文章信息
- 唐大秀, 刘金云, 王玉欣, 尚杰, 刘钢, 刘宜伟, 张辉, 陈清明, 刘翔, 李润伟
- TANG Da-xiu, LIU Jin-yun, WANG Yu-xin, SHANG Jie, LIU Gang, LIU Yi-wei, ZHANG Hui, CHEN Qing-ming, LIU Xiang, LI Run-wei
- 柔性阻变存储器材料研究进展
- Research progress in flexible resistive random access memory materials
- 材料工程, 2020, 48(7): 81-92
- Journal of Materials Engineering, 2020, 48(7): 81-92.
- http://dx.doi.org/10.11868/j.issn.1001-4381.2018.001298
-
文章历史
- 收稿日期: 2018-11-06
- 修订日期: 2020-04-14
2. 中国科学院 宁波材料技术与工程研究所 中国科学院磁性材料与器件重点实验室, 宁波 315201;
3. 中国科学院 宁波材料技术与工程研究所 浙江省磁性材料及其应用技术重点实验室, 宁波 315201
2. CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;
3. Zhejiang Province Key Laboratory of Magnetic Materials and Application Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
柔性电子技术是一门将有机/无机材料电子器件制作在柔性和可延性基板之上的新兴电子技术,有可能带来一场电子技术的革命,引起了全世界的广泛关注并得到了迅速发展。全球著名期刊《科学》杂志将有机电子技术进展列为2000年世界十大科技成果之一;《电子工程时报》也将柔性电子学列为2010年全球十大新兴技术之一。
阻变随机存储器(RRAM)是近些年兴起的一种新型非易失性存储技术[1],因具有器件结构简单、擦写速度快、存储密度高、与半导体工艺兼容性好,以及具有多值和三维存储潜力等众多优点,被2013年发布的国际半导体路线图(international technology roadmap for semiconductor,ITRS)评估为最有希望实现商业化应用的新型存储器。目前,夏普、三星、日立、惠普等跨国公司都投入巨资进行RRAM的研究。可见,作为下一代通用存储器的主要候选器件,未来要实现电子系统的全柔性化,RRAM的柔性化是必不可少的。为此,自2009年以来,许多科研工作者投入到柔性RRAM的研究中。截至目前,已报道的柔性RRAM已达近百种。本文对RRAM进行了概述,并重点综述了当前国内外柔性RRAM材料体系的研究现状和发展趋势,提出了柔性RRAM研究中存在的不足及今后的研究方向。
1 阻变存储器概述RRAM的基本结构为简单的电极/介质/电极三明治结构,它的工作原理是利用薄膜材料的电阻在适当电压作用下可以在高阻态(HRS)和低阻态(LRS)之间实现可逆转换,从而实现“0”和“1”的存储,且当电压撤掉后,材料的电阻值可以保持,即具有非挥发性,如图 1所示[2]。其实早在1967年,Simmons和Verderber就在SiO材料中观测到了电阻转变现象[3]。但直到21世纪初,因硅基存储器尺寸已逼近其本征极限,导致存储密度难以进一步提高时,人们才意识到电阻转变现象可应用于存储领域,并因基于该现象的RRAM器件具备高密度存储的潜力,而掀起了一场RRAM的研究热潮。经过近20年的发展,人们已在多种材料体系中发现了电阻转变现象,包括:二元和多元金属氧化物材料、硫系化合物材料、有机材料、以及一些有机-无机杂化材料等,但目前还没有哪种材料能够完全满足应用的要求,导致实用化的RRAM产品迟迟没有推出。对于其工作原理,由于影响电阻转变现象的因素有很多,除了介质材料本身外,还与制备工艺、掺杂物质、电极材料、界面结构等有关,目前虽已提出了很多物理模型,如导电细丝模型、界面势垒模型、电荷俘获/释放模型、模特转变模型等,但还没有统一的物理模型与机制对电阻转变现象进行解释。因此,亟需在RRAM材料和机制研究方面取得突破。
2 柔性阻变存储器的材料体系尽管与硅基存储器相比,柔性RRAM仍处于实验研发阶段,其柔韧性和力学稳定性还有待进一步提高,但自第一个柔性RRAM器件问世后,经过不断的发展,柔性RRAM在材料研究方面已取得一些重要的进展。本文综述了组成柔性RRAM的介质材料、电极材料和基底材料。
2.1 介质材料介质材料是柔性RRAM发生电阻转变的核心,对其存储性能有着最为直接的影响。2009年,Kim等[4]采用溶胶-凝胶法制备的氧化锌(ZnO)作为介质材料,制备了第一款柔性RRAM器件Al/ZnO/Al/PES。该器件具有典型的I-V曲线(见图 2(a-1),正上方插图为器件的实物图),其开关比(Roff/Ron)在循环了10000次后依然超过了104(见图 2(a-2)),且该器件的最小弯折半径为27.4 mm,可承受105次反复弯折(10.1 cm的样品正反向弯折到两段间距为7.5 cm)(见图 2(a-3))。为了进一步提高柔性RRAM器件的力学性能,在2010~2011年间人们又发展了氧化钛(TiOx)[5-7]、氧化石墨烯(GO)[8]、氧化铟锡锌(InGaZnO)[9]等氧化物材料,以及氧化钛/氧化铝(TiO2/Al2O3)[10]、氧化锗/氮氧化铪(GeOx/HfON)[11]等氧化物/氮化物复合材料作为介质材料,通过优化材料体系、制备工艺和薄膜厚度等参数,显著提高了其力学性能。Jeong等[8]采用室温旋涂法制备的氧化石墨烯薄膜作为介质材料,其厚度仅为15 nm,基于此薄膜材料的柔性RRAM器件Al/GO/Al/PES具有典型的I-V曲线(见图 2(b-1),左下角插图为器件的实物图),其开关比在循环了100次后依然超过100(见图 2(b-2)),且器件的最小弯折半径可达7 mm(见图 2(b-3))。然而,此时报道的介质材料仍主要为无机氧化物材料,无机氧化物虽具有较好的存储性能,但柔韧性较差。
为了进一步提高柔性RRAM器件的力学性能,2012年一些更柔韧的新的介质材料体系:无机硫系化合物及其与无机氧化物的复合材料(如:硒化银(Ag2Se)[12]、氧化铝/硫化镉(Al2O3/CdS)[13])、有机材料(如:聚一氯对二甲苯(parylene-C)[14])和有机-无机复合材料(如:聚苯乙烯+碳纳米管(PS+CNT)[15])被报道。Ju等[13]采用氧化铝和硫化镉的复合材料作为介质,制备了柔性RRAM器件Ag/Al2O3/CdS/Pt/PI,该器件拥有典型的I-V特性曲线(见图 3(a-1),左上角插图为器件的结构示意图),开关比在循环了1000次后依然超过了10(见图 3(a-2)),且可承受100次的反复弯折,最小弯折半径可降低至5 mm(见图 3(a-3))。Hwang等[15]采用碳纳米管掺杂的聚苯乙烯材料作为介质,制备了柔性RRAM器件Al/PS+CNT/Al/PI,该器件拥有典型的I-V特性曲线(见图 3(b-1),左下角插图器件的实物图),其开关比在循环了100次后依然超过了102(见图 3(b-2)),且可承受500次反复弯折(20 mm的样品正反向弯折到两段间距为14 mm,见图 3(b-3))。由于有机材料相比于无机材料有更好的柔韧性,因此随后关于有机材料和有机-无机复合/杂化材料的报道逐渐增多。在2017~2018年间报道的介质材料中,有机和有机-无机杂化/复合介质材料已占了近半壁江山。
相比较而言,在无机、有机和有机-无机杂化/复合介质材料中,有机材料的柔韧性最好。Lee等[16]选用聚乙二醇二甲基丙烯酸酯(pEGDMA)作为介质材料,制备了Cu/pEGDMA/ITO/PET柔性RRAM器件,该器件拥有典型的I-V特性曲线(见图 4(a-1),插图为器件的TEM截面图),其保持时间超过了106 s,开关比超过了102(见图 4(a-2)),且循环了500次后或在弯折半径为4 mm时仍可保持良好的存储性能(见图 4(a-3))。Jang等[17]选用1, 3, 5-三甲基-1, 3, 5-三乙烯基环三硅氧烷(pV3D3)作为介质材料,制备了Cu/pV3D3/Al/PES柔性RRAM器件,该器件拥有典型的I-V特性曲线(见图 4(b-1),插图为器件的TEM截面图);该器件的保持时间超过了105 s,开关比超过了107,在循环了105次后器件的存储性能基本保持稳定(见图 4(b-2)),且最小弯折半径接近3 mm(见图 4(b-3))。但与无机介质材料相比,有机介质材料还存在时间保持性和抗疲劳性差等问题,限制了它的应用和发展。
2015年Pan等[18]总结了无机介质材料和有机介质材料各自的特性,即无机介质材料的电阻转变通常比较稳定,但柔韧性较差;而有机介质材料的柔韧性通常较好,但电阻转变的稳定性较差。为此,提出选用有机-无机杂化材料作为介质,期望把无机介质材料存储性能的稳定性和有机介质材料的柔韧性结合起来。而在众多的有机-无机杂化材料里,金属-有机框架(MOF)材料HKUST-1因具有高孔隙率、结构三维高度有序、物理性质稳定可调和化学结构易于设计、易于薄膜化等特性,有望同时实现大的柔性和稳定的阻变性能。随后,他们研究发现,Au/HKUST-1/Au/PET器件能够在±70 ℃的宽温区范围内保持均一的阻变特性,更为重要的是,在动态弯折测试过程中,弯折半径为3.2 mm时仍能保持稳定可靠的存储性能[18],如图 5所示,为柔性RRAM器件提供了较为理想的介质材料体系。
图 6 (a)总结了2009年以来文献报道的柔性RRAM介质材料[4-76]。由表和图中数据可以看出,按柔性介质材料的基本属性可以把其分为无机材料、有机材料和有机-无机杂化材料三大类,这三类材料分别约占73.0%,18.9%和8.1%的比例。在众多的阻变介质材料中,存储性能稳定的无机材料报道最多。无机材料中最常见的是结构简单、组分和制备工艺易于控制的二元氧化物,约占所有介质材料的53.4%,包括CuO[19],CuxO[20],Gd2O3[21],GO[8, 22],HfOx[23-24],Lu2O3[25],Sm2O3[26],NiO[27],NiOx[28],SiOx[29],SnO2[30],Ta2O5[31],TiO2[5, 6, 32-36],TiOx[7],WO3[37],WO3-x[38],ZnO[4, 39-41]等,并且无机材料还包括一部分复杂氧化物,如GOZNs[42],Hf0.5Zr0.5O2[43-45],InGaZnO[9, 46-47],ZnSnO3[48]和Ag2Se[12],BP[49],Ge2Sb2Te5[50],MZT[51],MoS2[52],STN[53]等。另外,为了增强器件柔韧性,出现了一部分无机复合材料,如Al2O3/Ag/ZnO[54],Al2O3/CdS[13],Al2O3/GeOx[55],Al2O3/MgO[56],Al2O3/ZnO[57],GeOx/Hf0.38O0.39N0.23[11],HfO2/Al2O3[58],HfO2/TiO2[59],HfOx/LSG[60],MoS2/MoOx[61],NiAlOx/Al2O3-x[62],TiO2/Al2O3[10]等。但无机介质材料的柔韧性较差,利用二元氧化物做介质材料(如氧化锌[4]和氧化石墨烯[8])制备的柔性RRAM,其最小弯折半径分别为27.4 mm与7 mm,即使采用无机复合材料作为介质材料制备器件,其最小弯折半径也难以小于5 mm[13]。因此近几年它的统治地位正在衰退。从图 6(a)可以看到,2009~2011年间无机材料所占的比例为100%;到了2018年无机材料所占的比例已降低到54.6%。目前的有机介质材料包括BAzoAN[63],Egg albumen[64],Parylene[14, 65-67],PEDOT:PSS[68-69],pEGDMA[16],P3BT:PMMA[70],PF14-b-Pison[71],MH-b-PI[72],pV3D3[17]等,利用有机材料做介质材料(如pEGDMA[16]和pV3D3[17])制备的柔性RRAM,在保持良好的存储性能的条件下,其最小弯折半径分别达到4 mm和3 mm。但与无机介质材料相比,有机介质材料还存在时间保持性和抗疲劳性差等问题,限制了它的应用和发展。因此具有有机-无机双重特点的有机-无机杂化/复合材料有望把无机材料的存储稳定性和有机材料的良好柔韧性结合起来,成为最近研究的热点,并已取得了一些重要的进展。目前的有机-无机杂化/复合材料包括PMMA/BPQDs/PMMA[73],G-QDs/PVP[74],HKUST-1[18],MA2PbI2(SCN)2[75],MoS2@ZIF-8[76],PS+BCNT(NCNT)[15]等,利用有机-无机杂化材料做介质材料(如HKUST-1[18])制备的柔性RRAM,其弯折半径为3.2 mm时器件仍能保持稳定可靠的存储性能,为柔性RRAM器件提供了较为理想的介质材料体系。
2.2 电极材料电极在RRAM器件中不仅承担传导电流的作用,还会对电阻转变起着重要的影响,甚至直接参与电阻的转变;而在柔性RRAM器件中,电极材料对器件的力学性能也有着至关重要的影响。Shang等[24]研究了电极材料对柔性RRAM器件力学性能的影响,他们分别制备了ITO/HfOx/ITO/PET和ITO/HfOx/Pt/PET器件。研究发现,上下电极皆为ITO(氧化铟锡)时,器件的最小弯折半径为3 mm;而上电极为ITO、下电极为Pt(铂)时,器件的最小弯折半径可降低至2 mm。采用Pt作为电极之所以会提高器件的力学性能,主要是因为大的弯曲应变下Pt断裂所形成的裂纹与ITO断裂所形成的裂纹存在着很大的差异:ITO电极会形成贯穿整个薄膜的裂纹,使其丧失传导电流的功能;而Pt电极则会形成迷宫状的裂纹,虽会影响其导电性,但仍可以保持其传导电流的功能,如图 7所示。
图 6(b)总结了2009年以来文献报道的柔性RRAM电极材料[1, 4, 7, 9-31, 33-34, 36-46, 48-51, 53-77],按电极材料的成分可以把其分为金属电极(如Ag[12-14, 19, 24, 34, 36, 39-41, 48, 54, 56-57, 60, 64, 74],Pt/Ni[10],Pd[29],Au[1, 12, 18, 30, 43-45, 69],Cu[9, 16, 17, 19-21, 27, 33, 37-38],Ru[25],Si[57],Ni[10, 11, 26, 28, 31, 43, 45, 62],Pt/Ti[24],Ti[27, 41],W[14, 65-67],Al[4, 7, 14-15, 17, 55, 57, 61-67, 70-73, 75],Pt[10, 13, 21, 24, 28-40, 46, 50-51, 59, 68],Au/Ni[43],Al/Ni[62],Pt/Ag[24, 40]等)、导电氧化物电极(如ITO[16, 22-23, 25-26, 30, 36-39, 42, 44, 48-49, 53-55, 58-59])、碳/氮基电极(如TiN/Ti[46],carbon powder[34],TaN[54],TiN[58],rGO[60, 76],graphene[70],CNTs[71-72]等)以及其他电极(如ZnS/Ag/ZnS[56], carbon/W[14, 66-67], PEDOT:PSS[68-69]等)4大类,这4类电极分别占了74.2%, 15.0%, 6.5%和4.3%的比例。在众多的电极材料中,金属电极因导电性好,有时还会对电阻转变产生非常重要的影响,是目前普遍采用的电极材料。从图中6(b)中可以看出,导电性好的金属电极始终处于绝对的统治地位,但金属电极的柔韧性和透光性较差,因此自2012年以后,随着柔性透明电子技术的发展,透光性较好的导电氧化物电极和柔韧性较好的碳/氮基电极的应用出现明显增加的趋势。但由于导电氧化物电极和碳/氮基电极的导电性较差,导致器件发热严重,难以满足低功耗的发展要求[77],因此并没有被大量研究和应用。
2.3 基底材料基底是柔性RRAM存储单元的载体,起着机械支撑的作用。图 6(c)总结了2009年以来文献报道的柔性RRAM基底材料[4-5, 7-8, 10-13, 15-22, 25-29, 31, 33-35, 37-45, 47-48, 50-56, 58-61, 66-73, 75-76, 78-79],包括高分子材料(如PET[16, 18, 21-22, 25-26, 28, 37-39, 41-45, 48, 51-56, 58, 60-61, 68-69, 73, 75-76],PES[4-5, 7-8, 10, 17, 33, 40, 47],PEN[12, 59],parylene-C[66-67],PI[11, 13, 15, 19-20, 29, 31, 35, 47, 50, 71-72]等)和其他材料(如banknote[47],double-sided tape[47],fabric[47],glass[47, 75],latex glove[47],leather wallet[47],mask[47],name card[47],squeezable bottle[47],Al foil[47],Cu foil[27],paper[34],PDMS[70-72]等)。从图 6中可以看出,柔性RRAM通常采用聚醚砜(PES)、聚酰亚胺(PI)、聚对苯二甲酸乙二醇酯(PET)等聚合物材料作为柔性基底材料。这些材料具有良好的机械柔韧性,能承受反复的弯曲和扭折,且具有稳定的物理和化学性质。同时,这些基底材料具备其各自的优势[71]。PES具有透光性较好(透光率89.0%[78]),连续使用温度较高(180~200 ℃)以及尺寸稳定性优良(线膨胀系数约2.3×10-5/℃)等特点,在早期(2009~2010年)需要较高制备/处理温度的透明氧化物RRAM器件研究中应用最为广泛。Jeong等[5, 8]制备的Al/GO/Al和Al/TiO2/Al/TiO2/Al柔性RRAM器件、Choi等[47]制备的Al/InGaZnO/Al柔性RRAM器件、Jeong等[10]制备的Pt/Ni/TiO2/Al2O3/Pt柔性RRAM器件都是采用这种基底材料,如图 8(a)所示。然而,随着介质材料的拓展和器件性能要求的提高,柔性RRAM器件常常需要更高的制备/处理温度。Ju等[13]制备Ag/Al2O3/CdS/Pt柔性RRAM器件需要300 ℃的热处理温度,此时PES基底已难以满足应用要求。为此在2011~2013年期间,具有耐温(高达400 ℃以上)特点的PI基底又得到了广泛的应用,如图 8(b)所示,但PI基底的透明度较差(透光率30.0%~ 60.0%[78])且成本很高,难以满足产业化低成本、高透明度的应用要求。因此在2013年以后,具有成本低廉(PET:35元/kg;PES:126元/kg,PI:200元/kg)[79]、透明度高(透光率90.4%[78])等特点的PET基底又得到了广泛的应用,如图 8(c)所示。Kim等[28]采用PET作为基底制备的1S-1R结构的柔性十字交叉RRAM存储阵列,可实现1k bit信息的存储,为柔性RRAM的产业化做出了重要贡献,如图 9所示。
3 柔性阻变存储器材料体系的总体趋势良好的力学性能一直是柔性RRAM研究的焦点,人们期望柔性RRAM具有更小的弯折半径,甚至能和人的皮肤一样能够随意的扭曲和拉伸,以满足可穿戴电子器件的发展需求。为了实现这一目标,Shang等[24]率先对柔性RRAM应变作用下失效的原因进行了探索,发现大应变下电极和介质层中微裂纹的产生影响了载流子的输运,是导致器件失效的主要原因,如图 10所示,如果要获得更小的弯曲半径,甚至实现柔性RRAM的可拉伸性,就需要采用大柔性的介质、电极和基底材料。目前,韩国、中国、美国等国家已开展了大量的相关研究工作,柔性RRAM材料体系总体的发展趋势是:采用有机或有机-无机杂化/复合材料作为介质,碳材料(如:石墨烯、碳纳米管等)或导电高分子材料作为电极,结构或本身可拉伸的弹性体材料(如PDMS, PU等)作为基底制备柔性RRAM器件。其中,比较有代表性的工作是可拉伸RRAM器件的制备。2014年Chen等[70]首次采用预拉伸的PDMS作为基底制备了Al/P3BT:PMMA/Graphene/PDMS器件,该器件应变释放后便拥有可释放应变的褶皱结构。研究发现,在预拉伸方向上和预拉伸范围内拉伸该器件,器件仍可保持稳定的存储性能。此后,2016年和2017年Chen等[71-72]又采用相同的方法分别制备了Al/PF14-b-Pison/CNTs/PDMS和Al/MH-b-PI/CNTs/PDMS可拉伸RRAM器件。然而上述3种器件的前两种是WORM型的存储行为(一次写入,多次读出),第3种是DRAM型的存储行为(只能将数据保持很短的时间),并不是典型的RRAM存储行为(可反复擦写,且数据可长时间保持),如图 11所示。可见,国内外虽然在柔性RRAM材料研究方面已取得了较快的进展,但还有许多问题需要解决,发展新的材料体系仍是柔性RRAM研究的核心课题。
4 结束语作为下一代最具发展潜力的柔性存储器,柔性RRAM材料的研究已取得了长足进展,但为了满足大柔性、小尺寸、高速度、长寿命和低成本等更高要求,柔性RRAM材料在以下方面存在的问题有待进一步解决:
(1) 兼备稳定存储性能和良好柔韧性的有机-无机复合介质材料研究。有机-无机复合介质材料有望把无机介质材料的存储稳定性和有机介质材料的柔韧性结合起来,是未来大柔性介质材料最具潜力的发展方向,虽然目前已取得了一些进展,但相关研究才刚刚开始,在众多有机-无机杂化/复合材料中寻找性能、制备、拓展性都满足要求的介质材料仍是柔性RRAM发展的关键。
(2) 兼备良好导电性、力学稳定性和柔韧性的电极/基底材料研究。采用金属/聚合物作为电极/基底材料,虽然导电性好,但承受应变的能力较差。预拉伸形成的褶皱结构虽然可以实现RRAM器件的可拉伸性,但只能单向拉伸,且得到的都是WORM型或DRAM型的存储行为,并不是典型RRAM的存储行为。复合型导电高分子因具有良好的柔弹性,是最具发展潜力的电极/基底材料。它是将纳米/微米量级的导电填料掺入到弹性的绝缘聚合物中,通过各种复合方式处理后得到的具有导电功能的多相复合体系。但它还存在两个严重的问题,无法满足应用的要求。一是力学稳定性差——固体导电填料与聚合物基体的弹性模量相差很大(约100万倍),拉伸时导电填料间的间隙会增大,致使电极的电阻急剧增大;二是导电性与柔韧性存在着矛盾——固体导电填料高掺杂可以提高导电性,同时也会恶化柔韧性。因此,探索兼备良好导电性、力学稳定性和柔韧性的电极/基底材料仍面临着严峻的挑战。
(3) 电极/介质界面的调控研究。界面性能对材料整体性能影响的研究是材料科学、力学和工程科学共同关心的课题。因此,在柔性RRAM中开展电极/介质界面对柔性RRAM性能的调控研究也具有重要意义。
[1] |
张颖, 龙世兵, 刘明. 新型阻变存储器的物理研究与产业化前景[J]. 物理, 2017, 46(10): 645-657. ZHANG Y, LONG S B, LIU M. The physics and industrialization prospects of RRAMs[J]. Physics, 2017, 46(10): 645-657. |
[2] |
AKIHITO S. Resistive switching in transition metal oxides[J]. Materials Today, 2008, 11(6): 28-36. |
[3] |
SIMMONS J G, VERDERBER R R. New conduction and reversible memory phenomena in thin insulating films[J]. Proceedings the Royal of Society A, 1967, 301(1464): 77-102. |
[4] |
KIM S, MOON H, GUPTA D, et al. Resistive switching characteristics of sol-gel zinc oxide films for flexible memory applications[J]. IEEE Transactions on Electron Devices, 2009, 56(4): 696-699. |
[5] |
JEONG H Y, KIM Y I, LEE J Y, et al. A low-temperature-grown TiO2-based device for the flexible stacked RRAM application[J]. Nanotechnology, 2010, 21(11): 115203-115208. |
[6] |
KIM S, JEONG H Y, KIM S K, et al. Flexible memristive memory array on plastic substrates[J]. Nano Letters, 2011, 11(12): 5438-5442. |
[7] |
KIM S, YARIMAGA O, CHOI S J, et al. Highly durable and flexible memory based on resistance switching[J]. Solid State Electronics, 2010, 54(4): 392-396. |
[8] |
JEONG H Y, KIM J Y, KIM J W, et al. Graphene oxide thin films for flexible nonvolatile memory applications[J]. Nano Letters, 2010, 10(11): 4381-4386. |
[9] |
WANG Z Q, XU H Y, LI X H, et al. Flexible resistive switching memory device based on amorphous InGaZnO film with excellent mechanical endurance[J]. IEEE Electron Device Letters, 2011, 32(10): 1442-1444. |
[10] |
HU Y J, LEE J Y, CHOI S Y. Interface-engineered amorphous TiO2-based resistive memory devices[J]. Advanced Functional Materials, 2010, 20(22): 3912-3917. |
[11] |
CHENG C, YEH F, CHIN A. Low-power high-performance non-volatile memory on a flexible substrate with excellent endurance[J]. Advanced Materials, 2011, 23(7): 902-905. |
[12] |
JANG J, PAN F, BRAAM K, et al. Resistance switching characteristics of solid electrolyte chalcogenide Ag2Se nanoparticles for flexible nonvolatile memory applications[J]. Advanced Materials, 2012, 24(26): 3573-3576. |
[13] |
JU Y C, KIM S, SEONG T G, et al. Resistance random access memory based on a thin film of cds nanocrystals prepared via colloidal synthesis[J]. Small, 2012, 8(18): 2849-2855. |
[14] |
HUANG R, TANG Y, KUANG Y, et al. Resistive switching in organic memory device based on parylene-c with highly compatible process for high-density and low-cost memory applications[J]. IEEE Transactions on Electron Devices, 2012, 59(12): 3578-3582. |
[15] |
HWANG S K, LEE J M, KIM S, et al. Flexible multilevel resistive memory with controlled charge trap B-and N-doped carbon nanotubes[J]. Nano Letters, 2012, 12(5): 2217-2221. |
[16] |
LEE B H, BAE H, SEONG H, et al. Direct observation of a carbon filament in water-resistant organic memory[J]. ACS Nano, 2015, 9(7): 7306-7313. |
[17] |
JANG B C, SEONG H, KIM S K, et al. Flexible nonvolatile polymer memory array on plastic substrate via initiated chemical vapor deposition[J]. ACS Applied Materials & Interfaces, 2016, 8(20): 12951-12958. |
[18] |
PAN L, JI Z, YI X, et al. Metal-organic framework nanofilm for mechanically flexible information storage applications[J]. Advanced Functional Materials, 2015, 25(18): 2677-2685. |
[19] |
ZOU S, XU P, HAMILTON M C. Resistive switching characteristics in printed CuCuO(AgO)Ag memristors[J]. Electronics Letters, 2013, 49(13): 829-830. |
[20] |
YOO H G, KIM S, LEE K J. Flexible one diode-one resistor resistive switching memory arrays on plastic substrates[J]. RSC Advances, 2014, 4(38): 20017-20023. |
[21] |
ZHAO H, TU H, WEI F, et al. High mechanical endurance RRAM based on amorphous gadolinium oxide for flexible nonvolatile memory application[J]. Journal of Physics D:Applied Physics, 2015, 48(20): 205104-205110. |
[22] |
YUAN F, YE Y R, WANG J C, et al. Retention behaviour of graphene oxide resistive switching memory[J]. International Journal of Nanotechnology, 2014, 11(1/4): 106-115. |
[23] |
ZHAO X L, WANG R, XIAO X H, et al. Flexible cation-based threshold selector for resistive switching memory integration[J]. Science China Information Sciences, 2018, 61(6): 060413-060420. |
[24] |
SHANG J, XUE W H, JI Z H, et al. Highly flexible resistive switching memory based on amorphous-nanocrystalline hafnium oxide films[J]. Nanoscale, 2017, 9(21): 7037-7046. |
[25] |
MONDAL S, HER J L, KOYAMA K, et al. Resistive switching behavior in Lu2O3 thin film for advanced flexible memory applications[J]. Nanoscale Research Letters, 2014, 9(1): 3-10. |
[26] |
MONDAL S, CHUEH C H, PAN T M. Current conduction and resistive switching characteristics of Sm2O3 and Lu2O3thin films for low-power flexible memory applications[J]. Journal of Applied Physics, 2014, 115(1): 014501-014508. |
[27] |
ZOU C, ZOU C, ZHOU L, et al. Resistive switching characteristics of thin NiO film based flexible nonvolatile memory devices[J]. Microelectronic Engineering, 2012, 91(3): 144-146. |
[28] |
KIM S, SON J H, LEE S H, et al. Flexible crossbar-structured resistive memory arrays on plastic substrates via inorganic-based laser lift-off[J]. Advanced Materials, 2014, 26(44): 7480-7487. |
[29] |
WANG G, RAJI A R O, LEE J H, et al. Conducting-interlayer SiOx memory devices on rigid and flexible substrates[J]. ACS Nano, 2014, 8(2): 1410-1418. |
[30] |
LYU M, LIU Y, ZHI Y, et al. Electric-field-driven dual vacancies evolution in ultrathin nanosheets realizing reversible semiconductor to half-metal transition[J]. Journal of the American Chemical Society, 2015, 137(47): 15043-15048. |
[31] |
YAMADA T, MAKIOMOTO N, SEKIGUCHI A, et al. Hierarchical three-dimensional layer-by-layer assembly of carbon nanotube wafers for integrated nanoelectronic devices[J]. Nano Letters, 2012, 12(9): 4540-4545. |
[32] |
TEDESCO J L, STEPHEY L, HERNÁNDEZMORA M, et al. Switching mechanisms in flexible solution-processed TiO2 memristors[J]. Nanotechnology, 2012, 23(30): 305206-305212. |
[33] |
WU C, ZHANG K, WANG F, et al. Resistance switching characteristics of sputtered titanium oxide on a flexible substrate[J]. ECS Transactions, 2012, 44(1): 87-91. |
[34] |
LIEN D H, KAO Z K, HUANG T H, et al. All-printed paper memory[J]. ACS Nano, 2014, 8(8): 7613-7619. |
[35] |
YEOM S W, PARK S W, JUNG I, et al. Highly flexible titanium dioxide-based resistive switching memory with simple fabrication[J]. Applied Physics Express, 2014, 7(10): 101801-101804. |
[36] |
PHAM K N, DUNG HOANG V, TRAN C V, et al. TiO2 thin film based transparent flexible resistive switching random access memory[J]. Advances in Natural Sciences Nanoscience & Nanotechnology, 2016, 7(1): 015017-015019. |
[37] |
LIANG L, LI K, XIAO C, et al. Vacancy associates-rich ultrathin nanosheets for high performance and flexible nonvolatile memory device[J]. Journal of the American Chemical Society, 2015, 137(8): 3102-3108. |
[38] |
JI Y, YANG Y, LEE S K, et al. Flexible nanoporous WO3-x nonvolatile memory device[J]. ACS Nano, 2016, 10(8): 7598-7603. |
[39] |
WU X, XU Z, YU Z, et al. Resistive switching behavior of photochemical activation solution-processed thin films at low temperatures for flexible memristor applications[J]. Journal of Physics D:Applied Physics, 2015, 48(11): 115101-115109. |
[40] |
RAEIS H N, LEE J S. Resistive switching memory based on bioinspired natural solid polymer electrolytes[J]. ACS Nano, 2015, 9(1): 419-426. |
[41] |
SUN B, ZHANG X, ZHOU G, et al. A flexible nonvolatile resistive switching memory device based on ZnO film fabricated on a foldable PET substrate[J]. Journal of Colloid & Interface Science, 2018, 520: 19-24. |
[42] |
KHURANA G, MISRA P, KUMAR N, et al. Tunable power switching in nonvolatile flexible memory devices based on graphene oxide embedded with ZnO nanorods[J]. Journal of Physical Chemistry C, 2014, 118(37): 21357-21364. |
[43] |
WANG T Y, YU L J, CHEN L, et al. Atomic layer deposited Hf0.5Zr0.5O2-based flexible RRAM[J]. IEEE, 2017, 203-206. |
[44] |
WU Z, ZHU J, ZHOU Y, et al. Bipolar Resistive Switching Properties of Hf0.5Zr0.5O2 Thin Film for Flexible Memory Applications[J]. Physica Status Solidi, 2018, 215(1): 1700396-1700400. |
[45] |
WU Z, ZHU J, LIU X. Resistive switching properties of HfxZr1-xO2 thin films for flexible memory applications[J]. Journal of Materials:Science Materials in Electronics, 2017, 28(14): 10625-10629. |
[46] |
LIU P T, CHU L W, TENG L F, et al. Transparent amorphous oxide semiconductors for system on panel applications[J]. ECS Transactions, 2013, 50(8): 257-268. |
[47] |
CHOI J M, KIM M S, SEOL M L, et al. Transfer of functional memory devices to any substrate[J]. Physica Status Solidi:Rapid Research Letters, 2013, 7(5): 326-331. |
[48] |
ALI S, BAE J, CHONG H L. Printed non-volatile resistive switches based on zinc stannate (ZnSnO3)[J]. Current Applied Physics, 2016, 16(7): 757-762. |
[49] |
HAO C, WEN F, XIANG J, et al. Liquid-exfoliated black phosphorous nanosheet thin films for flexible resistive random access memory applications[J]. Advanced Functional Materials, 2016, 26(12): 2016-2024. |
[50] |
DELERUYELLE D, PUTERO M, OULED T. Ge2Sb2Te5 layer used as solid electrolyte in conductive-bridge memory devices fabricated on flexible substrate[J]. Solid State Electronics, 2013, 79(1): 159-165. |
[51] |
LEE K J, CHANG Y C, LEE C J, et al. Bipolar resistive switching characteristics in flexible PtMZTAl memory and NiNbO2Ni selector structure[J]. IEEE Journal of the electron devices society, 2018, 6(1): 518-524. |
[52] |
HAN S T, ZHOU Y, CHEN B, et al. Hybrid flexible resistive random access memory-gated transistor for novel nonvolatile data storage[J]. Small, 2016, 12(3): 390-396. |
[53] |
LEE K J, CHANG Y C, LEE C J, et al. Effects of Ni in strontium titanate nickelate thin films for flexible nonvolatile memory applications[J]. IEEE Transactions on Electron Devices, 2017, 64(5): 2001-2007. |
[54] |
WANG D T, DAI Y W, XU J, et al. Resistive switching and synaptic behaviors of TaN/Al2O3/ZnO/ITO flexible devices with embedded Ag nanoparticles[J]. IEEE Electron Device Letters, 2016, 37(7): 878-881. |
[55] |
BEHERA B, MAITY S, KATIYAR A K, et al. High-performance flexible resistive memory devices based on Al2O3:GeOx composite[J]. Superlattices and Microstructures, 2018, 117: 298-304. |
[56] |
KIM M, CHOI K C. Transparent and flexible resistive random access memory based on Al2O3 film with multilayer electrodes[J]. IEEE Transactions on Electron Devices, 2017, 64(8): 3508-3510. |
[57] |
PARK S, CHO K, KIM S. Memory characteristics of flexible resistive switching devices with triangular-shaped silicon nanowire bottom electrodes[J]. Semiconductor Science & Technology, 2015, 30(5): 055019-055021. |
[58] |
FANG R C, SUN Q Q, ZHOU P, et al. High-performance bilayer flexible resistive random access memory based on low-temperature thermal atomic layer deposition[J]. Nanoscale Research Letters, 2013, 8(1): 92-98. |
[59] |
YE C, DENG T, ZHANG J, et al. Enhanced resistive switching performance for bilayer HfO2TiO2 resistive random access memory[J]. Semiconductor Science & Technology, 2016, 31(10): 105005-105011. |
[60] |
TIAN H, CHEN H Y, REN T L, et al. Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology[J]. Nano Letters, 2014, 14(6): 3214-3219. |
[61] |
SON D, CHAE S I, KIM M, et al. Colloidal synthesis of uniform-sized molybdenum disulfide nanosheets for wafer-scale flexible nonvolatile memory[J]. Advanced Materials, 2016, 28(42): 9326-9332. |
[62] |
DAI Y W, CHEN L, YANG W, et al. Complementary resistive switching in flexible rram devices[J]. IEEE Electron Device Letters, 2014, 35(9): 915-917. |
[63] |
LU J M, ZHANG Q J, HE J H, et al. Ternary flexible electro-resistive memory device based on small molecules[J]. Chemistry-An Asian Journal, 2016, 11(10): 1624-1630. |
[64] |
ZHU J X, ZHOU W L, WANG Z Q, et al. Flexible, transferable and conformal egg albumen based resistive switching memory devices[J]. RSC Advances, 2017, 7(51): 32114-32119. |
[65] |
CAI Y, TAN J, YEFAN L, et al. A flexible organic resistance memory device for wearable biomedical applications[J]. Nanotechnology, 2016, 27(27): 275206-275211. |
[66] |
LIN M, CHEN Q, WANG Z, et al. Flexible polymer device based on parylene-c with memory and temperature sensing functionalities[J]. Polymers, 2017, 9(8): 310-318. |
[67] |
CHEN Q Y, LIN M, FANG Y C, et al. Integration of biocompatible organic resistive memory and photoresistor for wearable image sensing application[J]. Science China Information Sciences, 2018, 61(6): 060411-060418. |
[68] |
BHANSALI U S, KHAN M A, CHA D, et al. Metal-free, single-polymer device exhibits resistive memory effect[J]. ACS Nano, 2013, 7(12): 10518-10524. |
[69] |
WAND T Y, HE Z Y, CHEN L, et al. An organic flexible artificial bio-synapses with long-term plasticity for neuromorphic computing[J]. Micromachines, 2018, 9(5): 239-246. |
[70] |
LAI Y C, HUANG Y C, LIN T Y, et al. Stretchable organic memory:toward learnable and digitized stretchable electronic applications[J]. NPG Asia Materials, 2014, 6(2): 87-93. |
[71] |
WANG J T, SAITO K, WU H C, et al. High-performance stretchable resistive memories using donor-acceptor block copolymers with fluorene rods and pendent isoindigo coils[J]. NPG Asia Materials, 2016, 8(8): 298-309. |
[72] |
HUNG C C, CHIU Y C, WU H C, et al. Conception of stretchable resistive memory devices based on nanostructure-controlled carbohydrate-block-polyisoprene block copolymers[J]. Advanced Functional Materials, 2017, 27(13): 1606161-1606170. |
[73] |
HAN S T, HU L, WANG X, et al. Black phosphorus quantum dots with tunable memory properties and multilevel resistive switching characteristics[J]. Advanced Science, 2017, 4(8): 1600435-1600441. |
[74] |
ALI S, BAE J, CHONG H L, et al. All-printed and highly stable organic resistive switching device based on graphene quantum dots and polyvinylpyrrolidone composite[J]. Organic Electronics, 2015, 25: 225-231. |
[75] |
CHENG X F, XIANG H, JIN Z, et al. Pseudohalide-induced 2D (CH3NH3)2PbI2(SCN)2 perovskite for ternary resistive memory with high performance[J]. Small, 2018, 14(12): 1703667-1703674. |
[76] |
HUANG X, ZHENG B, LIU Z, et al. Coating two-dimensional nanomaterials with metal-organic frameworks[J]. ACS Nano, 2014, 8(8): 8695-8701. |
[77] |
何品, 叶葱, 邓腾飞, 等. 基于ITO电极下氧化铪基阻变存储器的性能研究[J]. 稀有金属, 2016, 40(3): 236-242. HE P, YE C, DENG T F, et al. Resistive switching characteristics of HfO2 based resistive random access memory (RRAM) using ITO electrode[J]. Chinese Journal of Rare Metals, 2016, 40(3): 236-242. |
[78] |
刘金刚, 倪洪江, 周伟峰, 等. 无色透明耐高温聚合物光学薄膜研究与应用[J]. 新材料产业, 2014, 11: 57-65. LIU J G, NI H J, ZHOU W F, et al. The research and application of optical thin film of colorless high-temperature resistant polymer[J]. Advanced Materials Industry, 2014, 11: 57-65. |
[79] |
柴玉华, 郭玉秀, 卞伟, 等. 柔性有机非易失性场效应晶体管存储器的研究进展[J]. 物理学报, 2014, 63(2): 257-264. CHAI Y H, GUO Y X, BIAN W, et al. Progress of flexible organic non-volatile memory field-effect transistors[J]. Acta Physica Sinica, 2014, 63(2): 257-264. |