﻿ 基于北斗GEO卫星的磁暴期间电离层TEC响应分析
 文章快速检索 高级检索
 大地测量与地球动力学  2020, Vol. 40 Issue (2): 129-133  DOI: 10.14075/j.jgg.2020.02.004

引用本文

BAI Xiaotao, CAI Changsheng. Ionospheric TEC Response Analysis during Magnetic Storms Based on Beidou GEO Satellites[J]. Journal of Geodesy and Geodynamics, 2020, 40(2): 129-133.

Foundation support

National Key Research and Development Program of China, No. 2016YFB0501803; National Natural Science Foundation of China, No.41674039; Joint Teacher-Student Innovation and Entrepreneurship Project at Central South University, No.2018gczd005.

Corresponding author

CAI Changsheng, professor, majors in GNSS precise point positioning, GNSS navigation and atmospheric error modeling, E-mail:cai_chang_sheng@sina.com.

第一作者简介

BAI Xiaotao, postgraduate, majors in GNSS ionospheric inversion and precise point positioning, E-mail:x_t_bai@163.com.

文章历史

1. 中南大学地球科学与信息物理学院, 长沙市麓山南路932号, 410083

1 电离层TEC获取及扰动计算方法

 $\begin{array}{c} \mathrm{TEC}_{2}^{\varphi}= \frac{f_{1}^{2} f_{2}^{2}}{40.28 \times 10^{16}\left(f_{1}^{2}-f_{2}^{2}\right)} \times \\ \left(\varphi_{1} \lambda_{1}-\varphi_{2} \lambda_{2}+\bar{N}_{m}+B^{{\rm s}}+B_{{\rm r}}\right) \end{array}$ (1)

 $\bar{N}_{m}=-\frac{1}{m} \sum\limits_{k=1}^{m}\left(P_{1}^{k}-P_{2}^{k}+\varphi_{1}^{k} \lambda_{1}-\varphi_{2}^{k} \lambda_{2}\right)$ (2)

 $F(z)=\frac{1}{\cos \left(z^{\prime}\right)}$ (3)

 $\cos \left(z^{\prime}\right)=\sqrt{1-\left(\frac{R}{R+H}\right)^{2} \sin ^{2}(z)}$ (4)

 $\mathrm{d} \mathrm{TEC}=\mathrm{TEC}_{t}-\operatorname{mean}\left(\mathrm{TEC}_{q , t}\right)$ (5)

2 磁暴期间电离层TEC响应分析 2.1 数据来源

 图 1 太阳活动强度和地磁强度变化 Fig. 1 Variations of solar activity intensity and geomagnetic intensity

 图 2 GNSS测站与北斗GEO卫星星下点分布 Fig. 2 Distribution of GNSS stations and ground track of Beidou GEO satellites
2.2 北斗GEO卫星与GPS卫星获取的TEC对比

 图 3 使用北斗GEO和GPS卫星数据获得的电离层VTEC对比 Fig. 3 Comparison of ionospheric VTEC derived from Beidou GEO and GPS satellites

2.3 磁暴期间的电离层TEC响应

 图 4 北半球中纬度地区电离层VTEC变化及扰动情况 Fig. 4 Variations and disturbances of ionospheric VTEC in mid-latitude regions of northern hemisphere

 图 5 赤道地区电离层VTEC变化及扰动情况 Fig. 5 Variations and disturbances of ionospheric VTEC in equatorial regions

 图 6 南半球中纬度地区电离层VTEC变化及扰动情况 Fig. 6 Variations and disturbances of ionospheric VTEC in mid-latitude regions of southern hemisphere

3 磁暴扰动的全球响应

 图 7 利用北斗GEO卫星和GIM获取的VTEC值对比 Fig. 7 Comparison of VTEC values derived from Beidou GEO satellite and GIM

 图 8 磁暴扰动的全球分布 Fig. 8 Global distribution of geomagnetic storm disturbances
4 结语

1) 使用北斗GEO卫星数据可以很好地监测磁暴期间电离层TEC的变化及扰动情况。与GPS卫星相比，北斗GEO卫星可以获得长时间连续且不受空间变化影响的电离层TEC时间序列，从而可以对穿刺点上空的电离层TEC变化进行长时间的连续监测。

2) 总体来说，此次磁暴中电离层TEC以正相暴扰动为主，北半球中低纬度地区在扰动后期出现了负相暴。电离层扰动主要发生在中低纬度地区，磁暴期间的扰动最大值超过了20 TECu，高纬度地区的电离层则表现较为平静。

3) 此次磁暴造成的电离层TEC扰动是一次大尺度的扰动事件，在全球范围内都有一定的影响，表现为环太平洋的中纬度地区由东向西的传播过程。

 [1] 龚阳昭, 蔡昌盛. 一种利用GNSS三频观测值计算绝对电离层TEC的方法[J]. 大地测量与地球动力学, 2017, 37(2): 205-208 (Gong Yangzhao, Cai Changsheng. A Calculation Method of Ionospheric TEC Using Triple-Frequency GNSS Observations[J]. Journal of Geodesy and Geodynamics, 2017, 37(2): 205-208) (0) [2] 李涌涛, 李建文, 庞鹏, 等. 2017年9月磁暴期间电离层TEC变化分析[J]. 全球定位系统, 2018, 43(4): 42-47 (Li Yongtao, Li Jianwen, Pang Peng, et al. Analysis of the Magnetic Storm's Influence on Ionospheric TEC in September 2017[J]. GNSS Word of China, 2018, 43(4): 42-47) (0) [3] 白晓涛, 蔡昌盛, 张永林, 等.基于北斗GEO卫星的电离层TEC时间变化特征分析[C].第九届中国卫星导航学术年会, 哈尔滨, 2018 (Bai Xiaotao, Cai Changsheng, Zhang Yonglin, et al. Analysis of the Characteristics of Ionospheric TEC over Time Based on BDS GEO Satellite[C]. The 9th China Satellite Navigation Academic Annual Conference, Harbin, 2018) http://cpfd.cnki.com.cn/Article/CPFDTOTAL-ZKBD201805001048.htm (0) [4] Jin S G, Jin R, Kutoglu H. Positive and Negative Ionospheric Responses to the March 2015 Geomagnetic Storm from BDS Observations[J]. Journal of Geodesy, 2017, 91(6): 613-626 DOI:10.1007/s00190-016-0988-4 (0) [5] Tsurutani B T, Gonzalez W D, Lakhina G S, et al. The Extreme Magnetic Storm of 1-2 September 1859[J]. Journal of Geophysical Research:Space Physics, 2003, 108(A7) (0) [6] Crowley G, Hackert C L, Meier R R, et al. Global Thermosphere-Ionosphere Response to Onset of 20 November 2003 Magnetic Storm[J]. Journal of Geophysical Research:Space Physics, 2006, 111(A10) (0) [7] Brunini C, Azpilicueta F. GPS Slant Total Electron Content Accuracy Using the Single Layer Model under Different Geomagnetic Regions and Ionospheric Conditions[J]. Journal of Geodesy, 2010, 84(5): 293-304 DOI:10.1007/s00190-010-0367-5 (0) [8] 黄为权, 万卫星, 薛炳森. 2017年5月磁暴过程及近地空间环境响应分析[J]. 中国科学:技术科学, 2019, 49(9): 1051-1063 (Huang Weiquan, Wan Weixing, Xue Bingsen. Analyses of Geospace Response to the Geomagnetic Storm in May 2017[J]. Scientia Sinica Techologica, 2019, 49(9): 1051-1063) (0) [9] Schaer S, Gurtner W, Feltens J. IONEX: The Ionosphere Map Exchange Format Version 1[C]. The IGS AC Workshop, Darmstadt, 1998 (0)
Ionospheric TEC Response Analysis during Magnetic Storms Based on Beidou GEO Satellites
BAI Xiaotao     CAI Changsheng
1. School of Geosciences and Info-Physics, Central South University, 932 South-Lushan Road, Changsha 410083, China
Abstract: Using the data of Beidou GEO satellites in the Asia-Pacific region, we study the geomagnetic storm phenomenon that occurred in the middle and low latitude regions in May 2017. The accuracy of the global ionospheric map (GIM) is evaluated using the measured TEC data obtained by Beidou GEO satellites, and the global response of the ionospheric TEC of this geomagnetic storm is further analyzed. It is found that the response of the ionospheric TEC to the geomagnetic storm occurs 1 to 4 hours after the start of the main phase of the geomagnetic storm and the maximal disturbance value could reach 20 TECu.
Key words: Beidou; GEO satellite; geomagnetic storm; ionospheric TEC; GIM