[1] |
MARTIN G, RENTSCH L, HÖCK M, et al. Lithium market research-global supply, future demand and price development[J]. Energy Storage Materials, 2017, 6: 171-179. DOI:10.1016/j.ensm.2016.11.004 |
|
[2] | |
|
[3] |
ZENG X, LI M, ELHADY D A, et al. Commercialization of lithium battery technologies for electric vehicles[J]. Advanced Energy Materials, 2019, 9(27): 1900161. DOI:10.1002/aenm.201900161 |
|
[4] |
XIAO J F, LI J, XU Z M. Recycling metals from lithium ion battery by mechanical separation and vacuum metallurgy[J]. Journal of Hazardous Materials, 2017, 338: 124-131. DOI:10.1016/j.jhazmat.2017.05.024 |
|
[5] |
ZOU Y, ZHANG L H, LI Y, et al. Improvement of mechanical behaviors of a superlight Mg-Li base alloy by duplex phases and fine precipitates[J]. Journal of Alloys and Compounds, 2018, 735: 2625-2633. DOI:10.1016/j.jallcom.2017.12.025 |
|
[6] |
MODI K B, ACHARYA R, MUNOT S, et al. Chemical characterization of lithium titanate and lithium aluminate as tritium breeders of fusion reactor by PIGE and INAA methods[J]. Journal of Radioanalytical and Nuclear Chemistry, 2017, 314(2): 1113-1120. DOI:10.1007/s10967-017-5457-x |
|
[7] |
BLINK J A, HOGAM W J, HOVINGH J, et al. High-yield lithium-injection fusion-energy (HYLIFE) reactor[J]. Journal of Agricultural and Food Chemistry, 2014, 62: 4276-4284. DOI:10.1021/jf500959g |
|
[8] |
LIU X, HUANG J Q, ZHANG Q, et al. Nanostructured metal oxides and sulfides for lithium-sulfur batteries[J]. Advanced Materials, 2017, 29(20): 1601759-1601784. DOI:10.1002/adma.201601759 |
|
[9] | |
|
[10] | |
|
[11] |
LIN C G, RüSSEL C, DAI S X. Chalcogenide glass-ceramics:functional design and crystallization mechanism[J]. Progress in Materials Science, 2018, 93: 1-44. DOI:10.1016/j.pmatsci.2017.11.001 |
|
[12] |
XU X, CHEN Y M, WAN P Y, et al. Extraction of lithium with functionalized lithium ion-sieves[J]. Progress in Materials Science, 2016, 84: 276-313. DOI:10.1016/j.pmatsci.2016.09.004 |
|
[13] |
ZHENG M P, ZHANG Y S, LIU X F, et al. Progress and prospects of salt lake research in China[J]. Acta Geologica Sinica-English Edition, 2016, 90: 1195-1235. DOI:10.1111/1755-6724.12767 |
|
[14] | |
|
[15] |
ZHANG E H, LIU W F, LIANG Q, et al. Selective recovery of Li + in acidic environment based on one novel electroactive Li +-imprinted graphene-based hybrid aerogel[J]. Chemical Engineering Journal, 2020, 385: 123948. DOI:10.1016/j.cej.2019.123948 |
|
[16] |
SUN Y Z, YANG J J, ZHAO C L. Minimum mining grade of associated Li deposits in coal seams[J]. Energy Exploration Exploitation, 2012, 30: 167-170. DOI:10.1260/0144-5987.30.2.167 |
|
[17] |
XU Z F, DENG P H, LI J H, et al. Fluorescent ion-imprinted sensor for selective and sensitive detection of copper (Ⅱ) ions[J]. Sensors and Actuators:B, 2018, 255: 2095-2104. DOI:10.1016/j.snb.2017.09.007 |
|
[18] | |
|
[19] |
ALIZADEH T, HAMIDI N, GANJALI M R, et al. Determination of subnanomolar levels of mercury (Ⅱ) by using a graphite paste electrode modified with MWCNTs and Hg (Ⅱ)-imprinted polymer nanoparticles[J]. Microchimica Acta, 2018, 185(16): 1-9. |
|
[20] |
LI M, FENG C G, LI M Y, et al. Synthesis and application of a surface-grafted In (Ⅲ) ion-imprinted polymer for selective separation and pre-concentration of indium (Ⅲ) ion from aqueous solution[J]. Hydrometallurgy, 2015, 154: 63-71. DOI:10.1016/j.hydromet.2015.03.011 |
|
[21] |
DAKOVA I, KARADJOVA I, GEORGIEVA V, et al. Ion-imprinted polymethacrylic microbeads as new sorbent for preconcentration and speciation of mercury[J]. Talanta, 2009, 78(2): 523-529. DOI:10.1016/j.talanta.2008.12.005 |
|
[22] |
SALONI J, WALKER K, HILL Jr G. Theoretical investigation on monomer and solvent selection for molecular imprinting of nitrocompounds[J]. Journal of Physical Chemistry:A, 2013, 117(7): 1531-1534. DOI:10.1021/jp2124839 |
|
[23] |
LI M, MENG X J, LIANG X K, et al. A novel In (Ⅲ) ion-imprinted polymer (ⅡP) for selective extraction of In (Ⅲ) ions from aqueous solutions[J]. Hydrometallurgy, 2018, 176: 243-252. DOI:10.1016/j.hydromet.2018.02.006 |
|
[24] |
JALILIAN R, TAHERI A. Synthesis and application of a novel core-shell-shell magnetic ion imprinted polymer as a selective adsorbent of trace amounts of silver ions[J]. E-Polymers, 2018, 18(2): 123-134. |
|
[25] | |
|
[26] |
WANG J J, LIU F. Enhanced and selective adsorption of heavy metal ions on ion-imprinted simultaneous interpenetrating network hydrogels[J]. Designed Monomers and Polymers, 2014, 17(1): 19-25. DOI:10.1080/15685551.2013.771314 |
|
[27] |
HASHEMI B, SHAMSIPUR M, SEYEDZADEH Z. Synthesis of ion imprinted polymeric nanoparticles for selective pre-concentration and recognition of lithium ions[J]. New Journal of Chemistry, 2016, 40(5): 4803-4809. DOI:10.1039/C5NJ03366G |
|
[28] |
苑青青, 连冠楠, 刘琴琴, 等. 溶胶凝胶法制备Li +印迹杯[4]芳烃乙酸聚合物及其吸附研究[J]. 浙江化工, 2015, 46(7): 35-39. YUAN Q Q, LIAN G N, LIU Q Q, et al. Preparation and adsorption capacity of Li + imprinted calix[4] arene-acetate polymer using sol-gel method[J]. Zhejiang Chemical Industry, 2015, 46(7): 35-39. |
|
[29] |
HUANG Y, WANG R. An efficient lithium ion imprinted adsorbent using multi-wall carbon nanotubes as support to recover lithium from water[J]. Journal of Cleaner Production, 2018, 205: 201-209. DOI:10.1016/j.jclepro.2018.09.076 |
|
[30] |
SUN D S, MENG M J, QIAO Y, et al. Synthesis of ion imprinted nanocomposite membranes for selective adsorption of lithium[J]. Separation and Purification Technology, 2018, 194: 64-72. DOI:10.1016/j.seppur.2017.10.052 |
|
[31] | |
|
[32] |
LU J, QIN Y Y, ZHANG Q, et al. Multilayered ion-imprinted membranes with high selectivity towards Li + based on the synergistic effect of 12-crown-4 and polyether sulfone[J]. Applied Surface Science, 2018, 427: 931-941. DOI:10.1016/j.apsusc.2017.08.016 |
|
[33] |
WANG Y Y, XU J C, YANG D Y, et al. Calix[4] arenes functionalized dual-imprinted mesoporous film for the simultaneous selective recovery of lithium and rubidium[J]. Applied Organometallic Chemistry, 2018, 32(10): e4511. DOI:10.1002/aoc.4511 |
|
[34] |
杨爱玲, 刘曙, 李晨, 等. 金离子印迹聚合物研究进展[J]. 化学研究与应用, 2015, 27(10): 1434-1439. YANG A L, LIU S, LI C, et al. Research progress of gold-ion imprinting polymer[J]. Chemical Research and Application, 2015, 27(10): 1434-1439. |
|
[35] |
黄丹丹, 孟超, 单宏权, 等. 铬(Ⅵ)离子印迹聚合物的研究进展[J]. 天津化工, 2015, 29(5): 5-18. HUANG D D, MENG C, SHAN H Q, et al. Research progress of Cr (Ⅵ) imprinting polymer[J]. Tianjin Chemical Industry, 2015, 29(5): 5-18. |
|
[36] | |
|
[37] |
YUAN C D, ZHANG L, LI H C, et al. Highly selective lithium ion adsorbents:polymeric porous microsphere with crown ether groups[J]. Transactions of Tianjin University, 2019, 25(2): 101-109. DOI:10.1007/s12209-018-0147-5 |
|
[38] |
SHAMSIPUR M, BESHARATI-SEIDANI A, FASIHI J, et al. Synthesis and characterization of novel ion-imprinted polymeric nanoparticles for very fast and highly selective recognition of copper (Ⅱ) ions[J]. Talanta, 2010, 83(2): 674-681. DOI:10.1016/j.talanta.2010.10.021 |
|
[39] |
GU D L, SUN W J, HAN G F, et al. Lithium ion sieve synthesized via an improved solid state method and adsorption performance for West Taijinar Salt Lake brine[J]. Chemical Engineering Journal, 2018, 350: 474-483. DOI:10.1016/j.cej.2018.05.191 |
|
[40] |
GUO B, DENG F, ZHAO Y, et al. Magnetic ion-imprinted and-SH functionalized polymer for selective removal of Pb (Ⅱ) from aqueous samples[J]. Applied Surface Science, 2014, 292: 438-446. DOI:10.1016/j.apsusc.2013.11.156 |
|
[41] |
REN Z Q, ZHU X Y, DU J, et al. Facile and green preparation of novel adsorption materials by combining sol-gel with ion imprinting technology for selective removal of Cu (Ⅱ) ions from aqueous solution[J]. Applied Surface Science, 2018, 435: 574-584. DOI:10.1016/j.apsusc.2017.11.059 |
|
[42] |
GHANEI-MOTLAGH M, TAHER M A. Novel imprinted polymeric nanoparticles prepared by sol-gel technique for electrochemical detection of toxic cadmium (Ⅱ) ions[J]. Chemical Engineering Journal, 2017, 327: 135-141. DOI:10.1016/j.cej.2017.06.091 |
|
[43] |
WANG J, ZHANG W H, QIAN Y C, et al. pH, temperature, and magnetic triple-responsive polymer porous microspheres for tunable adsorption[J]. Macromolecular Materials and Engineering, 2016, 301(9): 1132-1141. DOI:10.1002/mame.201600161 |
|
[44] |
NASIRIMOGHADDAM S, ZEINALI S, SABBAGHI S. Chitosan coated magnetic nanoparticles as nano-adsorbent for efficient removal of mercury contents from industrial aqueous and oily samples[J]. Journal of Industrial and Engineering Chemistry, 2015, 27: 79-87. DOI:10.1016/j.jiec.2014.12.020 |
|
[45] |
ZHU Y F, ZHENG Y A, WANG F, et al. Fabrication of magnetic porous microspheres via (O 1/W)/O 2 double emulsion for fast removal of Cu 2+ and Pb 2+[J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 67: 505-510. DOI:10.1016/j.jtice.2016.08.006 |
|
[46] |
DI BELLO M P, LAZZOI M R, MELE G, et al. A new ion-imprinted chitosan-based membrane with an azo-derivative ligand for the efficient removal of Pd (Ⅱ)[J]. Materials, 2017, 10(10): 1133. DOI:10.3390/ma10101133 |
|
[47] |
ZENG J X, ZHANG Z, DONG Z H, et al. Fabrication and characterization of an ion-imprinted membrane via blending poly(methyl methacrylate-co-2-hydroxyethyl methacrylate) with polyvinylidene fluoride for selective adsorption of Ru(Ⅲ)[J]. Reactive & Functional Polymers, 2017, 115: 1-9. |
|
[48] |
LIAN H X, HU Y, LI G K. Novel metal ion-mediated complex imprinted membrane for selective recognition and direct determination of naproxen in pharmaceuticals by solid surface fluorescence[J]. Talanta, 2013, 116: 460-467. DOI:10.1016/j.talanta.2013.07.022 |
|
[49] |
WANG Z D, MA Y, HAO X G, et al. Enhancement of heavy metals removal efficiency from liquid wastes by using potential-triggered proton self-exchange effects[J]. Electrochimica Acta, 2014, 130: 40-45. DOI:10.1016/j.electacta.2014.02.151 |
|
[50] |
CUI H, LI Q, QIAN Y, et al. Defluoridation of water via electrically controlled anion exchange by polyaniline modified electrode reactor[J]. Water Research, 2011, 45: 5736-5744. DOI:10.1016/j.watres.2011.08.049 |
|