﻿ 温泉台体应变观测的影响因素及特征分析
 文章快速检索 高级检索
 大地测量与地球动力学  2020, Vol. 40 Issue (3): 327-330  DOI: 10.14075/j.jgg.2020.03.020

引用本文

XU Lu, XING Ximin, ZHANG Zhiguang. Analysis of Influencing Factors and Characteristics of Body Strain Observation in Wenquan Station[J]. Journal of Geodesy and Geodynamics, 2020, 40(3): 327-330.

Foundation support

Open Fund of the "13th Five-Year" Discipline(Mathematics) of Xinjiang Uygur Autonomous Region, No. XJZDXK-M2017003; The Spark Program of Earthquake Technology of CEA, No. XH19049; Combination Project with Monitoring, Prediction and Scientific Research of Earthquake Technology, CEA, No. CEA-JC/JH-173103.

Corresponding author

XING Ximin, senior engineer, majors in crustal deformation and earthquake, E-mail:442635690@qq.com.

第一作者简介

XU Lu, lecturer, majors in data analysis and scientific computing, E-mail:461392767@qq.com.

文章历史

1. 伊犁师范大学数学与统计分院，新疆伊宁市解放路448号，835000;
2. 新疆工程学院数理学院，乌鲁木齐市艾丁湖路1350号，830023

1 观测台站及观测系统介绍

2 数据分析

 图 1 温泉台体应变、水位、气温、气压曲线 Fig. 1 Curves of body strain, water level, temperature and pressure in Wenquan station

 图 2 温泉台体应变与气温、水位、气压等散点图 Fig. 2 Scatter plot of body strain with temperature, water level and pressure in Wenquan station

 图 3 温泉台体应变与气温、水位回归残差曲线 Fig. 3 Regression residual curve between body strain and air temperature and water level in Wenquan station

 图 4 温泉台体应变与气温、水位各频段相关系数 Fig. 4 Correlation coefficient of body strain with temperature and water level in each frequency band in Wenquan station

 图 5 温泉台体应变、气压月波曲线 Fig. 5 Monthly wave curve of body strain and pressure in Wenquan station

 图 6 温泉台体应变日波、半日波与理论固体潮散点图 Fig. 6 Scatter plot of body strain daily wave, semi-daily wave and theoretical solid tide in Wenquan station
3 结语

 [1] 张凌空, 王广才, 牛安福. 周期气压波对地壳应变场观测影响的若干因素分析[J]. 地震学报, 2011, 33(3): 351-361 (Zhang Lingkong, Wang Guangcai, Niu Anfu. Analysis on Several Factors of Periodic Air Pressure Wave Affecting Crustal Strain Field[J]. Acta Seismologica Sinica, 2011, 33(3): 351-361 DOI:10.3969/j.issn.0253-3782.2011.03.008) (0) [2] 刘冰冰, 蔡宏雷, 郑国栋, 等. 体应变日常观测资料浅析[J]. 东北地震研究, 2009, 25(3): 28-36 (Liu Bingbing, Cai Honglei, Zheng Guodong, et al. Analysis on the Materials of Daily Observations for Volumetric Strain[J]. Seismological Research of Northeast China, 2009, 25(3): 28-36 DOI:10.3969/j.issn.1674-8565.2009.03.006) (0) [3] 张学阳. 潮汐观测中高精度气压辅助观测的必要性及气压效应的校正[J]. 地壳形变与地震, 1987, 7(4): 273-280 (Zhang Xueyang. A Necessity of High-Precise Assistance Measurement for Atmospheric Pressure and Correction of Atmospheric Pressure Effect in Tidal Observation[J]. Crustal Deformation and Earthquake, 1987, 7(4): 273-280) (0) [4] 周龙寿, 邱泽华, 唐磊. 地壳应变场对气压短周期变化的响应[J]. 地球物理学进展, 2008, 23(6): 1 717-1 726 (Zhou Longshou, Qiu Zehua, Tang Lei. The Response of Crustal Strain Field to Short-Period Atmospheric Pressure Variation[J]. Progress in Geophysics, 2008, 23(6): 1 717-1 726) (0) [5] 苏恺之, 李海亮, 张钧, 等. 钻孔地应变观测新进展[M]. 北京: 地震出版社, 2003 (Su Kaizhi, Li Hailiang, Zhang Jun, et al. Borehole Strain Observation New Progress[M]. Beijing: Seismological Press, 2003) (0) [6] 张凌空, 牛安福, 闫伟, 等. 两种应变仪的面应变观测资料的比对研究[J]. 大地测量与地球动力学, 2011, 31(4): 22-26 (Zhang Lingkong, Niu Anfu, Yan Wei, et al. Compariative Study between Plane Strain Observed Data with YRY-4-Type Component Borehole Strainmeter and TJ-2-Type Volumetric Borehole Strainmeter[J]. Journal of Geodesy and Geodynamics, 2011, 31(4): 22-26) (0) [7] 王梅. 数字化体应变与气压、水位相关性研究[J]. 大地测量与地球动力学, 2002, 22(4): 85-88 (Wang Mei. Study on Correlation of Digital Body Strain Data with Atmosphere and Well Water Level[J]. Journal of Geodesy and Geodynamics, 2002, 22(4): 85-88) (0) [8] 李杰, 刘敏, 邹钟毅, 等. 数字化钻孔体应变干扰机理及异常分析[J]. 地震研究, 2003, 26(3): 230-238 (Li Jie, Liu Min, Zou Zhongyi, et al. Analysis of Disturbance Mechanism and Abnormity of Digital Observation Data of Borehole Body Strain Meters[J]. Journal of Seismological Research, 2003, 26(3): 230-238 DOI:10.3969/j.issn.1000-0666.2003.03.004) (0) [9] Moro G D, Zadro M. Subsurface Deformations Induced byRainfall and Atmospheric Pressure:Tilt/Strain Measurements in the NE-Italy Seismic Area[J]. Earth Planetary Science Letters, 1998, 164(1-2): 193-203 DOI:10.1016/S0012-821X(98)00203-9 (0) [10] Garavaglia M, Moro G D, Zadro M. Radon and Tilt Measurements in a Seismic Area:Temperature Effects[J]. Physics Chemistry of the Earth Part A:Solid Earth and Geodesy, 2000, 25(3): 233-237 DOI:10.1016/S1464-1895(00)00038-7 (0) [11] 陈大柱, 张新成, 高守全, 等. 温泉地震台钻孔体应变观测资料分析[J]. 内陆地震, 2014, 28(1): 63-69 (Chen Dazhu, Zhang Xincheng, Gao Shouquan, et al. Analysis on Borehole Body Strain Data in Wenquan Stations[J]. Inland Earthquake, 2014, 28(1): 63-69 DOI:10.3969/j.issn.1001-8956.2014.01.009) (0) [12] 车用太, 鱼金子, 刘成龙, 等. 判别地下水异常的干扰性与前兆性的原则及其应用实例[J]. 地震学报, 2011, 33(6): 800-808 (Che Yongtai, Yu Jinzi, Liu Chenglong, et al. Principles on Distinguishing Interference from Seismic Precursor of Underground Water Variation and Its Application[J]. Acta Seismologica Sinica, 2011, 33(6): 800-808 DOI:10.3969/j.issn.0253-3782.2011.06.010) (0) [13] 中国地震局监测预报司. 地形变测量[M]. 北京: 地震出版社, 2008 (China Earthquake Administration Department of Earthquake Monitoring and Prediction. Topography Change Measurements[M]. Beijing: Seismological Press, 2008) (0)
Analysis of Influencing Factors and Characteristics of Body Strain Observation in Wenquan Station
XU Lu1     XING Ximin2     ZHANG Zhiguang2
1. College of Mathematics and Statistics, Yili Normal University, 448 Jiefang Road, Yining 835000, China;
2. College of Mathematics and Physics, Xinjiang Institute of Engineering, 1350 Aidinghu Road, Urumqi 830023, China
Abstract: To quantitatively estimate the various components contained in the observation sequence, deepen understanding of the physical meaning of observation, evaluate the observation environment, observation quality and monitoring capability of topographic change and seismic topographic change of the station, deepen the understanding of the observation data, and accurately identify the pre-earthquake anomalies, this paper takes the thermal body strain in Wenquan station as an example, selects the observation data of the three elements of thermal body strain in Wenquan station, auxiliary observations and meteorology, and uses the methods of Pertesv's filtering, wavelet analysis and correlation analysis, etc. The influencing factors and characteristics of the periodic changes of the thermal body strain observation in Wenquan station are analyzed. The results show that: 1) The influencing factors of the annual periodic changes of the thermal body strain in Wenquan station may be at the borehole water level, and the thermal spring body strain phase lags the water level by about 31 days. 2) Air pressure is the main influence factor of thermal body strain monthly wave in Wenquan station. 3) Solid tide is the main influence factor of daily wave and semi-daily wave on thermal body strain in Wenquan station. 4) Body strain in Wenquan station has strong linear correlation with water level, air pressure and solid tide.
Key words: body strain; correlation coefficient; monthly wave; scatter diagram; Pertesv's filtering