﻿ 日本地震活动与潮汐相关性统计研究
 文章快速检索 高级检索
 大地测量与地球动力学  2019, Vol. 39 Issue (11): 1122-1126  DOI: 10.14075/j.jgg.2019.11.005

### 引用本文

ZHANG Han, XIE Chaodi, YAN Ruyu, et al. Statistical Study on the Correlation Between Seismic Activity and Tides in Japan[J]. Journal of Geodesy and Geodynamics, 2019, 39(11): 1122-1126.

### Foundation support

National Natural Science Foundation of China, No.41574043; Open Foundation of State Key Laboratory of Ocean and Geology, Tongji University, No.MGK1827.

### Corresponding author

XIE Chaodi, PhD, associate professor, majors in seismology, E-mail:xiecd@ynu.edu.cn.

### 第一作者简介

ZHANG Han, postgraduate, majors in the correlation between earth tides and seismicity, E-mail:244024180@qq.com.

### 文章历史

1. 云南大学资源环境与地球科学学院，昆明市翠湖北路2号，650091;
2. 上海市地震局，上海市兰溪路87号，200062

1 研究区域及数据

 图 1 日本及邻区的子区域划分 Fig. 1 Subregional of Japan and adjacent region
2 统计检验方法

 $\mathit{\boldsymbol{D}}{\mathit{\boldsymbol{}}^2} = {\left( {\sum\limits_{i = 1}^N {{\rm{cos}}{\theta _i}} } \right)^2} + {\left( {\sum\limits_{{\rm{ }}i = 1}^N {{\rm{sin}}{\theta _i}} } \right)^2}$ (1)
 图 2 潮汐相位角的定义 Fig. 2 Definition of tidal phase angle

 $p = {\rm{exp}}\left( { - \frac{{\mathit{\boldsymbol{D}}{\mathit{\boldsymbol{}}^2}}}{N}} \right){\rm{ }}$ (2)

 $\Delta {T_i} = \frac{{\varepsilon T_i^2}}{{t}}{\rm{ }}$ (3)

 $\left\langle {{\delta _m}} \right\rangle = \frac{1}{n} \approx {\varepsilon _0}{T_{{\rm{min}}}}/t \approx {T_{{\rm{min}}}}/t$ (4)

3 计算结果

 图 3 日本及邻区的Schuster检验p值分布 Fig. 3 Schuster test p-value distribution of Japan and adjacent region

 图 4 日本奄美岛地区Schuster检验及Schuster谱的测试结果 Fig. 4 Results of Scuster test and Schuster spectral in Amami island, Japan

 图 5 日本大阪湾地区的Schuster及Schuster谱检验结果 Fig. 5 Results of Scuster test and Schuster spectral in Osaka bay, Japan
4 讨论

 图 6 日本子区域潮汐相位角频率分布 Fig. 6 Frequency distribution of tidal phase angle in subarea of Japan

Yoshida[15]给出日本九州地区(131°~132°E，32°~33°N)的区域构造应力场，P轴走向近乎西南方向，结合2016年熊本7级地震的震源机制(http://www.data.jma.go.jp/svd/eqev/data/mech/pdf/mc201604.pdf)，计算该地区潮汐库仑应力与地震活动的相关性，μ取0.4，结果见图 7

 图 7 日本九州地区库仑应力潮汐相位角频率分布 Fig. 7 Frequency distribution of tidal phase angle for CFS in Kyushu, Japan

5 结语

1) 在日本及邻区划分的75个子区域中，有22个子区域满足p＜5%，说明这些地区地震受潮汐的触发，这与Tanaka等[8]的研究结果基本一致。但本文显示出更多区域存在潮汐相关性，其原因可能是二者所选用的地震目录时间跨度及地震数量等不一致，采用的统计方法也不同。

2) 在22个满足p＜5%的子区域中，对其中2个子区域进行Schuster谱的研究发现，0.5 d潮汐在谱图结果中比较明显，说明该地区地震活动受0.5 d潮周期成分的控制。

3) McNutt等[16]的研究已经考虑了海潮的作用，但在应力的变化上忽略了震源深度的影响。利用GOTIC2这个包含海潮模型NAO.99b的数据库，结合固体潮进行潮汐相位角的统计，计算在震源深度上的海潮加载效应，得到的结果更加可靠。

4) 这些结果表明，日本地区的地震活动确实存在一定的潮汐触发相关性，且某些区域的地震活动率存在着周期性的变化，为研究日本地区地震机理提供了一定的理论依据。

 [1] Tanaka S. Tidal Triggering of Earthquakes Prior to the 2011 Tohoku-Oki Earthquake(MW9.1)[J]. Geophysical Research Letters, 2012, 39(7): L00G26 (0) [2] Tanaka S, Sato H, Matsumura S, et al. Tidal Triggering of Earthquakes in the Subducting Philippine Sea Plate Beneath the Locked Zone of the Plate Interface in the Tokai Region, Japan[J]. Tectonophysics, 2006, 417(1-2): 69-80 DOI:10.1016/j.tecto.2005.09.013 (0) [3] Tsuruoka H, Ohtake M, Sato H. Statistical Test of the Tidal Triggering of Earthquakes:Contribution of the Ocean Tide Loading Effect[J]. Geophysical Journal International, 1995, 122(1): 183-194 DOI:10.1111/j.1365-246X.1995.tb03546.x (0) [4] Klein F W. Earthquake Swarms and the Semidiurnal Solid Earth Tide[J]. Geophysical Journal of the Royal Astronomical, 1976, 45(2): 245-295 DOI:10.1111/j.1365-246X.1976.tb00326.x (0) [5] Heaton T H. Tidal Triggering of Earthquakes[J]. Geophysical Journal of the Royal Astronomical, 1975, 43(2): 307-326 DOI:10.1111/j.1365-246X.1975.tb00637.x (0) [6] Wilcock W S D. Tidal Triggering of Microearthquakes on the Juan de Fuca Ridge[J]. Geophysical Research Letters, 2001, 28(20): 3 999-4 002 DOI:10.1029/2001GL013370 (0) [7] Tanaka S, Ohtake M, Sato H. Evidence for Tidal Triggering of Earthquakes as Revealed from Statistical Analysis of Global Data[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B10) (0) [8] Tanaka S, Ohtake M, Sato H. Tidal Triggering of Earthquakes in Japan Related to the Regional Tectonic Stress[J]. Earth, Planets and Space, 2004, 56(5): 511-515 DOI:10.1186/BF03352510 (0) [9] Ader T J, Avouac J P. Detecting Periodicities and Declustering in Earthquake Catalogs Using the Schuster Spectrum, Application to Himalayan Seismicity[J]. Earth and Planetary Science Letters, 2013, 377-378: 97-105 DOI:10.1016/j.epsl.2013.06.032 (0) [10] Matsumoto K, Sato T, Takanezawa T, et al. GOTIC2: A Program for Computation of Oceanic Tidal Loading Effect[J]. Journal of the Geodetic Society of Japan, 2001, 47(1): 243-248 (0) [11] Sato T. A Program for the Computation of Oceanic Tidal Loading Effects 'GOTIC'[J]. Publications of the International Latitude Observatory of Mizusawa, 1984, 18: 29-47 (0) [12] Dziewonski A M, Anderson D L. Preliminary Reference Earth Model[J]. Physics of the Earth and Planetary Interiors, 1981, 25(4): 297-356 DOI:10.1016/0031-9201(81)90046-7 (0) [13] 熊子瑶, 解朝娣, 雷兴林, 等. 云南大姚、姚安及附近地区地震活动与潮汐应力的触发关系[J]. 地震研究, 2015, 38(1): 66-74 (Xiong Ziyao, Xie Chaodi, Lei Xinglin, et al. Triggering Relationship between Seismic Activity and Tidal Stress in Dayao-Yao'an and Its Adjacent Area of Yunnan Province[J]. Journal of Seismological Research, 2015, 38(1): 66-74 DOI:10.3969/j.issn.1000-0666.2015.01.009) (0) [14] Xie C D, Lei X L, Zhao X Y, et al. Tidal Triggering of Earthquakes in the Ning'er Area of Yunnan Province, China[J]. Journal of Asian Earth Sciences, 2017, 138(1): 477-483 (0) [15] Yoshida M. Re-Evaluation of the Regional Tectonic Stress Fields and Faulting Regimes in Central Kyushu, Japan, behind the 2016 MW7.0 Kumamoto Earthquake[J]. Tectonophysics, 2017, 712-713: 95-100 DOI:10.1016/j.tecto.2017.05.011 (0) [16] McNutt S R, Beavan R J. Patterns of Earthquakes and the Effect of Solid Earth and Ocean Load Tides at Mount St Helens Prior to the May 18, 1980, Eruption[J]. Journal of Geophysical Research: Solid Earth, 1984, 89(B5): 3 075-3 086 DOI:10.1029/JB089iB05p03075 (0)
Statistical Study on the Correlation Between Seismic Activity and Tides in Japan
ZHANG Han1     XIE Chaodi1     YAN Ruyu1     LI Xiang1     LIU Benyu1     YU Haiying2
1. School of Resources Environment and Earth Science, Yunnan University, 2 North-Cuihu Road, Kunming 650091, China;
2. Shanghai Earthquake Agency, 87 Lanxi Road, Shanghai 200062, China
Abstract: We select Japan and its adjacent region as study areas, and divide it into some subareas.With the Schuster test we calculate the p-value of each subarea using tidal stresses caused by the sun and the moon.On this basis, the Schuster spectra are built for the subareas with p < 5% in order to estimate the periodicity of seismicity in the subareas.Then, the correlation between seismicity and tidal stress in Japanis studied further.The results show that among the 75 subareas, the p-value of 22 subareas is less than 5%, and 2 of 22 subareas' Schuster spectra show a distinct period of semidiurnal tides, which indicates the seismicity in these areas has a degree of triggering by tides.
Key words: tidal triggering; Japan earthquake; Schuster test; Schuster spectrum