文章快速检索     高级检索
  大地测量与地球动力学  2020, Vol. 40 Issue (9): 970-975  DOI: 10.14075/j.jgg.2020.09.018

引用本文  

胡智飞, 张康华, 田家勇. 钻孔应变观测原位标定方法研究进展[J]. 大地测量与地球动力学, 2020, 40(9): 970-975.
HU Zhifei, ZHANG Kanghua, TIAN Jiayong. A Review of In-Situ Calibration Method for Borehole Strainmeter Observation[J]. Journal of Geodesy and Geodynamics, 2020, 40(9): 970-975.

项目来源

中央级公益性科研院所基本科研业务费专项(ZDJ2018-22, ZDJ2019-15-1)。

Foundation support

Special Fund for Basic Scientific Research of Central Public Research Institutes, No. ZDJ2018-22, ZDJ2019-15-1.

通讯作者

田家勇,博士,研究员,主要从事岩石声学及其在地壳应力场中的应用研究,E-mail:chenlitedtian@263.net

Corresponding author

TIAN Jiayong, PhD, researcher, majors in rock acoustics and its application in crustal stress field, E-mail: chenlitedtian@263.net.

第一作者简介

胡智飞,硕士生,主要从事地壳应变场观测研究,E-mail:JeffreyH@163.com

About the first author

HU Zhifei, postgraduate, majors in observation of crustal strain field, E-mail: JeffreyH@163.com.

文章历史

收稿日期:2019-11-07
钻孔应变观测原位标定方法研究进展
胡智飞1     张康华1,2     田家勇1     
1. 中国地震局地壳应力研究所地壳动力学重点实验室,北京市安宁庄路1号,100085;
2. 天津大学水利仿真与安全国家重点实验室,天津市雅观路135号,300072
摘要:钻孔应变观测的原位标定是制约钻孔应变定量观测理论与技术发展的基础性问题。为推进钻孔应变观测在地球动力学研究中的应用,从标定模型、参考应变信号等方面系统总结钻孔应变观测原位标定方法研究的最新进展,指出钻孔应变观测原位标定中存在的主要问题,并展望今后的发展方向。
关键词钻孔应变观测原位标定方法参考应变信号固体潮地震波

20世纪70年代以来,由于高分辨率钻孔应变观测技术能有效弥补GPS观测和地震观测在分辨率和观测带宽上的空白[1],并具有较好的抗地表干扰能力,被广泛应用于板块边界观测计划[2-4]、中国地震观测台网[5-6]等地球物理场观测领域,钻孔应变观测结果已在火山动力学[7-8]、地震孕育及发生过程(瞬间滑移、断层蠕变、地震成核、慢地震、静寂地震等)[9-15]、地震震源评价[16-17]和地震预测[18-20]等科学研究中发挥了重要作用。

目前,高分辨率钻孔应变仪主要分为体积式钻孔应变仪和分量式钻孔应变仪。体积式钻孔应变仪主要测量水平面内的面应变,主要有Sacks-Evertson型[21]、TJ型[22]和Sakata型[23];分量式钻孔应变仪主要测量水平面内的应变分量,主要有RZB型[20, 24]、YRY型[25-26]、GTSM型[27-28]和SKZ型[18]。分量式钻孔应变仪内部都有4个测量探头内径变化的测量元件,具有不同的排列方式,其中RZB型、YRY型和SKZ型分量式应变仪的4个测量元件依次间隔45°排列,而GTSM型分量式应变仪的前3个元件依次间隔60°排列,第4个元件与第2个元件的夹角为90°。这些钻孔应变仪的应变分辨率均优于10-9,可清晰观测到应变固体潮[29-32]

为了能够定量测量地壳内部某点的应变变化εa,通常情况下将钻孔应变仪的观测探头安装在钻孔一定深度处,并用膨胀水泥将其与基岩耦合在一起。当钻孔周边的应变场发生变化时,钻孔、膨胀水泥、探头钢筒的形状随之发生变化,通过探头的测量单元可直接测量出探头钢筒内径(或体积)的相对变化e。对于分量式应变仪,引入测量元件方位矩阵G,可得到分量式应变仪的仪器应变εI={ε11I+ε22I, ε11I-ε22I, 2ε12I}T,即

$ \mathit{\boldsymbol{e}}=\mathit{\boldsymbol{G}}{\mathit{\boldsymbol{\varepsilon }}^I} $ (1)

式中,$ \mathit{\boldsymbol{G}}=\frac{1}{2}\left[ {\begin{array}{*{20}{c}} 1&{\cos 2{\theta _n}}&{\sin 2{\theta _n}} \end{array}} \right]$n=1, 2, 3, 4;θn为第n个元件的方位角。对于体积式应变仪,仪器应变εI=Δ,这里的仪器应变εI并不是力学意义上的真实应变,而是考虑钻孔变形影响构造出来的虚拟应变。

钻孔应变观测的结果应为无钻孔情况下在钻孔轴处的应变变化εa,所以需要解决如何通过εI给出εa的问题。本文引入无钻孔情况下测量点周边一定范围内为均匀应变场εR的假设(意味着εa=εR),利用基于远场均匀应变εR作用的小孔应力集中模型给出的线性耦合关系εR=K-1εI得到εa,其中K为耦合系数矩阵,与钻孔、膨胀水泥、探头钢筒的物性和几何性质有关。虽然原则上K可以通过计算得到,但由于测量探头安装完毕后无法得到膨胀水泥、钻孔、钢筒壁之间的耦合状态及相关介质的物性,K的计算结果具有很大的不确定性,必须通过原位标定给出。钻孔应变观测的原位标定是关系到钻孔应变观测理论与技术发展的至关重要的基础性问题,其在广义上包括两个方面:1)钻孔应变仪电学原位标定,由钻孔应变仪的电学输出与εI之间的标定系数确定;2)耦合系数矩阵K的原位标定。将经过室内标定后的钻孔应变仪安装至钻孔内后需定期进行电学标定,可采取在测量元件中设置电学标定装置,如电致伸缩标定系统[25, 33]、磁致伸缩标定系统[33]及加热升温标定系统[34]等,或利用测量元件的特殊布置方式所具有的特性[35]来实现。本文所指的原位标定特指耦合系数矩阵K的原位标定。

为更好地促进钻孔应变观测原位标定技术的发展,推进钻孔应变观测在地震学、地球动力学、火山动力学、地震预报等学科领域中的应用,本文从标定模型、参考应变信号等方面系统总结钻孔应变观测原位标定方法的最新研究进展,总结钻孔应变观测原位标定中常用的标定模型,介绍基于固体潮参考应变信号和地震波参考应变信号的原位标定方法的研究进展,提出钻孔应变观测原位标定中存在的主要问题,并展望今后的发展方向。

1 标定模型

对于钻孔应变观测原位标定来说,标定模型的选取至关重要,根据参考信号的类型可分为静态标定模型和动态标定模型。对于静态标定模型来说,最常用的模型是各向同性标定模型KH[27],该模型引入平面应力假设,利用基于远场均匀应变εR作用下各向同性介质含双环夹杂小孔应力的集中模型给出[27, 36-38]

$ {\mathit{\boldsymbol{K}}^H} = {\rm{diag}}({C, D, D}) $ (2)

式中,CD分别为水平面应变和水平剪切应变的耦合系数,由膨胀水泥、钻孔、钢筒壁之间的耦合状态及相关介质的物性决定。由耦合系数矩阵为对角阵可得出,远场应变的面应变分量和剪切应变分量分别只与仪器应变的面应变分量和剪切应变分量有关。假设钻孔周边m级范围的应变场和仪器应变保持各向同性耦合关系εL=KH-1εI,Hart等[39]考虑km尺度区域应变场εR受小尺度非均质体的影响,引入干扰矩阵P (非对角阵),将仪器应变εI与区域应变场εR联系起来,提出交叉耦合标定模型:

$ {\mathit{\boldsymbol{K }}} = \mathit{\boldsymbol{K}}^H{\mathit{\boldsymbol{P }}} $ (3)

其中,K为非对角阵,意味着仪器面应变和仪器剪切应变受到εR所有分量的影响。K的非对角元素不为零,可能是由测量元件的方位误差和比例系数不同、沿孔轴的耦合系数变化和围岩的各向异性造成的。Roeloffs[40]进一步考虑垂直变形和剪切变形耦合的影响,研究了交叉耦合矩阵每个元素的取值范围。结合参考应变信号,基于交叉耦合标定模型的原位标定结果明显好于基于各向同性模型的标定结果[2, 39-42]

对于动态标定模型来说,选取的参考信号通常为入射地震应变波。由于钻孔壁的存在,入射应变波会在钻孔周边产生不同类型的散射应变波,仪器的应变是入射应变波和散射应变波之和。钻孔应变观测动态系统的频响为理论频响(仪器应变与入射应变波的比值)与仪器应变频响的乘积,通过实际测试发现,仪器应变为低通滤波器,其带宽可达20 Hz以上[5, 26-28];理论频响取决于入射应变波的种类、入射方向、入射波频率及钻孔系统的物性和结构[43-44],需采用弹性波散射理论来求解[45]。有学者采用波函数展开法研究了P波和S波垂直钻孔轴入射的情况下分量式钻孔应变观测的理论频响[46-48],结果表明,钻孔系统也为低通滤波器,其0.1 dB带宽可达100 Hz左右。由此可知,钻孔应变观测动态系统本质上为低通滤波器,其带宽取决于理论频响与仪器应变频响的带宽最小值,静态标定模型可视为动态标定模型的极低频情况。

2 原位标定方法

除了标定模型的选取,钻孔应变观测原位标定的另一个重要问题就是参考应变信号εR的选取,目前选取的参考应变信号分别为固体潮参考应变信号和地震应变波参考信号。

2.1 基于固体潮参考应变信号的原位标定

基于固体潮参考应变信号的原位标定主要选取固体潮信号中的半日潮M2(12.42 h)和全日潮O1(25.82 h),因为这两种固体潮分量的幅值较大,且温度对其影响较小[40]。通过分别比较应变仪测量元件实测值和参考应变信号给出的M2、O1分量的实部和虚部,对耦合系数矩阵K进行标定[2-3, 36, 39-42, 49]

$ {\left[ {\begin{array}{*{20}{c}} {{{\left( {{\rm Re} ({\mathit{\boldsymbol{e}}_{{{\rm{M}}_2}}})} \right)}^{\rm{T}}}} \\ {{{\left( {{\rm Im} ({\mathit{\boldsymbol{e}}_{{{\rm{M}}_2}}})} \right)}^{\rm{T}}}} \\ {{{\left( {{\rm Re} ({\mathit{\boldsymbol{e}}_{{{\rm{O}}_1}}})} \right)}^{\rm{T}}}} \\ {{{\left( {{\rm Im} ({\mathit{\boldsymbol{e}}_{{{\rm{O}}_1}}})} \right)}^{\rm{T}}}} \end{array}} \right]^{\rm{T}}} = \mathit{\boldsymbol{GK}}{\left[ {\begin{array}{*{20}{c}} {{{\left( {{\rm Re} (\mathit{\boldsymbol{\varepsilon }}_{{{\rm{M}}_2}}^R)} \right)}^{\rm{T}}}} \\ {{{\left( {{\rm Im} (\mathit{\boldsymbol{\varepsilon }}_{{{\rm{M}}_2}}^R)} \right)}^{\rm{T}}}} \\ {{{\left( {{\rm Re} (\mathit{\boldsymbol{\varepsilon }}_{{{\rm{O}}_1}}^R)} \right)}^{\rm{T}}}} \\ {{{\left( {{\rm Im} (\mathit{\boldsymbol{\varepsilon }}_{{{\rm{O}}_1}}^R)} \right)}^{\rm{T}}}} \end{array}} \right]^{\rm{T}}} $ (4)

式中,e为应变仪测量元件测得的钢筒内径的相对变化,εR为参考信号的应变。对于四分量钻孔应变仪,式(4)中的矩阵GK是超定的,可通过求解Moore-Penrose广义逆来求得[2, 39]。固体潮的参考应变信号可通过两种方式获得:1)通过与钻孔应变仪同址安装在地表的3个不同测量方位的长基线激光干涉仪测量得到km尺度的固体潮参考应变信号[39, 42]。该方法确定的参考应变信号精度最高,可达到3.5 nε。但由于长基线激光干涉仪的成本较高,仅在很少的钻孔应变观测站点安装,限制了该方法的大规模应用。2)通过理论固体潮模型计算得到的应变作为参考应变信号[50]。该方法简单实用且成本极低,目前已成为一种常用的钻孔应变观测原位标定方法。但由于受地球深部结构模型、海洋荷载模型、钻孔周边地形和介质不均质性的影响,理论固体潮计算模型并不准确,从而影响以该模型计算结果为参考的钻孔应变标定结果的准确性,对理论固体潮计算模型进行适当修正可显著提高标定精度[42]。利用有限元模型定量分析影响钻孔应变测量结果的因素,如地形、仪器周围地质情况等,可将理论固体潮计算所得的应变误差从23%降至8%[51]。与同址安装的长基线激光干涉仪固体潮测量结果进行对比发现,基于理论固体潮参考应变信号的原位标定方法若采用交叉耦合标定模型,相对于各向同性标定模型可减少30%的系统误差[39]。考虑理论固体潮计算模型高达30%的误差并对地震点源模型进行微调,钻孔应变仪测量得到的2014年加州南纳帕6.0级地震所造成的应变阶和理论计算应变阶的均方根拟合误差从130 nε降至18 nε[41]。由此可见,理论固体潮模型的准确性极大程度地影响着原位标定结果的精确度。

2.2 基于地震应变波参考信号的原位标定

基于地震应变波参考信号的原位标定主要采用远震长周期面波的计算应变波形或从地震台阵测量的地震应变波作为参考信号。Bonaccorso等[52]采用远震(震级在8级以上)的长周期面波的计算应变波形对埃特纳火山的体应变观测结果进行了原位标定,结果具有很好的自洽性,而PBO计划中的实际应变数据受安装问题和地质不均匀性的影响并不协调,从而提出可使用宽频带台网计算的应变数据标定钻孔应变仪。利用Langston等[53]提出的基于宽频带地震台阵数据的地震波梯度测量方法,Currenti等[54]根据埃塔纳火山附近3个地震仪组成的台阵数据计算出均匀体应变,并与位于台阵内部的钻孔体应变仪记录的同一次远震的体应变数据进行对比,结果显示,二者具有很好的相关性,这意味着该方法可用于钻孔应变仪的标定。

从地震台阵测量的地震应变波要求地震台阵至少包含3台地震仪,且假设台阵范围内(100 m尺度到10 km尺度)的地震应变波场是均匀波场。引入小变形假设,任意点X的位移U(X)可表示为相对于参考点X0的泰勒展开:

$ U\left( X \right) = U\left( {{X_0}} \right) + {\left. {\frac{{\partial U}}{{\partial X}}} \right|_{{X_0}}}\left( {X - {X_0}} \right) $ (5)

考虑地表应力自由的条件,参考地震应变波$ {\left. {\frac{{\partial U}}{{\partial X}}} \right|_{{X_0}}}$可利用式(5)从地震台阵(站点数N≥3)测量的三分量位移记录U(Xn)得到[53-58]

$ \left. \begin{array}{l} \mathit{\boldsymbol{GM }}= d \\ \mathit{\boldsymbol{BM = }}0 \\ \end{array} \right\} $ (6)

式中,$\mathit{\boldsymbol{G = }}\left[ {\begin{array}{*{20}{c}} \mathit{\boldsymbol{I}}&{{X_1} - {X_0}} \\ \cdots & \cdots \\ \mathit{\boldsymbol{I}}&{{X_N} - {X_0}} \end{array}} \right]$$\mathit{\boldsymbol{M = }}\left[ {\begin{array}{*{20}{c}} {U\left( {{X_0}} \right)} \\ {{{\left. {\frac{{\partial U}}{{\partial X}}} \right|}_{{X_0}}}} \end{array}} \right]$$\mathit{\boldsymbol{d = }}\left[ {\begin{array}{*{20}{c}} {U\left( {{X_1}} \right)} \\ \vdots \\ {U\left( {{X_N}} \right)} \end{array}} \right]$B为3×12矩阵,B1,12=(1-ν)/νB1,4=B1,8=B2,9=B2,11=B3,6=B3,10=1,其他元素为0。

虽然在低频情况下地震台阵测量的地震应变波与长基线激光干涉仪得到的应变波符合较好,且基于地震波参考信号的原位标定避免了因使用理论固体潮计算模型不准确而造成的系统误差,但由于计算应变波基于在地震台阵范围内的应变场是均一的这一假设,而地震台站之间的距离在10 km级,计算应变值受计算模型的影响也有类似于基于理论固体潮的原位标定存在系统误差的问题[54]。具体体现在:1)由于台阵范围内地下结构的非均质性,均匀应变场的假设很难得到保证,造成标定结果受地震波的传播方向影响较大;2)直接采用静态标定模型,未考虑动态标定模型的影响[55-59]。Gomberg等[57]研究发现,将通过地震数据和弹性理论导出的应变数值与用长基线三分量应变仪测量所得应变数值进行对比,振幅存在大约20%甚至更大的偏差,同时更高的频率会引起更大的偏差。

3 结语

综上所述,受标定模型和参考信号准确性的影响,基于固体潮参考应变信号的原位标定方法和基于地震应变波参考信号的原位标定方法的精度还无法得到可靠的保证。基于计算参考均匀应变信号(理论固体潮或计算应变波)的原位标定受理论计算模型不准确性的影响,标定结果存在系统性偏差;基于测量的参考均匀应变信号(地震台阵测量的地震应变波或长基线应变仪测量的固体潮)的原位标定,由于参考均匀应变信号是通过测量给出的,相对于基于计算参考均匀应变信号的原位标定来说,其标定结果更加可靠。然而,由于受测量尺度范围内的介质非均质性影响,测量参考应变场通常是非均匀的,造成基于测量参考均匀应变信号的原位标定结果的精度不够高。

目前,钻孔应变观测高精度原位标定已成为制约钻孔观测理论与技术发展的关键问题。为提高钻孔应变观测原位标定的精度,必须保证参考应变信号的准确性,减少介质非均质性的影响,选取尽量小的尺度范围内的参考应变信号εR[17]。利用同孔安装的地震仪信号对钻孔应变仪进行标定,可能是将来钻孔应变观测高精度原位标定研究的重点[60],但该研究方向还面临许多问题需要解决,如入射应变波的种类、方向、频率及钻孔系统的物性和结构对动态标定模型及钻孔周边波速的频散效应的影响等。

参考文献
[1]
池顺良, 艾学民, 池亮, 等. 钻孔应变观测技术发展方向探讨[J]. 地震地磁观测与研究, 1998, 19(5): 23-29 (Chi Shunliang, Ai Xuemin, Chi Liang, et al. The Discussion of Developing Trend of Bore-Hole Strain Observation Technology[J]. Seismology and Geomagnetic Observation and Research, 1998, 19(5): 23-29) (0)
[2]
Hodgkinson K, Langbein J, Henderson B, et al. Tidal Calibration of Plate Boundary Observatory Borehole Strainmeters[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(1): 447-458 DOI:10.1029/2012JB009651 (0)
[3]
John L. Computer Algorithm for Analyzing and Processing Borehole Strainmeter Data[J]. Computers and Geosciences, 2010, 36(5): 611-619 DOI:10.1016/j.cageo.2009.08.011 (0)
[4]
Bormann P. IASPEI New Manual of Seismological Observatory Practice(NMSOP)[M]. Germany: Geo Forschungs Zentrum Potsdam, 2002 (0)
[5]
Chi S L. China's Component Borehole Strainmeter Network[J]. Earthquake Science, 2009, 22(6): 579-587 DOI:10.1007/s11589-009-0579-z (0)
[6]
李海亮, 李宏. 钻孔应变观测现状与展望[J]. 地质学报, 2010, 84(6): 895-900 (Li Hailiang, Li Hong. Status and Developments of Borehole Strain Observations in China[J]. Acta Geologica Sinica, 2010, 84(6): 895-900) (0)
[7]
Luttrell K, Mencin D, Francis O, et al. Constraints on the Upper Crustal Magma Reservoir Beneath Yellowstone Caldera Inferred from Lake-Seiche Induced Strain Observations[J]. Geophysical Research Letters, 2013, 40(3): 501-506 DOI:10.1002/grl.50155 (0)
[8]
Linde A T, Agustsson K, Sacks I S, et al. Mechanism of the 1991 Eruption of Hekla from Continuous Borehole Strain Monitoring[J]. Nature, 1993, 365(6 448): 737-740 (0)
[9]
Hawthorne J C, Rubin A M. Tidal Modulation of Slow Slip in Cascadia[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B9) (0)
[10]
Smith E F, Gomberg J. A Search in Strainmeter Data for Slow Slip Associated with Triggered and Ambient Tremor Near Parkfield, California[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B12) (0)
[11]
Johnston M J S, Borcherdt R D, Linde A T, et al. Continuous Borehole Strain and Pore Pressure in the Near Field of the 28 September 2004 M6.0 Parkfield, California, Earthquake: Implications for Nucleation, Fault Response, Earthquake Prediction, and Tremor[J]. Bulletin of the Seismological Society of America, 2006, 96(48): 56-72 (0)
[12]
Johnston M J S, Linde A T. Implications of Crustal Strain During Conventional, Slow, and Silent Earthquakes[A]//International Geophysics[M]. Salt Lake City: Academic Press, 2002 (0)
[13]
Langbein J, Gwyther R L, Hart R H G, et al. Slip-Rate Increase at Parkfield in 1993 Detected by High-Precision EDM and Borehole Tensor Strainmeters[J]. Geophysical Research Letters, 1999, 26(16): 2 529-2 532 DOI:10.1029/1999GL900557 (0)
[14]
Linde A T, Gladwin M T, Johnston M J S, et al. A Slow Earthquake Sequence on the San Andreas Fault[J]. Nature, 1996, 383(6 595): 65-68 (0)
[15]
Gladwin M T, Gwyther R L, Hart R H G, et al. Measurements of the Strain Field Associated with Episodic Creep Events on the San Andreas Fault at San Juan Bautista, California[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B3): 4 559-4 565 DOI:10.1029/93JB02877 (0)
[16]
Barbour A J, Crowell B W. Dynamic Strains for Earthquake Source Characterization[J]. Seismological Research Letters, 2017, 88(2A): 354-370 DOI:10.1785/0220160155 (0)
[17]
Agnew D C, Wyatt F K. Dynamic Strains at Regional and Teleseismic Distances[J]. Bulletin of the Seismological Society of America, 2014, 104(4): 1 846-1 859 DOI:10.1785/0120140007 (0)
[18]
Kong X Y, Su K Z, Yukio F, et al. A Detection Method of Earthquake Precursory Anomalies Using the Four-Component Borehole Strainmeter[J]. Open Journal of Earthquake Research, 2018, 7(2): 124-140 DOI:10.4236/ojer.2018.72008 (0)
[19]
Qiu Z H, Zhang B H, Chi S L, et al. Abnormal Strain Changes Observed at Guza before the Wenchuan Earthquake[J]. Science China Earth Sciences, 2011, 54(2): 233-240 DOI:10.1007/s11430-010-4057-1 (0)
[20]
Ouyang Z X, Zhang H X, Fu Z Z, et al. Abnormal Phenomena Recorded by Several Earthquake Precursor Observation Instruments before the MS8.0 Wenchuan, Sichuan Earthquake[J]. Acta Geologica Sinica: English Edition, 2009, 83(4): 834-844 DOI:10.1111/j.1755-6724.2009.00106.x (0)
[21]
Sacks I S, Suyehiro S, Evertson D W, et al. Sacks-Evertson Strainmeter, Its Installation in Japan and Some Preliminary Results Concerning Strain Steps[J]. Proceedings of the Japan Academy, 1971, 47(9): 707-712 DOI:10.2183/pjab1945.47.707 (0)
[22]
苏恺之, 李桂荣, 张涛, 等. 小型化体积式钻孔应变仪[J]. 内陆地震, 1997, 11(4): 316-322 (Su Kaizhi, Li Guirong, Zhang Tao, et al. Minor Volume Borehole Strainmeter[J]. Inland Earthquake, 1997, 11(4): 316-322) (0)
[23]
Sakata S. On the Concept of Some Newly-Invented Borehole Three-Component Strain Meters[R]. National Research Institute for Earth Science and Disaster Prevention, Ibaraki, 1981 (0)
[24]
欧阳祖熙. 高精度"分量式钻孔应变仪"研制成功[J]. 地震, 1986, 6(2): 61 (Ouyang Zuxi. Development of High Precision Component Borehole Deformation Monitoring[J]. Earthquake, 1986, 6(2): 61) (0)
[25]
池顺良. 用于地层应力-应变观测的压容式钻孔应变仪[J]. 地震, 1985, 5(3): 18-22 (Chi Shunliang. A Capacitance-Type Bore-Hole Strainmeter for Earth Strain-Stress Measurements[J]. Earthquake, 1985, 5(3): 18-22) (0)
[26]
Chi S L. Trial Results of YRY-2 Shallow Borehole Strainmeter at Eight Observation Sites in North China[J]. Earthquake Science, 1993, 6(3): 731-737 DOI:10.1007/BF02650412 (0)
[27]
Gladwin M T, Hart R. Design Parameters for Borehole Strain Instrumentation[J]. Pure and Applied Geophysics, 1985, 123(1): 59-80 DOI:10.1007/BF00877049 (0)
[28]
Gladwin M T. High-Precision Multi-Component Borehole Deformation Montoring[J]. Review of Scientific Instruments, 1984, 55(12): 2 011-2 016 DOI:10.1063/1.1137704 (0)
[29]
顾梦林, 骆鸣津, 李安印, 等. 香山地震台压容式钻孔应变仪线应变固体潮观测结果的调和分析[J]. 地壳形变与地震, 1987, 7(4): 266-272 (Gu Menglin, Luo Mingjin, Li Anyin, et al. Preliminary Analysis of the Data of Linear Strain Earth Tide Observed with a Capacitance-Type Borehole Strainmeter at the Xiangshan Seismic Station[J]. Crustal Deformation and Earthquake, 1987, 7(4): 266-272) (0)
[30]
顾梦林, 骆鸣津, 睢建设. 上海佘山压容式钻孔应变仪观测资料的调和分析[J]. 地震学报, 1986, 8(2): 197-210 (Gu Menglin, Luo Mingjin, Sui Jianshe. Harmonic Analysis of Strain Tidal Data Observed by a Borehole Strainmeter of Capacitive Displacement Type at the Sheshan Station, Shanghai City[J]. Acta Seismologica Sinica, 1986, 8(2): 197-210) (0)
[31]
顾梦林, 骆鸣津, 李安印. 徐州、温泉、峰峰体积应变仪观测资料调和分析的初步结果[J]. 地球物理学报, 1986, 29(3): 307-311 (Gu Menglin, Luo Mingjin, Li Anyin. The Preliminary Results of the Harmonic Analysis on the Earth Tide Observed with TJ-1 Volumetric Strainmeters in Xuzhou, Wenquan and Fengfeng[J]. Acta Geophysica Sinica, 1986, 29(3): 307-311) (0)
[32]
李平, 刘序俨. 我国首批应变固体潮观测结果[J]. 地壳形变与地震, 1985, 5(2): 113-120 (Li Ping, Liu Xuyan. Firstling of Strain Tide Observed at Some Station in China[J]. Crustal Deformation and Earthquake, 1985, 5(2): 113-120) (0)
[33]
欧阳祖熙. RZB型钻孔应变仪原位标定技术研究[J]. 大地测量与地球动力学, 2013, 33(1): 153-156 (Ouyang Zuxi. Research on In-Situ Calibration Technique of RZB Borehole Strainmeters[J]. Journal of Geodesy and Geodynamics, 2013, 33(1): 153-156) (0)
[34]
李海亮, 马京杰, 苏恺之. TJ-2体应变传感器传递函数测试[J]. 地震地磁观测与研究, 2017, 38(5): 127-132 (Li Hai-liang, Ma Jingjie, Su Kaizhi. The Transfer Function Measurement of TJ-2 Volume Strain Sensor[J]. Seismological and Geomagnetic Observation and Research, 2017, 38(5): 127-132) (0)
[35]
邱泽华, 石耀霖, 欧阳祖熙. 四分量钻孔应变观测的实地相对标定[J]. 大地测量与地球动力学, 2005, 25(1): 118-122 (Qiu Zehua, Shi Yaolin, Ouyang Zuxi. Relative In-Situ Calibration of 4-Component Borehole Strain Observation[J]. Journal of Geodesy and Geodynamics, 2005, 25(1): 118-122) (0)
[36]
Qiu Z H, Tang L, Zhang B H, et al. In Situ Calibration of and Algorithm for Strain Monitoring Using Four-Gauge Borehole Strainmeters(FGBS)[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(4): 1 609-1 618 DOI:10.1002/jgrb.50112 (0)
[37]
张凌空, 牛安福. 周期气压波对地壳岩石应变测量影响的理论解[J]. 地球物理学进展, 2019, 34(4): 1 366-1 370 (Zhang Lingkong, Niu Anfu. Theoretical Solution of Periodic Pressure Wave Effect on Crustal Rock Strain Measurement[J]. Progress in Geophysics, 2019, 34(4): 1 366-1 370) (0)
[38]
张凌空, 牛安福. 钻孔体应变与面应变观测井孔耦合系数的计算[J]. 地震学报, 2015, 37(1): 80-88 (Zhang Lingkong, Niu Anfu. Calculation of Borehole Coupling Coefficient Based on Borehole Volume Strain and Area Strain Observation[J]. Acta Seismologica Sinica, 2015, 37(1): 80-88) (0)
[39]
Hart R H G, Gladwin M T, Gwyther R L, et al. Tidal Calibration of Borehole Strain Meters: Removing the Effects of Small-Scale in Homogeneity[J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B11): 25 553-25 571 DOI:10.1029/96JB02273 (0)
[40]
Roeloffs E. Tidal Calibration of Plate Boundary Observatory Borehole Strainmeters: Roles of Vertical and Shear Coupling[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B6) (0)
[41]
Langbein J. Borehole Strainmeter Measurements Spanning the 2014 MW6.0 South Napa Earthquake, California: The Effect from Instrument Calibration[J]. Journal of Geophysical Research: Solid Earth, 2015, 120(10): 7 190-7 202 DOI:10.1002/2015JB012278 (0)
[42]
Langbein J. Effect of Error in Theoretical Earth Tide on Calibration of Borehole Strainmeters[J]. Geophysical Research Letters, 2010, 37(21) (0)
[43]
骆鸣津, 池顺良. 综合应用固体潮观测资料求解钻孔应变地震波[J]. 地壳形变与地震, 2000, 20(4): 57-63 (Luo Mingjin, Chi Shunliang. Resolving the Bore Hole Strain Seismic Wave Through in Tegrated Use of Observation Data of Earth Tide[J]. Crustal Deformation and Earthquake, 2000, 20(4): 57-63) (0)
[44]
骆鸣津, 池顺良. 综合应用钻孔应变固体潮和应变地震波资料求解地震参数和地层的力学参数[J]. 西北地震学报, 2001, 23(4): 359-364 (Luo Mingjin, Chi Shunliang. Determination of Seismic Parameters and Mechanical Parameters of Stratum Using Data of Borehole Strain Tide and Strain Seismic Wave[J]. Northwestern Seismological Journal, 2001, 23(4): 359-364) (0)
[45]
Mow C C, Pao Y H. The Diffraction of Elastic Waves and Dynamics Stress Concentrations[M]. New York: Crane Russak, 1971 (0)
[46]
张康华, 田家勇, 王密. 分量钻孔应变观测的理论频响分析[J]. 地下空间与工程学报, 2019, 15(S1): 81-85 (S1): 81-85(Zhang Kanghua, Tian Jiayong, Wang Mi. Theoretical Frequency Response for Borehole Tensor Strain Observatory[J]. Chinese Journal of Underground Space and Engineering, 2019, 15(S1): 81-85) (0)
[47]
Zhang K H, Tian J Y, Hu Z F. Theoretical Frequency Response and Corresponding Bandwidth of an Empty Borehole for the Measurement of Strain Waves in Borehole Tensor Strainmeters[C]. The 14th International Congress on Rock Mechanics and Rock Engineering, Iguasu, 2019 (0)
[48]
Tian J Y, Zhang K H, Hu Z F. Theoretical Bandwidth for the Measurement of Strain Waves in Borehole Tensor Strainmeters[C]. The 14th International Congress on Rock Mechanics and Rock Engineering, Iguasu, 2019 (0)
[49]
Canitano A, Bernard P, Linde A T, et al. Correcting High-Resolution Borehole Strainmeter Data from Complex External Influences and Partial-Solid Coupling: The Case of Trizonia, Rift of Corinth(Greece)[J]. Pure and Applied Geophysics, 2014, 171(8): 1 759-1 790 DOI:10.1007/s00024-013-0742-2 (0)
[50]
Agnew D C. SPOTL: Some Programs for Ocean-Tide Loading[R]. Scripps Institution of Oceanography, La Jolla, CA, 1996 (0)
[51]
Sato T, Harrison J C. Local Effects on Tidal Strain Measurements at Esashi, Japan[J]. Geophysical Journal International, 1990, 102(3): 513-526 DOI:10.1111/j.1365-246X.1990.tb04577.x (0)
[52]
Bonaccorso A, Linde A, Currenti G, et al. The Borehole Dilatometer Network of Mount Etna: A Powerful Tool to Detect and Infer Volcano Dynamics[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(6): 4 655-4 669 DOI:10.1002/2016JB012914 (0)
[53]
Langston C A, Liang C. Gradiometry for Polarized Seismic Waves[J]. Journal of Geophysical Research: Solid Earth, 2008, 113(B8) (0)
[54]
Currenti G, Zuccarello L, Bonaccorso A, et al. Borehole Volumetric Strainmeter Calibration from a Nearby Seismic Broadband Array at Etna Volcano[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(10): 7 729-7 738 DOI:10.1002/2017JB014663 (0)
[55]
Spudich P, Steck L K, Hellweg M, et al. Transient Stresses at Parkfield, California, Produced by the M7.4 Landers Earthquake of June 28, 1992: Observations from the UPSAR Dense Seismograph Array[J]. Journal of Geophysical Research: Solid Earth, 1995, 100(B1): 675-690 DOI:10.1029/94JB02477 (0)
[56]
Bodin P, Gomberg J, Singh S K, et al. Dynamic Deformations of Shallow Sediments in the Valley of Mexico, Part Ⅰ: Three-Dimensional Strains and Rotations Recorded on a Seismic Array[J]. Bulletin of the Seismological Society of America, 1997, 87(3): 528-539 (0)
[57]
Gomberg J, Agnew D. The Accuracy of Seismic Estimates of Dynamic Strains: An Evaluation Using Strainmeter and Seismometer Data from Pion Flat Observatory, California[J]. Bulletin of the Seismological Society of America, 1996, 86(1A): 212-220 (0)
[58]
Grant E B, Langston C A. Gladwin Tensor StrainMeter Calibration and Wave Gradiometry Applications[C]. AGU Fall Meeting, San Francisco, 2009 https://ui.adsabs.harvard.edu/abs/2009AGUFM.U53B0070G/abstract (0)
[59]
Lomnitz C. Frequency Response of A Strainmeter[J]. Bulletin of the Seismological Society of America, 1997, 87(4): 1 078-1 080 (0)
[60]
Sacks I S, Snoke J A, Evans R, et al. Single-Site Phase Velocity Measurement[J]. Geophysical Journal of the Royal Astronomical Society, 1976, 46(2): 253-258 DOI:10.1111/j.1365-246X.1976.tb04157.x (0)
A Review of In-Situ Calibration Method for Borehole Strainmeter Observation
HU Zhifei1     ZHANG Kanghua1,2     TIAN Jiayong1     
1. Key Laboratory of Crustal Dynamics, Institute of Crustal Dynamics, CEA, 1 Anningzhuang Road, Beijing 100085, China;
2. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, 135 Yaguan Road, Tianjin 300072, China
Abstract: In-situ calibration is vital for quantitative borehole strain observation. In order to prompt the application of borehole strain observation to the investigation of geodynamics, we review the recent investigation of in-situ calibration methods for borehole strain observation from calibration model and strain reference. We indicate the key issues and future directions.
Key words: borehole strain observation; in-situ calibration method; reference strain signals; earth tides; seismic waves