材料工程  2020, Vol. 48 Issue (2): 79-86   PDF    
http://dx.doi.org/10.11868/j.issn.1001-4381.2019.000332
0

文章信息

杨斌, 李云龙, 王世杰, 聂瑞, 王照智
YANG Bin, LI Yun-long, WANG Shi-jie, NIE Rui, WANG Zhao-zhi
拉应力下碳纳米管增强高分子基复合材料的应力分布
Stress distribution of carbon nanotube reinforced polymer matrix composites under tensile stress
材料工程, 2020, 48(2): 79-86
Journal of Materials Engineering, 2020, 48(2): 79-86.
http://dx.doi.org/10.11868/j.issn.1001-4381.2019.000332

文章历史

收稿日期: 2019-04-08
修订日期: 2019-09-10
拉应力下碳纳米管增强高分子基复合材料的应力分布
杨斌1 , 李云龙2 , 王世杰1 , 聂瑞1 , 王照智1     
1. 沈阳工业大学 机械工程学院, 沈阳 110870;
2. 汕头大学 工学院, 广东 汕头 515063
摘要:采用基于剪切滞后模型的数值计算和有限元仿真结合的研究方法,通过构建由碳纳米管增强的高分子复合材料的圆柱形代表性体积元模型,分析在一定拉伸应力下不同碳纳米管的层数、长径比、含量以及环氧树脂、尼龙和聚甲基丙烯酸甲酯3种基体材料对碳纳米管内各层应力分布的影响。结果表明:在一定的拉伸应力下,层数和长径比对碳纳米管中各层的应力分布影响很大。碳纳米管的饱和应力值随着层数增加而减小,其值与层数存在一定的相关性,在对碳纳米管本身性能的利用率上,单壁碳纳米管表现最好;长径比的增大能有效提升碳纳米管的有效长度;随着碳纳米管含量的减少,其饱和应力值明显增大,有效长度不断减小;不同的高分子基体材料对碳纳米管的应力分布影响并不明显。
关键词碳纳米管    高分子基体    应力分布    剪切滞后模型    有限元法    
Stress distribution of carbon nanotube reinforced polymer matrix composites under tensile stress
YANG Bin1, LI Yun-long2, WANG Shi-jie1, NIE Rui1, WANG Zhao-zhi1    
1. School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China;
2. College of Engineering, Shantou University, Shantou 515063, Guangdong, China
Abstract: A cylindrical representative volume element model of polymer nano-composites reinforced by carbon nanotubes under a fixed tension stress was developed. The stress distribution in each layer of carbon nanotubes was numerically studied through developing a shear lag model. Finite element analysis was adopted to validate the results obtained by shear lag analysis. The effects of layer numbers, aspect ratio, content of carbon nanotubes and three kinds of matrix materials of epoxy resin, nylon and polymethyl methacrylate on the stress distribution in each layer of carbon nanotubes were analyzed. The results show that the stress distribution in graphene sheets of carbon nanotubes is significant influenced by layer numbers and the aspect ratio of carbon nanotubes under a fixed tension stress. The saturation stress