﻿ 顾及垂直形变速率影响的茅山地区重力场变化
 文章快速检索 高级检索
 大地测量与地球动力学  2019, Vol. 39 Issue (8): 804-809  DOI: 10.14075/j.jgg.2019.08.007

### 引用本文

WU Xiao feng, SONG Hao, DAI Xianpeng, et al. Gravity Field Variation in Maoshan Area Considering Vertical Strain Rate[J]. Journal of Geodesy and Geodynamics, 2019, 39(8): 804-809.

### Foundation support

Special Fund for Earthquake Research of CEA, No. 201508009;Youth Fund for Jiangsu Earthquake Agency, No. 201604.

### Corresponding author

SONG Hao, senior engineer, majors in gravity observation and application, E-mail:71121596@qq.com.

### 第一作者简介

WU Xiaofeng, engineer, majors in cross-fault leveling and gravity observation and application, E-mail:wxf1005@163.com.

### 文章历史

1. 江苏省地震局，南京市卫岗3号，210014

1 江苏重力网观测概况与茅山断裂地质条件 1.1 江苏流动重力区域网

1.2 JSCORS概况

 图 1 茅山断裂带结构平面 Fig. 1 Structural plane of the Maoshan fault zone
1.3 茅山断裂带

2 实测案例及资料分析

 图 2 2014~2017年累积、差分重力变化 Fig. 2 Accumulative and differential gravity difference variation from 2014 to 2017

 图 3 2006~2012年江苏省CORS地面沉降年速率 Fig. 3 CORS site annual rate of land subsidence in Jiangsu from 2006 to 2012

 $\Delta {g_{布格}} = \Delta {g_{空间}} + \Delta {g_{层间}}$ (1)

 $\Delta {g_{空间}} = 0.308\;6h$ (2)

 $\begin{array}{c} {g_0} = 978\;032.533\;61[1 + 0.005\;302\;44\;{\rm{si}}{{\rm{n}}^2}\varphi - \\ 0.000 \;005 \;72\;{\rm{si}}{{\rm{n}}^2}\left( {2\varphi } \right)] \end{array}$ (3)

 $\begin{array}{c} \Delta {g_{空间}} = - \frac{{2H}}{R} {g_0}\left[ {1 - \frac{5}{6} \alpha + \frac{9}{4} \rho + } \right.\\ \left( {\frac{3}{2} \alpha - \frac{5}{4} \rho } \right){\rm{cos}}2\varphi + ] \frac{{3{H^2}}}{{{R^2}}}{g_0} \end{array}$ (4)

 $\Delta {g_{层间}} = 0.111 \;94\delta H$ (5)

 图 4 修正前后的区域重力场 Fig. 4 Regional gravity field before and after correction

3 结语

 [1] 国家地震局.地震重力测量规范[S].北京: 地震出版社, 1979 (China Earthquake Administration. Specification for Seismic Gravity Measurements[S].Beijing: Seismological Press, 1979) (0) [2] 祝意青, 王庆良. 我国流动重力监测预报发展的思考[J]. 国际地震动态, 2008(9): 19-24 (Zhu Yiqing, Wang Qingliang. Thoughts on the Development of Earthquake Monitoring and Prediction in Mobile Gravity[J]. Recent Developments in World Seismology, 2008(9): 19-24 DOI:10.3969/j.issn.0253-4975.2008.09.004) (0) [3] 吕子强, 郑建常. 山东重力场季节性变化特征[J]. 大地测量与地球动力学, 2013, 33(1): 61-67 (Lü Ziqiang, Zheng Jianchang. Seasonal Variation Characteristics of Shandong Gravity Field[J]. Journal of Geodesy and Geodynamics, 2013, 33(1): 61-67) (0) [4] 张品, 申重阳, 杨光亮, 等. 大地水准面起伏对重力归算的影响研究[J]. 大地测量与地球动力学, 2017, 37(3): 306-310 (Zhang Pin, Shen Chongyang, Yang Guangliang, et al. Research on the Effect of Geoid Undulation on Gravity Reduction[J]. Journal of Geodesy and Geodynamics, 2017, 37(3): 306-310) (0) [5] 陶本藻. GPS水准似大地水准面拟合和正常高计算[J]. 测绘通报, 1992(4): 14-18 (Tao Benzao. GPS Leveling Quasi-Geoid Fitting and Normal Height Calculation[J]. Bulletin of Surveying and Mapping, 1992(4): 14-18) (0) [6] 胡连英, 徐学思, 孙寿成. 溧阳地震与茅山地震地质研究新进展[J]. 地震学刊, 1999(增2): 60-65 (Hu Lianying, Xu Xuesi, Sun Shoucheng. New Progress in Liyang Earthquake and Maoshan Earthquake Geology[J]. Journal of Seismology, 1999(S2): 60-65) (0) [7] 滕龙, 邸兵叶, 张俊. 江苏茅山断裂带中段重力异常多尺度分析及其构造识别[J]. 资源调查与环境, 2015, 36(1): 49-56 (Teng Long, Di Bingye, Zhang Jun. Multi-Scale Analysis of Gravity Anomalies and Its Discernment of Structures in the Middle Segment of the Maoshan Faulted Zone[J]. Resources Survey and Environment, 2015, 36(1): 49-56 DOI:10.3969/j.issn.1671-4814.2015.01.007) (0) [8] 翟伟林, 田学军, 王乾, 等. CORS网络RTK技术在农村集体土地所有权确权工作中的应用[J]. 测绘通报, 2013(增1): 284-285 (Zhai Weilin, Tian Xuejun, Wang Qian, et al. Application of CORS Network RTK Technology on the Job of Rural Collective Land Ownership Rights[J]. Bulletin of Surveying and Mapping, 2013(S1): 284-285) (0) [9] 王谦身, 滕吉文, 王光杰, 等. 应用卫星重力信息对横断山系地区布格重力异常特异分布的纠正[J]. 地球物理学进展, 2007, 22(2): 345-352 (Wang Qianshen, Teng Jiwen, Wang Guangjie, et al. The Correction for Special Pattern of Bouguer Gravity Anomaly in Hengduan Mts Area by Using Satellite Gravity[J]. Progress in Geophysics, 2007, 22(2): 345-352 DOI:10.3969/j.issn.1004-2903.2007.02.003) (0) [10] 管泽霖, 李建成, 晁定波, 等. WZD94中国重力大地水准面研究[J]. 武汉测绘科技大学学报, 1994, 19(4): 292-297 (Guan Zelin, Li Jiancheng, Chao Dingbo, et al. The Research of Gravity Geoid WZD94 in China[J]. Journal of Wuhan Technical University of Surveying and Mapping, 1994, 19(4): 292-297) (0) [11] 戴王强, 高好林, 窦玛丽, 等. 陕西中部地区近年来重力和应变场变化特征研究[J]. 大地测量与地球动力学, 2007, 27(6): 105-108 (Dai Wangqiang, Gao Haolin, Dou Mali, et al. Recent Variation Characteristics of Gravity and Strain Fields within Middle Region of Shaanxi[J]. Journal of Geodesy and Geodynamics, 2007, 27(6): 105-108) (0) [12] 魏子卿. GPS重力位水准[J]. 大地测量与地球动力学, 2007, 27(4): 1-7 (Wei Ziqing. GPS Gravity-Potential Leveling[J]. Journal of Geodesy and Geodynamics, 2007, 27(4): 1-7) (0) [13] 王伟, 李姗姗, 马彪, 等. 基于均衡理论构建区域平均空间重力异常方法研究[J]. 大地测量与地球动力学, 2013, 33(4): 146-150 (Wang Wei, Li Shanshan, Ma Biao, et al. A Method for Establishing Mean Free-Air Gravity Anomaly Based on Isostatic Theory[J]. Journal of Geodesy and Geodynamics, 2013, 33(4): 146-150) (0) [14] 马健, 魏子卿, 武丽丽, 等. 有限范围的重力层间改正算法[J]. 测绘学报, 2017, 46(1): 26-33 (Ma Jian, Wei Ziqing, Wu Lili, et al. The Bouguer Correction Algorithm for Gravity with Limited Range[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(1): 26-33) (0)
Gravity Field Variation in Maoshan Area Considering Vertical Strain Rate
WU Xiao feng1     SONG Hao1     DAI Xianpeng1     FAN Wenhua1     SUN Junsong1
1. Jiangsu Earthquake Agency, 3 Weigang, Nanjing 210014, China
Abstract: We correct the gravity change obtained by the vertical change rate to the gravity change of CG-5 by CORS, plot the real regional gravity field map of the Maoshan fault zone, and analyze the gravity field changes in this area. 18 relative gravity points near the Maoshan fault zone are selected for synchronous GPS-RTK measurement. We compare and analyze the measured data, and calculate the height variation of the GPS as the basis of the gravity value. On the basis of the gravity value of 2014, we correct the gravity measured values of three periods from 2016 to 2017 by the gradient variation, and draw the anomalous contour map of the gravity field to study the anomalous variation of the gravity field in the Maoshan fault zone. The results show that the contrast of the gravitational field difference diagram before the elevation correction shows that the shape of the gravity field changes greatly, and the direction of the high gradient area and the zero line are all changed. The research results are of great significance for determining the annual anomaly area based on the trend of differential variation.
Key words: gravity field; GPS-RTK; geoid; Maoshan fault zone; Bouguer gravity anomaly