﻿ 超导重力装置的调平及实验分析
 文章快速检索 高级检索
 大地测量与地球动力学  2019, Vol. 39 Issue (4): 437-440  DOI: 10.14075/j.jgg.2019.04.020

### 引用本文

SU Huajun, HU Xinning, CUI Chunyan, et al. Leveling and Experimental Analysis of Superconducting Gravity Device[J]. Journal of Geodesy and Geodynamics, 2019, 39(4): 437-440.

### Foundation support

National Natural Science Foundation of China, No. 41527802, 51477166.

### Corresponding author

HU Xinning, PhD, researcher, majors in cryogenic and superconducting technology, geodesy and navigation technology, electromagnetic field and application technology, E-mail: xininghu@mail.iee.ac.cn.

### 第一作者简介

SU Huajun, postgraduate, majors in superconducting precision measurement technology, electromagnetic field and application technology, E-mail: suhuajun@mail.iee.ac.cn.

### 文章历史

1. 中国科学院电工研究所，北京市中关村北二条6号，100190;
2. 中国科学院大学，北京市玉泉路19号甲，100049

1 重力精度与倾角及支撑腿之间的关系 1.1 重力精度与倾角的关系

 $\Delta g = g\left( {1 - \cos \theta } \right) \approx \left( {1/2} \right)g{\theta ^2}$ (1)

1.2 倾角调平方法

 图 1 重力装置外观简化图 Fig. 1 Gravity device appearance simplified diagram
 $h = \frac{{\sqrt 3 }}{2}DE = \frac{{\sqrt 3 }}{2} \times \sqrt 3 R = \frac{3}{2}R = 375\;{\rm{mm}}$ (2)

1.3 重力精度与支撑脚调节高度间的关系

 $\Delta \theta = \arctan \left( {\Delta h/h} \right)$ (3)

2 重力仪调平系统的设计

 图 2 电动升降支撑腿结构示意图 Fig. 2 Electric supporting leg structure diagram

 图 3 调平系统控制框 Fig. 3 Leveling system control block diagram

3 重力仪调平实验及结果分析

 图 4 位移电压随倾角变化 Fig. 4 Displacement voltage changes with the tilt angle

 $\Delta g = \left( {\Delta S \times \nabla } \right)/m$ (4)

4 结语

 [1] 聂仁奇, 章传银, 秘金钟. 超导重力仪观测数据分析[J]. 全球定位系统, 2012, 37(1): 35-38 (Nie Renqi, Zhang Chuanyin, Bei Jinzhong. Analysis of Superconducting Gravimeter Observations[J]. GNSS World of China, 2012, 37(1): 35-38 DOI:10.3969/j.issn.1008-9268.2012.01.010) (0) [2] 吴琼.高精度绝对重力仪关键技术研究[D].北京: 中国地震局地球物理研究所, 2011 (Wu Qiong.The Study of the Key Technology in High-Precision Absolute Gravimeter[D].Beijing: Institute of Geophysics, CEA, 2011) (0) [3] Sun H P, Xu H Z, Ducarme B, et al. Comprehensive Comparison and Analysis of Tidal Gravity Observations Obtained with Superconducting Gravimeters at Stations in China, Belgium and France[J]. Chinese Science Bulletin, 1999, 44(8): 750-755 DOI:10.1007/BF02909719 (0) [4] Sun H P, Takemoto S, Xu H Z, et al. Precise Tidal Gravity Recorded with Superconducting Gravimeters at Stations Wuhan, China and Kyoto, Japan[J]. Journal of Geodesy, 2001, 74(10): 720-729 DOI:10.1007/s001900000139 (0) [5] 陈晓东, 孙和平, 张为民, 等. 用绝对重力仪测定超导重力仪格值的精度分析[J]. 大地测量与地球动力学, 2013, 33(5): 145-149 (Chen Xiaodong, Sun Heping, Zhang Weimin, et al. Accuracy Analysis on Determination of Calibration Factor of a Superconducting Gravimeter Using an Absolute Gravimeter[J]. Journal of Geodesy and Geodynamics, 2013, 33(5): 145-149) (0) [6] 胥靖文, 王晖, 胡新宁, 等. 应用于重力测量的超导磁悬浮系统电磁特性分析[J]. 低温与超导, 2016, 44(4): 1-5 (Xu Jingwen, Wang Hui, Hu Xinning, et al. Analysis of Electromagnetic Properties of Superconducting Suspension System Applied to Gravity Observations[J]. Cryogenics & Superconductivity, 2016, 44(4): 1-5) (0) [7] 孙和平, 徐建桥, 许厚泽. 我国GWR超导重力仪观测资料应用研究进展[J]. 大地测量与地球动力学, 2002, 22(4): 106-111 (Sun Heping, Xu Jianqiao, Xu Houze. Progress in Application Study of Gravity Observations Recorded with a GWR Superconducting Gravimeter in China[J]. Journal of Geodesy and Geodynamics, 2002, 22(4): 106-111) (0) [8] 邢乐林, 李辉, 刘子维, 等. 利用绝对重力测量精密测定超导重力仪的格值因子[J]. 大地测量与地球动力学, 2010, 30(1): 48-50 (Xing Lelin, Li Hui, Liu Ziwei, et al. Scale Factor Calibration of a Superconducting Gravimeter by Using Absolute Gravimetry[J]. Journal of Geodesy and Geodynamics, 2010, 30(1): 48-50) (0) [9] 郑家祺, 宋士元, 吴培钧, 等. 超导重力仪的研制[J]. 低温物理学报, 1988, 10(3): 40-46 (Zheng Jiaqi, Song Shiyuan, Wu Peijun, et al. Study of the Superconducting Gravimeter[J]. Chinese Journal of Low Temperature Physics, 1988, 10(3): 40-46) (0)
Leveling and Experimental Analysis of Superconducting Gravity Device
SU Huajun1,2     HU Xinning1,2     CUI Chunyan1,2     WANG Hui1,2     WANG Hao1,2     HE Zhongming1,2     WANG Qiuliang1,2
1. Institute of Electrical Engineering, CAS, 6 Second North-Zhongguancun Road, Beijing 100190, China;
2. University of Chinese Academy of Sciences, A19 Yuquan Road, Beijing 100049, China
Abstract: By analyzing the relationship between gravity measurement accuracy and the tilt angle of the levitation system and the height of the supporting leg, and by considering the heavy weight of the supporting leg and the high precision of the displacement adjustment, we adopt a design of high precision electric cylinder driven by the AC servo motor servicing as support leg. By producing the support leg leveling system and doing a leveling experiment, the tilt measurement accuracy is 0.002°, the minimum displacement adjustment is as small as 2.5 μm, the smallest tilt angle position is found, the gravimeter leveling function is realized, and the relationship between gravity accuracy and tilt angle is verified. The experimental results provide a reference for the leveling work and high-precision gravity measurement of SG.
Key words: superconducting gravity device; gravity measurement; tilt measurement and leveling; leveling method; leveling experiment