. 大华北地区GPS时间序列共模误差的确定与分析[J]. 地震研究, 2018, 41(3): 430-437 (Chang Jinlong, Gan Weijun, Liang Shiming, et al. The Determination and Analysis of GPS Time Series Common Mode Error in the North China Region[J]. Journal of Seismological Research, 2018, 41(3): 430-437) (0) [13] 刘宗强, 党亚民, 杨强, 等. 顾及共模误差的四川连续GPS基准站坐标时间序列噪声分析[J]. 大地测量与地球动力学, 2018, 38(5): 510-515 (Liu Zongqiang, Dang Yamin, Yang Qiang, et al. Noise Analysis of Coordinate Time Series of Sichuan GPS Reference Stations with Common Mode Error[J]. Journal of Geodesy and Geodynamics, 2018, 38(5): 510-515) (0)
Study on Correction of the GPS Mobile Observation Based on Periodic Parameter Model
YANG Le1     YIN Haitao1     WEN Yanhao2     JIA Yuan1
1. Shandong Earthquake Agency, 20 East-Wenhua Road, Jinan 250014, China;
2. Geophysical Prospecting and Surveying Team of Shandong Coal Geology Bureau, 33699 East-Jingshi Road, Jinan 250104, China
Abstract: We improve the accuracy of GPS mobile observation positioning using the time series of continuous observation stations within 200 km of the GPS mobile station, and discuss the reliability of GPS mobile observation results. The results show: 1) The standard deviation of velocity obtained by mobile observation decreases by 37.97% compared to continuous observation. 2) The deviation of measured value decreases by 38.9% on average after correction at TAIN and CASH sites.
Key words: GPS; velocity field; mobile GPS observation; continuous observation; correction method