[1] |
陶春虎, 钟培道, 王仁智, 等. 航空发动机转动部件的时效与预防[M]. 北京: 国防工业出版社, 2008. TAO C H, ZHONG P D, WANG R Z, et al. Failure analysis and prevention for rotor in aero-engine[M]. Beijing: National Defense Industry Press, 2008.
|
|
[2] |
REED R C. The superalloys:fundamentals and applications[M]. Cambridge: Cambridge University Press, 2008.
|
|
[3] |
SIMS C T, STOLOFF N S, HAGEL W C. Superalloys Ⅱ:high-temperature materials for aerospace and industrial power[M]. New York: Materialsence, 1987.
|
|
[4] | |
|
[5] |
BLACHNIO J, PAWLAK W I. Damageability of gas turbine blades-evaluation of exhaust gas temperature in front of the turbine using a non-linear observer[M]. Poland: Intech Open Access Publisher, 2011.
|
|
[6] | |
|
[7] | |
|
[8] | |
|
[9] |
蔡玉林, 郑运荣. 高温合金的金相研究[M]. 北京: 国防工业出版社, 1996: 228. CAI Y L, ZHENG Y R. Metallographic research of superalloys[M]. Beijing: National Defence Industry Press, 1996: 228.
|
|
[10] |
CHEN Y, ZHENG Y, XIAO C, et al. Evaluation of temperature and stress in first stage high pressure turbine blades of a directionally, solidified superalloy DZ125 after service in aeroengines[C]//Superalloys 2016: proceedings of the 13th Intenational Symposium of Superalloys. New Jersey: John Wiley & Sons Inc, 2016: 701-710.
|
|
[11] | |
|
[12] | |
|
[13] | |
|
[14] |
YUAN X F, SONG J X, ZHENG Y R, et al. Quantitative microstructural evolution and corresponding stress rupture property of K465 superalloy[J]. Materials Science and Engineering:A, 2016, 651: 734-744. DOI:10.1016/j.msea.2015.11.026 |
|
[15] |
YUAN X F, SONG J X, ZHENG Y R, et al. Abnormal stress rupture property in K465 superalloy caused by microstructural degradation at 975℃/225 MPa[J]. Journal of Alloys and Compounds, 2016, 662: 583-592. DOI:10.1016/j.jallcom.2015.12.086 |
|
[16] |
童锦艳, 冯微, 付超, 等. GH4033合金短时超温后的显微组织损伤及力学性能[J]. 金属学报, 2015, 51(10): 1242-1252. TONG J Y, FENG W, FU C, et al. Microstructural degradation and mechanical properties of GH4033 alloy after overheating for short time[J]. Acta Metallurgica Sinica, 2015, 51(10): 1242-1252. |
|
[17] |
GUO X, ZHENG W, XIAO C, et al. Evaluation of microstructural degradation in a failed gas turbine blade due to overheating[J]. Engineering Failure Analysis, 2019, 103: 308-318. DOI:10.1016/j.engfailanal.2019.04.021 |
|
[18] |
GIRAUD R, HERVIER Z, CORMIER J, et al. Strain effect on the γ' dissolution at high temperatures of a nickel-based single crystal superalloy[J]. Metallurgical and Materials Transactions:A, 2013, 44(1): 131-146. DOI:10.1007/s11661-012-1397-9 |
|
[19] |
郭小童, 郑为为, 肖程波, 等. K465高温合金短时超温后的显微组织退化及拉伸性能[J]. 材料工程, 2018, 46(10): 81-90. GUO X T, ZHENG W W, XIAO C B, et al. Microstructural degradation and tensile properties of K465 equiaxed-cast superalloy after short-time overheating[J]. Journal of Materials Engineering, 2018, 46(10): 81-90. |
|
[20] |
MASOUMI F, SHAHRIARI D, JAHAZI M, et al. Kinetics and mechanisms of γ'reprecipitation in a Ni-based superalloy[J]. Scientific Reports, 2016, 6: 28650. DOI:10.1038/srep28650 |
|
[21] |
LE GRAVEREND J B, DIRAND L, JACQUES A, et al. In situ measurement of the γ/ γ' lattice mismatch evolution of a nickel-based single-crystal superalloy during non-isothermal very high-temperature creep experiments[J]. Metallurgical and Materials Transactions:A, 2012, 43(11): 3946-3951. DOI:10.1007/s11661-012-1343-x |
|
[22] |
LIU S Z, SHI Z X, HAN M, et al. Microstructure evolution and stress rupture properties of DD6 single crystal superalloy after overheating[J]. Materials Science Forum, 2017, 898: 517-522. DOI:10.4028/www.scientific.net/MSF.898.517 |
|
[23] |
TONG J, YAGI K, ZHENG Y, et al. Microstructural degradation and its corresponding mechanical property of wrought superalloy GH4037 caused by very high temperature[J]. Journal of Alloys and Compounds, 2017, 690: 542-552. DOI:10.1016/j.jallcom.2016.08.081 |
|
[24] | |
|
[25] | |
|
[26] |
YUAN X F, WU J T, LI J T, et al. Effects of initial microstructures on the microstructural evolution and corresponding mechanical property of K424 superalloy after overheating exposure[J]. Materials Science and Engineering:A, 2019, 743: 40-56. DOI:10.1016/j.msea.2018.11.027 |
|
[27] |
孙克君, 盖秀颖, 李晨希, 等. GH864合金在超温条件下碳化物含量与持久强度的关系[J]. 理化检验(物理分册), 2009, 45(7): 393-396. SUN K J, GAI X Y, LI C X, et al. Relationship between carbide content and creep rupture strength of GH864 alloy at overheated temperature[J]. Physical Testing and Chemical Analysis (Physical Testing), 2009, 45(7): 393-396. |
|
[28] |
KAZANSKⅡ D A, KLYPINA A M, CHISTYAKOVA L D. Estimating the influence of short-term overheatings on the structure and properties of the metal of blades made of IN 738 and IN 792 cast nickel alloys[J]. Thermal Engineering, 2011, 58(6): 519-525. DOI:10.1134/S0040601511060073 |
|
[29] | |
|
[30] |
ROWE J P, FREEMAN J W. Effect of overheating on the creep-rupture properties of HS-31 alloy at 15000°F[R]. Michigan: University of Michigan, 1956, 30(38): 9319-9327.
|
|
[31] |
ROWE J P, VOORHEES H R, FREEMAN J W. Effect of over-heating on the creep-rupture properties of Unimet 500 alloys at 1600°F and 28000 psi: final report to the general electric company aircraft gas turbine division[R]. Michigan: University of Michigan, 1957: 1-35.
|
|
[32] |
ROEW J P, FREEMAN J W. Effect of overheating on creep-rupture properties of M252 and Inconel 700 alloys at 1500 and 1600°F: final report to national aeronautics and space administration[R]. Washington DC: National Aeronautics and Space Administration, 1960: 1-63.
|
|
[33] |
ROEW J P, FREEMAN J W. Relations between microstructure and creep-rupture properties of nickel-base alloys as revealed by overtemperature exposures[R]. Washington, DC: National Aeronautics and Space Administration, 1961: 1-154.
|
|
[34] |
WEISS I, ROSEN A, BRANDON D. Creep of udimet 500 during thermal cycling:Ⅰ the minimum creep rate[J]. Metallurgical Transactions:A, 1975, 6(4): 761-766. DOI:10.1007/BF02672297 |
|
[35] |
WEISS I, ROSEN A, BRANDON D. Creep of udimet 500 during thermal cycling:Ⅱ the time to failure[J]. Metallurgical Transactions:A, 1975, 6(4): 767-772. DOI:10.1007/BF02672298 |
|
[36] |
LE GRAVEREND J B, JACQUES A, CORMIER J, et al. Creep of a nickel-based single-crystal superalloy during very high-temperature jumps followed by synchrotron X-ray diffraction[J]. Acta Materialia, 2015, 84: 65-79. DOI:10.1016/j.actamat.2014.10.036 |
|
[37] | |
|
[38] | |
|
[39] |
GIRAUD R, CORMIER J, HERVIER Z, et al. Effect of the prior microstructure degradation on the high temperature/low stress non-isothermal creep behavior of CMSX-4© Ni-based single crystal superalloy[C]//Superalloys 2012: Proceedings of the 12th Intenational Symposium of Superalloys. New Jersey: John Wiley & Sons Inc, 2012: 265-274.
|
|
[40] |
VIGUIER B, TOURATIER F, ANDRIEU E. High-temperature creep of single-crystal nickel-based superalloy:microstructural changes and effects of thermal cycling[J]. Philosophical Magazine, 2011, 91(35): 4427-4446. DOI:10.1080/14786435.2011.609151 |
|
[41] |
TOURATIER F, VIGUIER B, SIRET C, et al. Dislocation mechanisms during high temperature creep experiments on MC2 alloy[J]. Advanced Materials Research, 2011, 278: 7-12. DOI:10.4028/www.scientific.net/AMR.278.7 |
|
[42] |
RAFFAITIN A, MONCEAU D, CRABOS F, et al. The effect of thermal cycling on the high-temperature creep behaviour of a single crystal nickel-based superalloy[J]. Scripta Materialia, 2007, 56(4): 277-280. DOI:10.1016/j.scriptamat.2006.10.026 |
|
[43] |
CORMIER J, MILHET X, MENDEZ J. Effect of very high temperature short exposures on the dissolution of the γ' phase in single crystal MC2 superalloy[J]. Journal of Materials Science, 2007, 42(18): 7780-7786. DOI:10.1007/s10853-007-1645-3 |
|
[44] |
CORMIER J, MILHET X, MENDEZ J. Non-isothermal creep at very high temperature of the nickel-based single crystal superalloy MC2[J]. Acta Materialia, 2007, 55: 6250-6259. DOI:10.1016/j.actamat.2007.07.048 |
|
[45] | |
|
[46] | |
|
[47] |
CORMIER J, JOUIAD M, HAMON F, et al. Very high temperature creep behavior of a single crystal Ni-based superalloy under complex thermal cycling conditions[J]. Philosophical Magazine Letters, 2010, 90: 611-620. DOI:10.1080/09500839.2010.489887 |
|
[48] |
LE GRAVEREND J B, CORMIER J, JOUIAD M, et al. Effect of fine γ' precipitation on non-isothermal creep and creep-fatigue behaviour of nickel base superalloy MC2[J]. Materials Science and Engineering:A, 2010, 527(20): 5295-5302. DOI:10.1016/j.msea.2010.04.097 |
|
[49] |
MILHET X, CORMIER J, ORGANISTA A. On the role of the internal stress during non-isothermal creep life of a first generation nickel based single crystal superalloy[J]. Materials Science and Engineering:A, 2010, 527(9): 2280-2288. DOI:10.1016/j.msea.2009.11.067 |
|
[50] |
YUAN X, AN W, JU Y, et al. Evaluation of microstructural degradation and its corresponding creep property in integral cast turbine rotor made of K424 alloy[J]. Materials Characterization, 2019, 158: 109946. DOI:10.1016/j.matchar.2019.109946 |
|
[51] | |
|