﻿ 白鹤滩和乌东德库区蓄水前形变分析
 文章快速检索 高级检索
 大地测量与地球动力学  2020, Vol. 40 Issue (5): 457-463  DOI: 10.14075/j.jgg.2020.05.004

### 引用本文

TIAN Xiao, XU Mingyuan, ZHANG Pin, et al. Analysis of Deformation in Baihetan and Wudongde Reservoir Areas before Impounding[J]. Journal of Geodesy and Geodynamics, 2020, 40(5): 457-463.

### Foundation support

Seismic Regime Tracking Project of CEA, No.2019010227; Combination Project with Monitoring, Prediction and Scientific Research of Earthquake Technology, CEA, No.3JH-201901090.

### 第一作者简介

TIAN Xiao, engineer, majors in crustal deformation monitoring and data processing, E-mail:tx_yice@163.com.

### 文章历史

1. 中国地震局第一监测中心，天津市耐火路7号，300180

1 资料背景

 图 1 白鹤滩和乌东德库区监测网分布示意图 Fig. 1 Distribution diagrams of monitoring network in Baihetan and Wudongde reservoir areas
2 数据处理方法 2.1 精密水准数据

2.2 流动重力数据

2.3 谷宽数据

 $S = \sqrt {{D^2} - h_{12}^2} \cdot \left( {1 - \frac{{{H_m}}}{R}} \right)$ (1)

 $P = \frac{1}{{{a^2} + {{(b \times {S_i})}^2}}}{\kern 1pt} {\kern 1pt} {\kern 1pt} \;,\;\;\;i = 1,2, \cdots ,n$ (2)

2.4 跨断层数据

3 白鹤滩和乌东德库区蓄水前形变特征 3.1 垂直形变

 图 2 白鹤滩库区(相对BZ00)和乌东德库区(相对W301)蓄水前两期监测垂直形变场矢量图 Fig. 2 Vector map of vertical deformation field during the two monitoring periods in Baihetan(relative to BZ00) and Wudongde (relative to W301) reservoir areas before impounding

3.2 重力场变化

 图 3 白鹤滩库区(相对BG02)和乌东德库区(相对WG02)蓄水前两期监测重力场变化分布图 Fig. 3 Distribution map of changes of gravity field during the two monitoring periods in Baihetan (relative to BG02) and Wudongde (relative to WG02) reservoir areas before impounding

3.3 谷宽水平形变

 图 4 白鹤滩和乌东德库区谷宽测点坐标位移矢量图 Fig. 4 Displacement vector map of the coordinates of valley width nets in Baihetan and Wudongde reservoir areas

3.4 跨断层三维形变分析

 图 5 白鹤滩和乌东德库区跨断层测点三维形变矢量图 Fig. 5 3D deformation vector map of points of the cross-fault sites in Baihetan and Wudongde reservoir areas

4 结语

1) 白鹤滩库区大坝上游左岸中部存在16 km范围的沉降区，可能与该地区处在高山边坡、局部岩层稳定性较差、相对下沉较大有关；乌东德库区水库上游右岸2号支线所在地区隆升较大，可能与该地区位于高海拔山区，并且与库区环线之间高差近1 000 m，存在一定相对隆升有关。两个库区其他地区均相对稳定，垂直形变量均小于5 mm。

2) 两个库区重力场变化基本平稳，无显著性异常变化，个别测点重力值变化较大是周围环境改变导致。

3) 两个库区4个谷宽网各监测点的相对坐标变化均不大，普遍在观测误差范围内，但4个谷宽网均显示相对收缩，量值在1~2 mm。

4) 白鹤滩库区3处跨断层场地以及乌东德库区的红格和己衣场地均比较稳定，监视期间断层无显著垂直活动和水平活动迹象。乌东德库区洛佐场地在两期观测之间监视区断层两侧存在一定的差异性垂向运动并伴随水平向挤压运动，但量值不大，活动性较弱，与该处断裂的运动特征一致。

 [1] 杜瑞林, 邢灿飞, 伍中华, 等. 长江三峡库区地震地形变监测研究[J]. 大地测量与地球动力学, 2004, 24(2): 23-29 (Du Ruilin, Xing Canfei, Wu Zhonghua, et al. Crustal Deformation of Three Gorges Area[J]. Journal of Geodesy and Geodynamics, 2004, 24(2): 23-29) (0) [2] 尚红, 刘天海, 张金城, 等. 水电站库区地壳形变流动监测网络布设探索与实践[J]. 震灾防御技术, 2009, 4(4): 394-405 (Shang Hong, Liu Tianhai, Zhang Jincheng, et al. Theory and Practice on Crustal Deformation Mobile Monitoring Network Layout in the Hydropower Station Reservoir Area[J]. Technology for Earthquake Disaster Prevention, 2009, 4(4): 394-405 DOI:10.3969/j.issn.1673-5722.2009.04.005) (0) [3] 尚红, 刘天海, 杨怀宁. 峡谷型水库地壳形变流动监测技术研究[J]. 大地测量与地球动力学, 2010, 30(4): 74-78 (Shang Hong, Liu Tianhai, Yang Huaining. Study on Mobile Crustal Deformation Monitoring Technology of Canyon-Reservoir[J]. Journal of Geodesy and Geodynamics, 2010, 30(4): 74-78) (0) [4] 邢灿飞, 龚凯虹, 杜瑞林. 长江三峡工程地壳形变监测网络[J]. 大地测量与地球动力学, 2003, 23(1): 114-118 (Xing Canfei, Gong Kaihong, Du Ruilin. Crustal Deformation Monitoring Network for Three Gorges Project on Yangtze River[J]. Journal of Geodesy and Geodynamics, 2003, 23(1): 114-118) (0) [5] 罗三明, 董运洪, 韩月萍, 等. 复测水准网动态平差与静态平差结果的比较[J]. 大地测量与地球动力学, 2012, 32(1): 97-100 (Luo Sanming, Dong Yunhong, Han Yueping, et al. Comparison between Dynamic and Static Adjustment Results for Repeated Leveling Networks[J]. Journal of Geodesy and Geodynamics, 2012, 32(1): 97-100) (0) [6] 施一民. 现代大地控制测量[M]. 北京: 测绘出版社, 2008 (Shi Yimin. Contemporary Geodetic Control Survey[M]. Beijing: Surveying and Mapping Press, 2008) (0) [7] 王庆良, 崔笃信, 王文萍, 等. 川西地区现今垂直地壳运动研究[J]. 中国科学:地球科学, 2008, 38(5): 598-610 (Wang Qingliang, Cui Duxin, Wang Wenping, et al. The Current Vertical Crustal Movement Research of Western Sichuan Area[J]. Science China: Earth Sciences, 2008, 38(5): 598-610) (0) [8] 苏广利, 畅柳, 许明元. 基于精密水准的云南地区垂直运动特征分析[J]. 地震地质, 2018, 40(6): 1 380-1 389 (Su Guangli, Chang Liu, Xu Mingyuan. The Analysis of Vertical Motion Characteristics in Yunnan Area Based on Precise Leveling[J]. Seismology and Geology, 2018, 40(6): 1 380-1 389) (0) [9] 黄润秋. 岩石高边坡发育的动力过程及其稳定性控制[J]. 岩石力学与工程学报, 2008, 27(8): 1 525-1 525 (Huang Runqiu. Geodynamical Process and Stability Control of High Rock Slope Development[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(8): 1 525-1 525) (0) [10] 宋肖冰, 石安池, 郑伟锋, 等. 金沙江白鹤滩水电站坝区左岸边坡变形特征及机制分析[J]. 岩石力学与工程学报, 2012, 31(增2): 3 533-3 538 (Song Xiaobing, Shi Anchi, Zheng Weifeng, et al. Analysis of Slope Deformation Characteristics and Mechanism in Left Bank of Baihetan Hydropower Station Jinsha River[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S2): 3 533-3 538) (0) [11] 王双绪, 蒋锋云, 郝明, 等. 青藏高原东缘现今三维地壳运动特征研究[J]. 地球物理学报, 2013, 56(10): 3 334-3 334 (Wang Shuangxu, Jiang Fengyun, Hao Ming, et al. Investigation of Features of Present 3D Crustal Movement in Eastern Edge of Tibet Plateau[J]. Chinese Journal of Geophysics, 2013, 56(10): 3 334-3 334) (0) [12] 申旭辉, 陈正位, 许任德, 等. 凉山活动构造带晚新生代变形特征与位移规模[J]. 地震地质, 2000, 22(3): 232-238 (Shen Xuhui, Chen Zhengwei, Xu Rende, et al. Deformation Characteristics and Displacement Amount of the Liangshan Active Fault Zone in Late Cenozolc Era[J]. Seismology and Geology, 2000, 22(3): 232-238 DOI:10.3969/j.issn.0253-4967.2000.03.004) (0) [13] 宋剑, 杨少敏, 王伟, 等. 安宁河-则木河-小江断裂带闭锁特征研究[J]. 大地测量与地球动力学, 2016, 36(6): 490-494 (Song Jian, Yang Shaomin, Wang Wei, et al. Study on the Locking Characteristics of Anninghe-Zemuhe-Xiaojiang Fault Zone[J]. Journal of Geodesy and Geodynamics, 2016, 36(6): 490-494) (0) [14] 夏金梧, 吴世泽, 朱萌. 德干断裂系的特征、活动性与地震危险性评价[J]. 大地测量与地球动力学, 2015, 35(4): 561-566 (Xia Jinwu, Wu Shize, Zhu Meng. The Feature, Activity and Seismic Risk Evaluation of Deccan Fault[J]. Journal of Geodesy and Geodynamics, 2015, 35(4): 561-566) (0) [15] 李碧雄, 田明武, 莫思特. 水库诱发地震研究进展与思考[J]. 地震工程学报, 2014, 36(2): 380-386 (Li Bixiong, Tian Mingwu, Mo Site. Research Progress and Thoughts on Reservoir-Induced Seismicity[J]. China Earthquake Engineering Journal, 2014, 36(2): 380-386 DOI:10.3969/j.issn.1000-0844.2014.02.0380) (0) [16] 刘先锋, 李碧雄, 邓建辉, 等. 水库诱发地震预测方法探讨[J]. 地震工程学报, 2014, 36(1): 170-177 (Liu Xianfeng, Li Bixiong, Deng Jianhui, et al. Discussion on the Prediction Methods for Reservoir-Induced Seismicity[J]. China Earthquake Engineering Journal, 2014, 36(1): 170-177 DOI:10.3969/j.issn.1000-0844.2014.01.0170) (0)
Analysis of Deformation in Baihetan and Wudongde Reservoir Areas before Impounding
TIAN Xiao1     XU Mingyuan1     ZHANG Pin1     SU Guangli1     WANG Jiaqing1     ZHENG Hongyan1
1. The First Monitoring and Application Center, CEA, 7 Naihuo Road, Tianjin 300180, China
Abstract: We analyze the deformation characteristics during the surveillance period using two newest crustal deformation monitoring data of Baihetan and Wudongde reservoir area in 2018-2019. We analyze the levelling and gravity data using the relative benchmark, and analyze the distance measurement data of valley width and cross-fault using the relative coordinates of the projection surface. The results show that: 1)There is a settling zone with a range of 16 km in the central region of the left bank upstream of Baihetan reservoir area, and the levelling branch line of the right bank upstream of Wudongde reservoir area has a larger uplift.The rest of the two reservoir areas are relatively stable, and the vertical variables are less than 5 mm. 2)The changes of gravity field in the two reservoir areas are basically stable, the gravity field has no significant abnormal changes, and the large changes in the gravity value of individual points are caused by the changes of the surrounding environment. 3)The changes of the relative coordinates of each point of four valley width nets in the two reservoir areas are not large, but relative contraction is shown in four valley width nets, and the contraction value is 1－2 mm. 4)There are five cross-fault sites in the two reservoir areas that are relatively stable, and there are no significant signs of vertical or horizontal activity during the monitoring period. There is a certain differential vertical movement accompanied by a horizontal compression movement on both sides of the fault in the surveillance area of Luozuo site in Wudongde reservoir area. The results can provide background information for the study of the deformation after reservoir impounding and the earthquakes induced by reservoirs.
Key words: precise leveling; mobile gravity; valley width; cross-fault; deformation analysis