[1] |
TIAN Y L, KRAFT R W. Mechanisms of pearlite spheroidization[J]. Metallurgical Transactions A, 1987, 18(8): 1403-1414. DOI:10.1007/BF02646654 |
|
[2] |
LI S, YANG Z N, ENOMOTO M, et al. Study of partition to non-partition transition of austenite growth along pearlite lamellae in near-eutectoid Fe-C-Mn alloy[J]. Acta Materialia, 2019, 177: 198-208. DOI:10.1016/j.actamat.2019.07.038 |
|
[3] |
MIYAMOTO G, USUKI H, LI Z D, et al. Effects of Mn, Si and Cr addition on reverse transformation at 1073K from spheroidized cementite structure in Fe-0.6 mass% C alloy[J]. Acta Materialia, 2010, 58(13): 4492-4502. DOI:10.1016/j.actamat.2010.04.045 |
|
[4] |
HILLERT M. An analysis of the effect of alloying elements on the pearlite reaction[C]//Proceedings of an International Conference on Solid to Solid Phase Transformations. Warrendale: TMS-AIME, 1982: 789-806.
|
|
[5] |
RAZIK N A, LORIMER G W, RIDLEY N. An investigation of manganese partitioning during the austenite-pearlite transformation using analltical electron microscopy[J]. Acta Metallurgica, 1974, 22(10): 1249-1258. DOI:10.1016/0001-6160(74)90138-2 |
|
[6] |
CHANCE J, RIDLEY N. Chromium partitioning during isothermal transformation of a eutectoid steel[J]. Metallurgical Transactions A, 1981, 12(7): 1205-1213. DOI:10.1007/BF02642334 |
|
[7] | |
|
[8] |
HUTCHINSON C R, HACKENBERG R E, SHIFLET G J. The growth of partitioned pearlite in Fe-C-Mn steels[J]. Acta Materialia, 2004, 52(12): 3565-3585. DOI:10.1016/j.actamat.2004.04.010 |
|
[9] | |
|
[10] | |
|
[11] |
KIRKALDY J S, THOMSON B A, BAGANIS E A. Hardenability concepts with applications to steel[M]. Warrendale, PA: AIME Transactions Press, 1978.
|
|
[12] |
AL-SALMAN S A, LORIMER G W, RIDLEY N. Partitioning of silicon during pearlite growth in a eutectoid steel[J]. Acta Metallurgica, 1979, 27(8): 1391-1400. DOI:10.1016/0001-6160(79)90208-6 |
|
[13] |
AL-SALMAN S A, LORIMER G W, RIDLEY N. Pearlite growth kinetics and partitioning in a Cr-Mn eutectoid steel[J]. Metallurgical and Materials Transactions A, 1979, 10(11): 1703-1709. DOI:10.1007/BF02811704 |
|
[14] |
RAZIK N, LORIMER G, RIDLEY N. Chromium partitioning during the austenite-pearlite transformation[J]. Metallurgical Transactions A, 1976, 7(2): 209-214. DOI:10.1007/BF02644458 |
|
[15] |
COATES D. Diffusion-controlled precipitate growth in ternary systems Ⅰ[J]. Metallurgical Transactions, 1972, 3(5): 1203-1212. DOI:10.1007/BF02642453 |
|
[16] |
COATES D. Diffusion controlled precipitate growth in ternary systems:Ⅱ[J]. Metallurgical Transactions, 1973, 4(4): 1077-1086. DOI:10.1007/BF02645611 |
|
[17] | |
|
[18] |
HILLERT M. On theories of growth during discontinuous precipitation[J]. Metallurgical and Materials Transactions B, 1972, 3(11): 2729-2741. DOI:10.1007/BF02652840 |
|
[19] |
PULS M P, KIRKALDY J S. The pearlite reaction[J]. Metallurgical and Materials Transactions B, 1972, 3(11): 2777-2796. DOI:10.1007/BF02652844 |
|
[20] |
PANDIT A S, BHADESHIA H K D H. Mixed diffusion-controlled growth of pearlite in binary steel[J]. Proceedings of the Royal Society A, 2011, 467: 508-521. DOI:10.1098/rspa.2010.0210 |
|
[21] |
PANDIT A S, BHADESHIA H K D H. Diffusion-controlled growth of pearlite in ternary steels[J]. Proceedings of the Royal Society A, 2011, 467: 2948-2961. DOI:10.1098/rspa.2011.0165 |
|
[22] |
PANDIT A S. Theory of the pearlite transformation in steels[D]. Cambridge: University of Cambridge, 2011.
|
|
[23] |
SEO S W. Pearlite growth rate in Fe-C binary and Fe-X-C ternary steels[D]. Pohang: Pohang University of Science and Technology, 2014.
|
|
[24] |
武慧东. Fe-Si-C合金的奥氏体分解动力学和元素配分行为[D].北京: 清华大学, 2018. WU H D. Transformation kinetics and element partitioning behavior during austenite decomposition in Fe-Si-C alloys[D]. Beijing: Tsinghua University, 2018.
|
|
[25] |
LOGINOVA I, ÅGREN J, AMBERG G. On the formation of Widmanstätten ferrite in binary Fe-C phase-field approach[J]. Acta Materialia, 2004, 52(13): 4055-4063. DOI:10.1016/j.actamat.2004.05.033 |
|
[26] | |
|
[27] |
LEVITAS V I, JAVANBAKHT M. Phase-field approach to martensitic phase transformations:effect of martensite-martensite interface energy[J]. International Journal of Materials Research, 2011, 102(6): 652-665. DOI:10.3139/146.110529 |
|
[28] |
NAKAJIMA K, APEL M, STEINBACH I. The role of carbon diffusion in ferrite on the kinetics of cooperative growth of pearlite:a multi-phase field study[J]. Acta Materialia, 2006, 54(14): 3665-3672. DOI:10.1016/j.actamat.2006.03.050 |
|
[29] | |
|
[30] |
AZIZI-ALIZAMINI H, MILITZER M. Phase field modelling of austenite formation from ultrafine ferrit-carbide aggregates in Fe-C[J]. International Journal of Materials Research, 2010, 101(4): 534-541. DOI:10.3139/146.110307 |
|
[31] |
ZHAO L, VERMOLEN F J, SIETSMA J, et al. Cementite dissolution at 860℃ in an Fe-Cr-C steel[J]. Metallurgical and Materials Transactions A, 2006, 37(6): 1841-1850. DOI:10.1007/s11661-006-0127-6 |
|
[32] | |
|
[33] |
SHTANSKY D, NAKAI K, OHMORI Y. Pearlite to austenite transformation in an Fe-2.6Cr-1C alloy[J]. Acta Materialia, 1999, 47(9): 2619-2632. DOI:10.1016/S1359-6454(99)00142-1 |
|
[34] | |
|
[35] |
GRAEF M D, KRAL M V, HILLERT M. A modern 3-D view of an "old" pearlite colony[J]. JOM, 58(12): 25-28. DOI:10.1007/BF02748491 |
|
[36] |
LI Z D, MIYAMOTO G, YANG Z G, et al. Nucleation of austenite from pearlitic structure in an Fe-0.6C-1Cr alloy[J]. Scripta Materialia, 2009, 60(7): 485-488. DOI:10.1016/j.scriptamat.2008.11.041 |
|
[37] |
LI Z D, YANG Z G, PAN T, et al. Analytical modeling of austenite growth and phase evolution during reverse transformation from pearlite in high carbon steels[C]//In Solid State Phenomena. Avignon, France: Trans Tech Publications Ltd, 2011: 1201-1206.
|
|
[38] |
李昭东, 宫本吾郎, 杨志刚, 等. Mn和Si对Fe-0.6C钢中珠光体-奥氏体相变的影响[J]. 金属学报, 2010, 46(9): 1066-1074. LI Z D, MIYAMOTO G, YANG Z G, et al. Effects of Mn and Si additions on pearlite-austenite phase transformation in Fe-0.6C steel[J]. Acta Metallurgica Sinica, 2010, 46(9): 1066-1074. |
|
[39] |
李昭东.变形和合金元素对钢中奥氏体组织形成和分解相变的影响[D].北京: 清华大学, 2012. LI Z D. Effects of deformation and alloying elements on the formation and decomposition of austenitic structure in steels[D]. Beijing: Tsinghua University, 2012.
|
|
[40] |
LI Z D, MIYAMOTO G, YANG Z G, et al. Kinetics of reverse transformation from pearlite to austenite in an Fe-0.6 mass% C alloy and the effects of alloying elements[[J]. Metallurgical and Materials Transactions A, 2011, 42(6): 1586-1596. DOI:10.1007/s11661-010-0560-4 |
|
[41] |
MIYAMOTO G, LI Z D, USUKI H, et al. Alloying effects on reverse transformation to austenite from pearlite or tempered martensite structures[C]//In Materials Science Forum. Berlin, Germany: Trans Tech Publications Ltd, 2010: 3400-3405.
|
|
[42] |
ZHANG G H, CHAE J Y, KIM K H, et al. Effects of Mn, Si and Cr addition on the dissolution and coarsening of pearlitic cementite during intercritical austenitization in Fe-1mass% C alloy[J]. Materials Characterization, 2013, 81: 56-67. DOI:10.1016/j.matchar.2013.04.007 |
|
[43] |
KARMAZIN L, KREJ ČÍ J. The dependence of the austenitization kinetics on the type of initial spheroidized structure in low alloy steel[J]. Materials Science and Engineering:A, 1994, 185(1/2): 15-17. |
|
[44] |
KARMAZIN L. Experimental study of the austenitization process of hypereutectoid steel alloyed with small amounts of silicon, manganese and chromium, and with an initial structure of globular cementite in a ferrite matrix[J]. Materials Science and Engineering:A, 1991, 142(1): 71-77. |
|
[45] |
MOLINDER G. A quantitative study of the formation of austenite and the solution of cementite at different austenitizing temperatures for a 1.27% carbon steel[J]. Acta Metallurgica, 1954, 4(6): 565-571. |
|
[46] |
HILLERT M, NILSSON K, TORNDAHL L E. Effect of alloying elements on the formation of austenite and dissolution of cementite[J]. Journal of the Iron and Steel Institute, 1971, 209(1): 49-66. |
|
[47] |
XIA Y, ENOMOTO M, YANG Z G, et al. Effects of alloying elements on the kinetics of austenitization from pearlite in Fe-C-M alloys[J]. Philosophical Magazine, 2013, 93(9): 1095-1109. DOI:10.1080/14786435.2012.744484 |
|
[48] |
夏苑. Mn、Mo等合金元素对钢中奥氏体形成及分解动力学的影响[D].北京: 清华大学, 2015. XIA Y. Effects of Mn, Mo and other alloying elements on the formation and decomposition of austenite in steels[D]. Beijing: Tsinghua University, 2015.
|
|
[49] |
YANG Z N, XIA Y, ENOMOTO M, et al. Effect of alloying element partition in pearlite on the growth of austenite in high-carbon low alloy steel[J]. Metallurgical and Materials Transactions A, 2016, 47(3): 1019-1027. DOI:10.1007/s11661-015-3272-y |
|
[50] |
LAI Q Q, GOUNÉ M, PERLADE A, et al. Mechanism of Austenite Formation from Spheroidized Microstructure in an Intermediate Fe-0.1C-3.5Mn Steel[J]. Metallurgical and Materials Transactions A, 2016, 47(7): 3375-3386. DOI:10.1007/s11661-016-3547-y |
|
[51] | |
|
[52] |
YANG Z N, ENOMOTO M, ZHANG C, et al. Transition between alloy-element partitioned and non-partitioned growth of austenite from a ferrite and cementite mixture in a high-carbon low-alloy steel[J]. Philosophical Magazine Letters, 2016, 96(7): 256-264. DOI:10.1080/09500839.2016.1197432 |
|
[53] |
ENOMOTO M, LI S, YANG Z N, et al. Partition and non-partition transition of austenite growth from a ferrite and cementite mixture in hypo-and hypereutectoid Fe-C-Mn alloys[J]. Calphad, 2018, 61: 116-125. DOI:10.1016/j.calphad.2018.03.002 |
|
[54] |
杨泽南, 杨志刚, 夏苑, 等. 层片状珠光体组织奥氏体化速率的计算[J]. 金属学报, 2013, 7(7): 890-896. YANG Z N, YANG Z G, XIA Y, et al. Calculation of austenization rate of lamellar pearlite[J]. Acta Metallurgica Sinica, 2013, 7(7): 890-896. |
|
[55] | |
|
[56] |
杨泽南.合金元素配分与偏聚对钢中相变热力学及动力学的影响[D].北京: 清华大学, 2017. YANG Z N. Effects of alloying element partition and its interfacial segregation on the thermodynamics and kinetics of phase transformation in steels[D]. Beijing: Tsinghua University, 2017. http://cdmd.cnki.com.cn/Article/CDMD-10003-1018875983.htm
|
|
[57] |
LIU Z Q, MIYAMOTO G, YANG Z G, et al. Volume fractions of proeutectoid ferrite/pearlite and their dependence on prior austenite grain size in hypoeutectoid Fe-Mn-C alloys[J]. Metallurgical and Materials Transactions A, 2013, 44(12): 5456-5467. DOI:10.1007/s11661-013-1885-6 |
|
[58] |
SUN W W, WU Y X, YANG S C, et al. Advanced high strength steel (AHSS) development through chemical patterning of austenite[J]. Scripta Materialia, 2018, 146: 60-63. DOI:10.1016/j.scriptamat.2017.11.007 |
|