文章快速检索     高级检索
  大地测量与地球动力学  2020, Vol. 40 Issue (7): 730-735  DOI: 10.14075/j.jgg.2020.07.014

引用本文  

武美芳, 苏行, 张喆. 基于小时观测文件拼接的GPS实时钟差确定算法[J]. 大地测量与地球动力学, 2020, 40(7): 730-735.
WU Meifang, SU Hang, ZHANG Zhe. GPS Real-Time Clock Bias Determination Algorithm Based on Connection of Hourly Observation Files[J]. Journal of Geodesy and Geodynamics, 2020, 40(7): 730-735.

项目来源

中国科学院“西部青年学者”项目(XAB2018B19)。

Foundation support

Program of "Western Youth Scholar", CAS, No. XAB2018B19.

第一作者简介

武美芳,博士,高级工程师,主要研究方向为GNSS精密数据处理,E-mail:wumeifang@ntsc.ac.cn

About the first author

WU Meifang, PhD, senior engineer, majors in GNSS precision data processing, E-mail:wumeifang@ntsc.ac.cn.

文章历史

收稿日期:2019-08-22
基于小时观测文件拼接的GPS实时钟差确定算法
武美芳1     苏行1,2     张喆1,2     
1. 中国科学院国家授时中心,西安市书院东路3号,710600;
2. 中国科学院大学,北京市玉泉路19号甲,100049
摘要:针对目前常用的GPS实时钟差确定算法主要基于实时观测数据流实现,使产品可靠性和完整性受限于网络质量,及广播星历和IGU-P精度较低的问题,提出并实现基于小时观测文件拼接的实时钟差确定算法。该算法基于小时观测文件数据,通过将钟差估计与自适应超短期钟差预报相结合以确定实时钟差。30 d实时在线结果显示,基于小时观测文件确定的实时钟差精度约为0.25 ns,优于广播星历和IGU-P,与IGS RTS提供的实时钟差精度相当,且能保证产品的可靠性和完整性。
关键词实时钟差确定钟差预报小时观测文件可靠性

随着GNSS系统的快速发展,基于广域(全球)跟踪站网络的精密实时应用已拓展到导航和地学领域的多个方面,如实时精密单点定位、地震海啸等灾害的实时监测、空间气象实时监测、对地观测、卫星实时精密定轨等。导航卫星的实时精密轨道与钟差确定技术作为GNSS精密实时服务的核心技术,已成为热门的前沿性研究课题之一。

目前,IGS提供的产品可供实时应用的包括广播星历、超快产品的预报部分(IGU-P)和实时服务(real-time service,RTS)。其中,广播星历卫星钟差精度(STD)约为2.5 ns,IGU-P卫星钟差精度约为1.5 ns,均不能满足高精度实时应用的需求。从2013-04-01起,IGS实时服务(RTS)正式发布运行,旨在通过提供广播星历的改正参数以满足高精度实时应用的需求。然而,IGS未公布RTS实时钟差产品参考时间的确切含义,同时IGS RTS产品可能受网络影响而中断。近年来,国际上CODE、JPL、Thales、BKG、GFZ[1-3]等研究机构均围绕实时产品展开深入研究。与此同时,我国相关学者[4-9]在实时钟差确定方面也取得一定进展。目前常用的实时钟差确定方法为非差法、历元间差分法和混合法,这些方法均基于实时观测数据流而实现,采用滤波方法进行参数估计。上述3种方法均依赖于网络,同时需要较长的收敛时间,这会在一定程度上影响产品的完整性和可靠性。

本文提出基于小时观测文件拼接的实时钟差确定方法,该方法基于文件形式的小时观测数据(小时文件或15 min文件),而不是实时观测数据流,可削弱对网络的依赖性;同时,生成的实时钟差以文件形式播发,无需专用软件接收。该方法采用最小二乘法进行参数估计,不需要参数收敛时间。因此,该方法较传统的实时钟差确定方法,可提高实时产品的可靠性和完整性。

1 基于小时观测文件拼接的实时钟差算法确定

基于小时观测文件拼接的实时钟差确定方法,采用钟差估计和预报的方式确定实时钟差。该算法包含2个关键技术,即基于弧段观测数据的钟差估计和自适应超短期钟差预报。

根据更新频率不同,IGS提供的观测数据可分为天文件、小时文件、15 min文件和实时数据流。其中,天文件更新延迟较长,实时数据流强依赖于网络且需要专用软件(BNC)接收,而小时文件和15 min文件的快速、可靠更新使基于小时观测文件拼接的实时钟差确定具备可能性。

基于小时观测文件拼接的实时钟差确定可分为5个步骤,具体流程如下:

1) 小时观测文件下载,可以按需选择小时文件或15 min观测文件;

2) 观测文件拼接,形成一定长度的观测弧段数据;

3) 基于弧段观测数据,按照更新周期窗口滑动,估计钟差;

4) 按需确定训练序列长度和预报弧段长度;

5) 超短期钟差预报,形成实时钟差。

本文选择小时观测文件应用于实时钟差确定,如更新周期小于1 h,则选择15 min观测文件。

1.1 基于弧段观测数据的钟差估计

与传统精密卫星钟差估计方法一致[7],基于弧段观测数据的钟差估计一般采用非差消电离层组合观测值,其相位和伪距观测值的误差方程可表示为:

$ \begin{gathered} v_{k, \mathit{\Phi }}^j\left( i \right) = \Delta {t_k}\left( i \right) - \Delta {t_j}\left( i \right) + \rho _k^j\left( i \right)/c + \hfill \\ \delta \rho _{k, {\text{trop}}}^j/c + \lambda N_k^j/c + \varepsilon _{k.\mathit{\Phi }}^j\left( i \right) - \lambda \mathit{\Phi }_k^j\left( i \right)/c \hfill \\ \end{gathered} $ (1)
$ \begin{gathered} v_{k, P}^j\left( i \right) = \Delta {t_k}\left( i \right) - \Delta {t_j}\left( i \right) + \rho _k^j\left( i \right)/c + \hfill \\ \;\;\;\;\;\;\;\delta \rho _{k, trop}^j/c + \varepsilon _{k, P}^j\left( i \right) - P_k^j\left( i \right)/c \hfill \\ \end{gathered} $ (2)

式中,k为测站号,j为卫星号,i为相应的观测历元,c为真空中光速;Δtk(i)为接收机钟差,Δtj(i)为卫星钟差;δρjk, trop为对流层延迟影响,εjk, Φ(i)、εjk, P(i)为多路径、观测噪声等未模型化的误差影响;Pkj(i)、Φkj(i)为已消除电离层影响的相应卫星、测站和历元的组合观测值,vjk, Φvjk, P为其观测误差;λ为相应的波长,ρkj为信号发射时刻的卫星位置到信号接收机位置之间的几何距离。

基于弧段观测数据的钟差估计采用Bernese GNSS software V5.2软件[10],估计流程如图 1所示。在该方法中,输入文件主要包括RINEX格式的弧段观测文件、初始站坐标(CRD)、地球自转参数(ERP)和轨道等文件,输出CLK格式的钟差文件。估计策略如表 1所示。

图 1 基于弧段观测数据的钟差估计流程 Fig. 1 Clock bias estimation process based on arc observation data

表 1 基于弧段观测数据的钟差估计策略 Tab. 1 Clock bias estimation strategy based on arc observation data
1.2 自适应超短期钟差预报

本文采用自适应超短期钟差预报方法,其流程如图 2所示。

图 2 自适应超短期钟差预报流程 Fig. 2 Adaptive ultra-short term clock bias prediction process
1.2.1 数据预处理

钟差预报要求具有可靠、稳定的钟差建模数据。如果钟差数据存在粗差、跳变等异常现象,这会对钟差建模产生影响,导致钟差预报精度大大降低。数据预处理主要包括相位数据与频率数据的转换、粗差探测及修复和钟跳探测及修复等。

首先将钟差相位数据转换为频率数据,利用中位数法进行粗差探测,然后对剔除的粗差进行置零处理[11]。但如果数据距离零值较远,置零处理会产生新的粗差。因此,对于粗差剔除,本文采用内插的方法进行补齐。在钟差模型拟合预报过程中,算法需要可以自适应地处理钟跳,避免其污染拟合模型,具体算法可参考文献[12]。

1.2.2 超短期钟差预报

对于短期钟差预报而言,最常用的为一次多项式模型和二次多项式模型,方法选择取决于实际卫星的频漂特性是否明显[13-14]。然而,具体到GPS系统,星载原子钟类型多样,将所有卫星钟归为固定不变的模型并不合理,为此,黄观文[15]提出采用拟合数据段的残差标准差进行自适应钟差模型确定。具体判断准则如下:

$ \begin{gathered} x(t) = {x_0} + {y_0}t + \beta \cdot 0.5 \cdot {z_0} \cdot {t^2} \hfill \\ \beta = \left\{ {\begin{array}{*{20}{c}} {1, {\text{RM}}{{\text{S}}_{{\text{Line}}}} > {\text{RM}}{{\text{S}}_{{\text{Quadratic}}}}} \\ {0, {\text{RM}}{{\text{S}}_{{\text{Line}}}} \leqslant {\text{RM}}{{\text{S}}_{{\text{Quadratic}}}}} \end{array}} \right. \hfill \\ \end{gathered} $ (3)

式中,RMSLine为一次多项式钟差拟合模型的残差标准差,RMSQuadratic为二次多项式钟差拟合模型的残差标准差。

2 基于小时观测文件拼接的实时钟差策略确定

基于小时观测文件拼接的实时钟差确定可采用钟差估计和预报的方式。首先基于钟差估计部分展开策略优选,然后确定基于小时观测文件拼接的实时钟差策略。

2.1 影响因素分析

从式(1)、(2)可以看出,钟差估计的影响因素有轨道、ERP和观测数据,其中观测数据包括测站数目和观测弧段长度。基于这些影响因素,设置3种实验方案。方案1:设置不同长度的观测弧段估计钟差,并与IGS精密产品进行比较;方案2:基于方案1,只改变测站数量,估计钟差并与IGS精密产品进行比较;方案3:基于方案1,只改变轨道产品和ERP,估计钟差并与IGS精密产品进行比较。本文对钟差估计结果的精度评价采用二次差法。

2.1.1 观测弧段长度影响

方案1采用全球均匀分布的120个IGS测站2016年第178~207天共30 d的观测数据,并将STD、ERP及CRD固定为CODE相关产品,设置观测弧段为24 h、12 h、6 h、3 h、1 h和0.5 h,估计GPS卫星钟差。为便于和IGS钟差结果进行比较,估计卫星钟差时采用5 min的时间间隔,且在钟差比较时选择GPS10为参考星。GPS04卫星状态为“不可用”,因此无观测数据及钟差结果。图 34为实验结果,第202~203天存在卫星机动,故不作统计。

图 3 方案1实验结果 Fig. 3 Test results of Scheme 1

图 4 方案1基于卫星的实验结果统计 Fig. 4 Statistics of experimental results based on satellite of Scheme 1

实验表明,基于该算法的钟差估计,观测弧段设置越短,钟差估计结果精度越差,原因可能为在钟差计算的最后一步参数估计时,将模糊度参数估计为浮点解。弧段越短,数据量越少,模糊度估计越不精确,导致钟差结果精度越差。

图 3可以看出,绝大多数卫星的钟差估计结果遵循观测弧段越短、精度越差的规律。少数卫星钟差精度较差, 这可能与卫星自身特性有关,如发射年限、卫星型号及卫星钟类型等因素。弧段长度与钟差精度关系为:当弧段分别设置为24 h、12 h、6 h、3 h、1 h、0.5 h时,大部分卫星钟差精度分别小于0.05 ns、0.15 ns、0.20 ns、0.25 ns、0.30 ns、0.35 ns。

2.1.2 测站数目影响

为了比较测站数目对不同观测弧段钟差估计的影响,方案2与方案1数据时间段、输入设置、采样频率、观测弧段设置相同,但测站数目减少为60,生成的钟差数据如图 5所示。从图 5可以看出,当测站数目减少为方案1的一半时,仍然满足观测弧段越短钟差估计结果精度越差的规律。

图 5 方案2实验结果 Fig. 5 Test results of Scheme 2

比较方案1与方案2可知,当测站数目减少约一半时,与IGS相比,钟差精度明显降低,当弧段为24 h、12 h、6 h、3 h、1 h、0.5 h时,精度分别降低100%、73%、47%、48%、52%、58%。

2.1.3 轨道和ERP影响

为了比较轨道对不同观测弧段钟差估计的影响,方案3将ERP和STD固定为比CODE产品精度略差的IGU-P相关产品,观测数据、测站数目、采样频率和弧段设置均保持与方案1一致。2016年第178~207天的统计结果如图 6所示,其中第189~191天由于IGU-P轨道数据精度较差或缺失,故不作统计。

图 6 方案3实验结果 Fig. 6 Test results of Scheme 3

图 6可以看出,输入不同的轨道产品时,仍然满足观测弧段越短钟差估计结果精度越差的规律。对比图 3图 6可知,由于轨道结果作为输入值参与钟差估计,所以当输入的轨道产品精度降低时,钟差精度也随之降低,但随着观测弧段减小,影响逐渐减弱。当弧段为24 h、12 h、6 h、3 h、2 h、1 h、0.5 h时,精度分别降低120%、27%、5%、4%、4%、7%。

综上所述,观测弧段长度、测站数目、轨道及ERP精度都是影响钟差估计的重要因素。在基于弧段观测数据的钟差估计算法中,观测弧段越短钟差估计精度越差的原因可能为在利用非差法计算钟差时需要估计模糊度参数,而当观测弧段较短时,数据量较少,模糊度估计不准确,导致钟差结果精度较低。另外,在基于弧段观测数据的钟差估计算法中,轨道、ERP作为已知量输入,这也会对钟差造成一定影响。

当观测弧段长度一定时,提高钟差结果精度的关键应该为增加测站数量,其次再考虑轨道、ERP等因素,但钟差的估计效率会随着测站数量的增加而降低。因此在实际应用中,应综合考虑钟差估计效率与钟差精度,以求两者平衡。

2.2 基于小时文件拼接的实时钟差策略确定

观测弧段长度、测站数目、轨道及ERP精度是影响钟差估计的重要因素,并且在超短期钟差预报时,训练序列长度、预报弧段长度将直接影响基于小时文件拼接确定的实时钟差的精度。同时,实时钟差确定效率也需要综合考虑。

综上所述,图 7为基于小时文件拼接的实时钟差确定算法策略,观测弧段长度设置为24 h,计算弧段长度为1 h,训练序列长度为3 h,预报弧段长度为2 h,更新周期为1 h。小时观测文件下载时间节点设置为每个整点的20 min,实时钟差确定时间节点设置为每个整点的30 min,实时钟差确定完成时间约为每个整点的45 min。

图 7 基于小时文件拼接的实时钟差确定算法策略示意图 Fig. 7 Schematic diagram of real-time clock bias determination algorithm based on hourly observation files connection
3 结果与分析

基于小时观测文件拼接的实时钟差确定自2017-04-26(DOY116)开始在线测试,测试基于IGS发布的小时观测文件和IGU轨道产品开展,测站数量约为100。将2017-04-26(DOY116)~2017-05-28(DOY148)的实时钟差结果与IGS最终产品进行比对分析,DOY121、DOY127和DOY144由于IGU轨道精度较差,故不作统计。统计每天及每个SESSION的实时钟差结果(图 89)。30 d的在线测试统计结果显示,基于小时观测文件拼接确定的实时钟差精度(STD)约为0.25 ns,与IGS RTS精度相当,优于目前成熟的实时钟差产品广播星历。

图 8 实时钟差精度统计结果(按天统计) Fig. 8 Statistic results of real-time clock bias accuracy(by day)

图 9 实时钟差精度统计结果(按SESSION统计) Fig. 9 Statistic results of real-time clock bias accuracy(by SESSION)

目前,GPS卫星搭载5种不同类型的卫星钟,按照不同的卫星钟类型,各选择1颗卫星(表 2),按天统计实时钟差精度(图 10)。图 11为32颗卫星30 d的统计结果,从图中可以看出,实时钟差精度从高到低分别为GPS01、GPS02、GPS07、GPS08。由于搭载短期稳定性能较差的Cs原子钟,GPS08与其他几颗卫星的实时钟差结果相差较大,出现明显的分层现象;而其他卫星均搭载Rb原子钟,实时钟差相差较小。

表 2 选取卫星列表 Tab. 2 List of selected satellites

图 10 不同类型卫星钟实时钟差统计结果(按天统计) Fig. 10 Statistic results of real-time clock bias of different types of satellite clocks(by day)

图 11 每颗卫星30 d结果 Fig. 11 Results of each satellite of 30 days

结果表明,基于小时观测文件拼接确定实时钟差,一方面可保证实时钟差的精度,得到精度约为0.25 ns的GPS实时钟差,与IGS RTS精度相当,远优于广播星历和IGU-P;另一方面,该方法不再依赖实时数据流形式的观测数据,可摆脱网络质量对传统实时钟差确定算法的制约。基于小时观测文件拼接的实时钟差确定方法中包含钟差预报技术,而钟差预报必须考虑到原子钟本身具备的物理特性,且不同类型的原子钟的物理特性差异较大[10]。因此,基于小时观测文件拼接确定的实时钟差精度与卫星钟类型密切相关。

4 结语

本文针对GNSS系统实时性应用的发展需求,以及目前实时钟差产品及算法受网络质量制约的现象,提出基于小时观测文件拼接的实时钟差确定算法。该方法基于由小时观测文件拼接形成的弧段观测数据,结合钟差估计与超短期钟差预报确定实时钟差。基于该算法可得到STD约为0.25 ns的GPS实时钟差产品,与IGS RTS精度相当。

相较于目前常用的GPS实时钟差确定算法,基于小时观测文件拼接的实时钟差算法具有以下特点:1)该算法不受网络质量的制约,并且可采用最小二乘法进行参数估计,无需收敛时间,可改善产品的可靠性和完整性;2)该算法生成的钟差产品以文件形式播发,无需专用软件进行接收和修正,便于推广应用;3)相较于目前成熟的GPS实时产品广播星历和IGU-P,该算法可大幅提高GPS实时钟差产品的精度。

本文只对GPS实时钟差展开研究,鉴于目前GNSS,尤其是我国自主研发的BDS-3系统的快速发展,下一步将开展多GNSS系统实时钟差的深入研究。

致谢: 感谢iGMAS和IGS平台提供相关数据和产品。

参考文献
[1]
Bock H, Dach R, Yoon Y, et al. GPS Clock Correction Estimation for Near Real-Time Orbit Determination Applications[J]. Aerospace Science and Technology, 2009, 13(7): 415-422 DOI:10.1016/j.ast.2009.08.003 (0)
[2]
Ge M R, Chen J P, Doua J, et al. A Computationally Efficient Approach for Estimation Hourly Satellite Clock Corrections in Real Time[J]. GPS Solutions, 2012, 16(1): 9-17 DOI:10.1007/s10291-011-0206-z (0)
[3]
Bock H, Dach R, Jggi A, et al. High-Rate GPS Clock Corrections from CODE: Support of 1 Hz Applications[J]. Journal of Geodesy, 2009, 83(11): 1083-1094 DOI:10.1007/s00190-009-0326-1 (0)
[4]
丁文武.实时精密单点定位系统的若干关键技术研究[D].武汉: 中国科学院测量与地球物理研究所, 2012 (Ding Wenwu. Research on Key Technologies of Real Time Precise Point Positioning System[D]. Wuhan: Institute of Geodesy and Geophysics, CAS, 2012) http://d.wanfangdata.com.cn/thesis/Y2430312 (0)
[5]
楼益栋.导航卫星实时精密轨道与钟差确定[D].武汉: 武汉大学, 2008 (Lou Yidong. Research on Real-Time Precise GPS Orbit and Clock Offset Determination[D].Wuhan: Wuhan University, 2008) (0)
[6]
楼益栋, 施闯, 周小青, 等. GPS精密卫星钟差估计与分析[J]. 武汉大学学报:信息科学版, 2009, 34(1): 88-91 (Lou Yidong, Shi Chuang, Zhou Xiaoqing, et al. Realization and Analysis of GPS Precise Clock Products[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 88-91) (0)
[7]
蔡华, 赵齐乐, 楼益栋, 等. 精密卫星钟差确定系统的实现与精度分析[J]. 武汉大学学报:信息科学版, 2009, 34(11): 1293-1296 (Cai Hua, Zhao Qile, Lou Yidong, et al. Implementation and Precision of GPS Precise Clock Estimation System[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1293-1296) (0)
[8]
李星星, 徐运, 王磊. 非差导航卫星实时/事后精密钟差估计[J]. 武汉大学学报:信息科学版, 2010, 35(6): 661-664 (Li Xingxing, Xu Yun, Wang Lei. Undifferenced Precise Satellite Clock Estimation and Precision Analysis[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6): 661-664) (0)
[9]
Zhang X H, Li X X, Guo F. Satellite Clock Estimation at 1 Hz for Realtime Kinematic PPP Application[J]. GPS Solutions, 2010, 15(4): 315-324 (0)
[10]
Dach R, Lutz S, Walser P, et al. Bernese GNSS Software Version 5.2[M]. Bern: Astronomical Institute, University of Bern, 2015 (0)
[11]
Senior K L, Ray J R, Beard R L. Characterization of Periodic Variations in the GPS Satellite Clocks[J]. GPS Solutions, 2008, 12(3): 211-225 DOI:10.1007/s10291-008-0089-9 (0)
[12]
张成军, 贾学东. 接收机钟跳对GPS定位的影响及探测方法[J]. 测绘通报, 2009(12): 7-9 (Zhang Chengjun, Jia Xuedong. The Influence and Detection Method of Receiver Clock Jumps on GPS Positioning[J]. Bulletin of Surveying and Mapping, 2009(12): 7-9) (0)
[13]
于合理, 郝金明, 刘伟平, 等. 卫星钟差超短期预报模型分析[J]. 大地测量与地球动力学, 2014, 34(1): 161-164 (Yu Heli, Hao Jinming, Liu Weiping, et al. Analysis of Model in Ultra Short Term Predicting Satellite Clock Error[J]. Journal of Geodesy and Geodynamics, 2014, 34(1): 161-164) (0)
[14]
魏道坤.卫星钟预报模型研究[D].西安: 长安大学, 2014 (Wei Daokun. Study on the Satellite Clock Bias Forecast Model[D]. Xi'an: Chang'an University, 2014) http://d.wanfangdata.com.cn/thesis/D557206 (0)
[15]
黄观文. GNSS星载原子钟质量评价及精密钟差算法研究[D].西安: 长安大学, 2012 (Huang Guanwen. Research on Algorithms of Precise Clock Offset and Quality Evaluation of GNSS Satellite Clock[D].Xi'an: Chang'an University, 2012) http://cdmd.cnki.com.cn/Article/CDMD-10710-1013017231.htm (0)
GPS Real-Time Clock Bias Determination Algorithm Based on Connection of Hourly Observation Files
WU Meifang1     SU Hang1,2     ZHANG Zhe1,2     
1. National Time Service Center, CAS, 3 East-Shuyuan Road, Xi'an 710600, China;
2. University of Chinese Academy of Sciences, A19 Yuquan Road, Beijing 100049, China
Abstract: Aiming at the problem that the current GPS real-time clock bias determination algorithm is based on real-time observation data stream, which limits the reliability and integrity of the product to the network quality, and that the accuracy of broadcast ephemeris and IGU-P is low, we propose and implement a real-time clock bias determination algorithm based on the connection of hourly observation files. The algorithm is realized based on hourly observation files data. By combining clock bias estimation with adaptive ultra-short-term clock bias prediction, the real-time clock bias is determined. 30 days online result shows that, STD of GPS real-time clocks generated by the connection method is 0.25 ns, equal to IGS RTS, much higher than STD of broadcast ephemeris and IGU-P. Furthermore, this method can improve the reliability and integrity of GPS real-time clocks.
Key words: real-time; clock bias determination; clock bias prediction; hourly observation files; reliability